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New mixed Herz-Hardy spaces and their applications
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Abstract. In this paper, Herz-Hardy spaces with mixed-norm are introduced, and some properties of these
spaces are established, such as the characterization of various maximal operators, including property and
some inequalities. Furthermore, we investigate atomic decomposition and molecular decomposition of
mixed-norm Herz-Hardy spaces. As an application, the authors obtain the boundedness of some operators
on these spaces by atomic decomposition.

1. Introduction

The study of Herz spaces originated from the work of Beurling [1]. Later, Herz spaces were system-
atically studied by Herz [2] to study the Fourier series and Fourier transform. In the 1990s, Lu and Yang
[3] introduced the homogeneous Herz spaces K;"p (R") and non-homogeneous Herz spaces K;"p (R") and
extended the boundedness of a large class of operators to these spaces.

As is well known, Hardy spaces are proper substitutes of Lebesgue spaces in some situations. For exam-
ple, the Riesz transforms are bounded on the Hardy space H”(IR"), but not bounded on the corresponding
Lebesgue space LP(R") when 0 < p < 1. The theory of classical Hardy spaces was originally studied by
Stein and Weiss [4] and then systematically developed in [5]. Hardy spaces also have various real variable
characterizations, such as different maximal operators characterizations, atomic characterization [6] and
molecular characterization [7], and so on. These characterizations greatly facilitate the researchers to derive
the dual spaces of Hardy spaces and establish the boundedness of operators on these spaces, see [8] for
more details. As a variant of the classical real Hardy spaces, the Hardy spaces associated with the Beurling
algebras on the real line were first introduced by Chen and Lau [9], in which the dual spaces and the
maximal function characterizations of these spaces were established. Later, Garcia-Cuerva [10] extended
the results of Chen and Lau [9] to higher-dimensional case, and Garcfa-Cuerva and Herrero [11] further
studied their maximal function and Littlewood-Paley function characterizations. In 1995, Lu and Yang [12]
systematically studied Herz-Hardy spaces with general indices and established their atomic and molecular
characterizations. For more studies of Herz-Hardy type spaces, the readers can refer to [13-17].
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Recently, mixed-norm Lebesgue spaces L7(IR"), as natural extensions of the classical Lebesgue spaces,
have attracted widespread attention. The theory of mixed-norm function spaces can be traced back to the
work of Benedek and Panzone [18], in which it was proved that L7(IR") also possesses some basic properties
similar to the classical Lebesgue spaces, such as completeness, Holder’s inequality, Minkowski’s inequality,
and so on. These properties provide the possibility to solve a series of subsequence problems. On the other
hand, since the study of partial differential equations (for example the heat equation and the wave equation)
always involves both space and time variables, mixed-norm spaces possess better structures than classical
spaces in the time-space estimates for PDEs. For these reasons, many researchers renewed the interest in
mixed-norm Lebesgue spaces and extended them to other mixed-norm function spaces. For instance, the
real variable characterizations and the atom characterization of mixed-norm Hardy spaces were established
in [19, 20]. In 2019, Nogayama [21] introduced mixed-norm Morrey spaces and gave some applications in
the operator theory.

Note that recently Herz spaces were also extended to the mixed-norm situation by Wei [22]. By
extending the extrapolation theory to mixed Herz spaces, Wei [22] established the boundedness of some
classical operators in harmonic analysis on these spaces. Moreover, the extrapolation theory can further
give boundedness results of some classical operators on mixed Herz spaces.

In this paper, we introduce mixed Herz-Hardy spaces and investigate some basic properties of these
spaces in this paper. Moreover, we will establish the atomic decomposition and molecular decomposition
for these spaces. As applications, the boundedness for a wide class of sublinear operators on mixed
Herz-Hardy spaces is obtained.

The organization of the remainder of this article is as follows. Some necessary definitions and lemmas
are given in section 2. The atomic decomposition and the molecular decomposition of mixed Herz-Hardy
spaces will be given in section 3 and section 4, respectively. Some applications of the atomic and molecular
decomposition are presented in section 5.

2. Preliminary

Throughout this paper, we use the following notations. The letter § will denote n-tuples of the numbers
in (0,00] (n > 1), § = (91,92, ---,qn)- By definition, the inequality 0 < § < o means that 0 < g; < o for
alli. For § = (q1,92,--.,9n), we write 1/§ = (1/q1,1/92,...,1/g,). In addition, if § € [1, c]", we denote by
T =(q,, 95, ---,9,), where g/ = q;/(q; — 1) is conjugate exponent of g;. |B| denotes the volume of the ball B, x,
is the characteristic function of a set E. The notation A < B means that A < CB with some positive constant
C independent of appropriate quantities, and, if A < B < A, then we write A ~ B. [a] denotes take the
integer number for a. Let By = {x e R" : |x| < 2%} and Ay = By\Bi_; for any k € Z. Denote x, = X, for any
keZ,and x, = x, forany ke N, x, = Xs,-

Definition 2.1. (Mixed Lebesgue spaces)([18]) Let f = (p1,p2,-..,pPn) € (0,00]". Then the mixed Lebesgue space
LP(IR") is defined to be the set of all measurable functions f such that

2 o

B2 [
P
”f”Lﬁ(]R”) = L . {jﬂ; (L |f(X1,X2,...,x,,,) |P1 dxl) dXZ] .. .dx,, < 00,

If pj = oo, then we have to make appropriate modifications.

Definition 2.2. ([22]) Leta € R, 0 < p < 0, 0 < § < co. The mixed homogeneous Herz space K;f’p (R™) is defined
by

1/p
P — 7 . _ k P
Kq_, (Rn) = f S LIOC(RW/{O}) : ”f”Kng(]Rn) = [é 2 ap”f)(k”LlT(]R”)] <00y,
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Definition 2.3. ([22]) Let a € R, 0 < p < 00, 0 < § < co. The non-homogeneous mixed Herz space K;’p (R™) is
defined by

0 1/p
KPR = 1 f € Lo (R |l ey = [2 zkapllf)?kll’;(m,,)] <ool.
k=0
Remark 2.4. () If 0 < § = (q1,92,---,qn) < 0 and g1 = g = -+ = q, = q, then K;f’p(]R") = K;"(R") and
K;f’p (R") = Ky (R™), where K5 (R") and K" (R") are classical Herz spaces.
(ii) The mixed homogeneous Herz space K;’p (R™) and the non-homogeneous mixed Herz space Kg,’p (R™) are quasi-
Banach spaces. But, if §,p > 1, they are Banach spaces. These can be inferred from definitions of mixed Lebesgue
spaces and classical Herz spaces.
To give the definition of mixed Herz-Hardy spaces HK;’” (R") and HK;’V (IR"™), We first introduce some

maximal-type operators. Denote S (R") by the Schwartz space of all rapidly decreasing infinitely differen-
tiable functions on R", and &’ (IR") by the dual space of S (R").
Let ¢ € S(R") and ¢s(x) = t7"¢p(x/t), such that f]Rn ¢(x)dx = 1. For t > 0, f € &' (R"), define the smooth

maximal operator M ( f qb) by
M(f; ) (x) = sup |(f * ) (x)| .

Also, we define the non-tangential maximal operator M, ( £ qb) (with a > 0) and the auxiliary maximal
operator M;* ( f <p) (with b > 0) by

M; (f,cp) (x) =sup sup |f>+ qbt(x)|

t>0 |x—yl|<at

and

|f * ()|

-
" — t
(y,HeR™H! (%)

My (fi9) () =

Let My f(x) be the grand maximal function of f(x) defined by

M f(x) = sup Mi(f; p)(x),
PeAN

where Ay = {¢ € S(R") : sup,, gy [x*DF()| < 1}.

In 2017, anisotropic mixed-norm Hardy spaces are introduced by Cleanthous et al., particularly, who
also investigate isotropic mixed-norm Hardy spaces and a crucial theorem as follows.

Let 7 € (0, c0)" we denote by p_ := min(1,ps,...,p,) and

Nﬁ:= [n(l+i)+n+2]+1

We will say that a distribution f € S’ belongs to the isotropic mixed-norm Hardy space H” (R") when

My, f € L7 (R"). The map ANl ey = ||MN17f||Lﬁ7(]R") is the quasi-norm of H” (R").

Lemma 2.5. ([19]) Let f € (0,00)" and 0 < 6 <min(1,p1,...,pn). Then for everya > 0,b>n/6,N >2n+b+2
and f]R,, ¢(x)dx = 1 we have for all f € &’

IMCE; Dy ~ M Ol gy ~ I1M5 D)y ~ IMN Al
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Definition 2.6. Let « € R,0 < p < 00,1 < § < 00, and N > N;. The mixed homogeneous Herz-type Hardy space
HK;”’ (IR™) is defined by

HKY' (R") = { €S R :fllger gy = [|M o < oo} :
q

Definition 2.7. Let « € R,0 < p < 00,1 < § < 0o, and N > N;. The mixed non-homogeneous Herz-type Hardy
space HK;”’ (IR™) is defined by
)

Remark 2.8. (i) Notice that ifp = 1,1 < § < co,and a = n— Y., 7, then the space HK{‘;'1 (R") is the space HAT(R")
defined in [23], which can be inferred from the atom decomposition of mixed Herz-Hardy spaces (see section 3).

(ii) By the sublinearity of My and the definition of mixed Herz-Hardy spaces, we can conclude that mixed
Herz-Hardy spaces are quasi-Banach spaces.

HK (R") = {f € 8" R Wflhagrerey = M S

Now, we will give some necessary lemmas and basic properties of mixed Herz-Hardy spaces. The
following theorem tells us that besides the grand maximal operator My, the space HK;’”(]R”) can also be

characterized by some other maximal-type operators.

Theorem 2.9. Let 0 < a < 00, 0 <p < o0, 1 < § < oo and f]Rn ¢(x)dx = 1. For f € &' (R"), the following
statements are equivalent:

(i) fe HK‘f"’ (R™).

(if) There exists a function ¢ € S (R"), such that for some a > 1, M, ( 1 ¢) € Kap (R™).
(iii) There exists a function ¢ € S (R"), such that My*(f; $) € K;p (R™).
(iv) There exists a function ¢ € S (R"), such that M ( f; cp) € K;f’p (R™).

Proof. The proof of Theorem 2.9. By Lemma 2.5 and the definitions of mixed-norm Herz-Hardy spaces can
directly gain. [

Lemma2.10. Let 0 < p < 00,1 < § < o0, and —Y,i_; ql <a<nl-iyh, 7 1), Suppose a sublinear operators T
satisfied that

(i) T is bounded on L7 (R");

(i) for any f € LY(R") with compact support have

|Tf( )| f ||f( )| = x ¢ suppf. (1)

Then T is bounded on K;f’p (R™).

Proof. This proof is similar to that of ([22], Theorem 4.2), and the only difference is that we should take the size
condition into consideration. For simplification, we omit the details. [

Proposition 2.11. Let1 < §<c0,0< 0 <min(1,q1,...,q,), B > n/6,and N > 2n + B + 2. Then My is bounded
on LA(R™).
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Proof. By Lemma 2.5, [IM(f; P)llpigny ~ ”MN f ”Llf(]R") when f]Rn ¢(x)dx = 1. We only need to consider the
boundedness of operators M(f; ¢) on LY(R"). It is well known that ¢ € LY(R"), then

M(f; P)(x) < ClipllrreyMf (x) < CMf(x),

where Mf is Hardy-Littlewood maximal operators of f. Moreover, since the Hardy-Littlewood maximal
operator is bounded on L7 (IR") (see [24]), we have

M Fl ey ~ I D)y < Cll i,

It implies the result of this proposition. O

Proposition 2.12. Let 0 < p < 00,1 <§ = (q1,q2,--.,qs) < 00 and N > Ng. If =}
Then

<0¢<n(1——2

llq llq

HKSY (R ()L, (R"\{0) = K7 (R")

and

HKSY (R") ﬂ L], (R") = K¥ (R").

loc

Proof. It suffices to prove homogeneous spaces. By using the trivial inequality |f(x)] < CMn(f)(x), we get

p
”f”Kap(]R”) S ZzkapllMN(f)(x)Xk”Ll?(]Rn J = “MN(f)”K;F’(]Rn) = ”f“HK;:P(]Rn)/

keZ

loc

which yields HKap (RY N LT (R"\{0)) K;’p (R™).

From the boundedness of sublinear operators on mixed Herz spaces K;,’p (R™), we can check that K;’p (R") c

HK“” (RN Lloc (R™\{0}). We claim that when ¢ € Ay, the grand maximal function M(f) satisfies
f(x)
IMn(H))I < C |J|C ||,, dy. 2)

In fact,

IMn(f)(x)| = sup sup |p:* f(y)|

t>0 |x—y|<t

< t" d
<%$J (755 [k
f Fel
Ty
It follows from (2) and Lemma 2.10 that
“f”HK;f/”(RM) = ”MN(f)“K;f'”(]R”) <C Hf K;f/”(an)‘

As a consequence, K 7 (R") c HK'“’ (RMHN LloC (R™\{0}).
In addition, we can obtain K;p (R") c Li’oc (IR™) from the definition of mixed Herz spaces. [

Remark 2.13. In view of Proposition 2.12, we will only consider the characterizations of the spaces HK;’” (R") and

HKap (R") in terms of central atom and molecular decomposition for a > n(1 — 1 ¥, q
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Proposition 2.14. Let a € R,0 < p < 00,1 < § < co. Then
HKY (R") = L7 (R") ﬂ HK:' (R").
Proof. To prove this proposition we need the following assertion. For 0 < p,{ < oo, we have
K (R = K7 (R (LT (@R, ©)
and for all f € K;f’p (R") N L7 (R"), there holds
ey = Wfllsr e + 1T

Note that

ki
0 e Z 2RI o

kap
= 1ol +22 AL g

0

14 kap
<y Wy = 20 27
We claim that the following estimation is correct:
0
kap
kz 2N XRIE g ey < Oy

When p < gy, by using the Holder inequality and

(o) r (o)
(2 |ak|] <Yl 0<r<y,
k=1 k=1

we obtain
0 0 k qn qﬂ"
Y 2, <[ 3 20| Z Il | < Z sy < My
k=—oc0 =—00
When g, <p,
m
K ke, g ke ;
Z 2 ap”f)( ”U Ry = Z (2 aq ”fX ”Lﬂ(]R" ) [Z okaq ”ka”Z”(]R" ] S CHf”L'?(IxKl
k=—00

we also obtain ||f||K;,p(]Rn) < IIfIIK;,p(]Rn) + 1l rn-
To finish the proof, we need to check || f]| Ko7 (R?) < ClIAl KS(RY) and || f| rirey S C LAl KI(R)- By a direct computation,
we have
0

_ kap kap P
1l e < Z 2PN 0 +kZ2 [
=1

k=—00
oo

kap
<O sy * 2, 2R

A C”f”Lq(|X|<1) ||f||[(;f'p(l[{n)
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The result || fll 7w<1) < C||f||K;w (Rm) 18 evident.
Furthermore, to prove the other estimate, it suffices to show that

1l < C”f”K;"”(R”)‘

When 0 < g, < p, as a consequence of the Holder inequality, there holds

—kaqn( ) kap In g qn n
||f“m(lxl>1) [Z 2 ] (2 270f xi “m R ] < ClIfl KM (R

k=—00

When q,, > p, we also have

qn
o)

A oy < D I [anxknm,,] < Ol oy
k=1

The above estimates indicate that K;f’p (R™) = K;f’p (R™) N L7 (R") holds.

By using (3) and the boundedness of My on mixed spaces L7 (R") from Proposition 2.11, we can immediately show
this proposition. [

3. Atom characterization of mixed Herz-Hardy spaces
We begin with the definition of central atoms.

Definition 3.1. Let 1 < § < oo, n(1 -1y, q < a < oo, and non-negative integer s > [a n(l-1iyn, W )]

(i) A function a on R" is said to be a central (, §)-atom, if it satisfies
(@) suppa C B(0,r) = {x e R" : x| < r}.
() llall sy < BO, )",

() fRn a(x)xPdx = 0,1l < s
(ii) A function a on R" is said to be a central (o, §)-atom of restricted type, if it satisfies the conditions (b), (c)
above and (a)’ suppa C B(0,r),r > 1

Remark 3.2. If § = q is a constant, we recover the classical (a, q)-atom since 1 — 3 %y = =1~ L.
Theorem 3.3. Let1 < j<oo,0<p<ocoandn(l—13", q) a < co. Then
() f € HK;”” (R™) if and only if

f= Z Axax  in the sense of S’ (R"),

k=—c0

where each ay is a central (a, §)-atom with support contained in By and Y2 |Aff < 0. Moreover,

0 1/p
sap omy X INf AP,
“f“Hqu’(IR) (kZ:O‘| ! ]

where the infimum is taken over all above decompositions of f.
(ii) f € HK;”’ (R™) if and only if

f= Z Axax  in the sense of S’ (R"),
k=0
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where each ay is a central (a, §)-atom of restricted type with support contained in By and Y3 AP < 0. Moreover,

00 1p
pmy X INf AP,
ke [Z| u]

k=0

where the infimum is taken over all above decompositions of f.

Proof. We just need to show (i), and (ii) can be proved in the similar way.
Necessity: choose ¢ € Cy’ (R") with ¢ > 0, fRn ¢(x)dx =1,supp ¢ C {x: x| < 1}. For j € Z,, let

gb(j)(x) = 2jn¢ (ij) .
For each f € 8§’ (R"), write A
fO@) = £+ d().

It is easy to see that f7) € C* (R") and limj_e. f9) = f in the sense of distribution.
Let 1) be a radial smooth function such that suppp C {x:1/2 —e <|x| < 1+ e} with 0 < e < 1/4,¢Y(x) =1 for
1/2 < |x] < 1. Set Pr(x) = ¢ (Z‘kx)for ke Z and

Ape = {x: 21 - 2% <o < 2° + 2.

From the conditions of 1, we know that supp Yy C A and Yr(x) = 1 for x € Ay = {x 2K < x| < 2"}.
Obviously, 1 < Yo _o Pr(x) < 2,|x| > 0. Write

Dy (x) = { g’lk(x)/ YR o ti(x), x#0,

x =0,

then, Y pe_o @k(x) = 1 for x # 0. For some m € IN, we denote the class of all the real polynomials with the degree less

than m by P, (R"). Let P](j)(x) =Py, ( f (f)d)k) ()X 4,, (x) € Py (R") be the unique polynomial satisfying

| (0o - P ) b=, |ﬁ|<m=[a—n[l_%2%ﬂ'

ke i=1

Denote by
oo ) )

O (x) = Z (f(f)(x)(bk(x) - P}(Cf)(x)) + Z pl(cf)(x) = Z + Z

k=—o0 k=—co 1 11

For the term ):;j), let g,(cj)(x) = fD(x)Dy(x) - P,(j)(x). Now we deal with ”g’ij)“m(w)' To do this, by the estimate in
[17, pp.1369], we know that

C
[ Ak

[PV <

fA £ o) ()| .

Moreover, by the Holder inequality on mixed norm spaces, we have

, C .
‘P’(j)(x)' S |Ac| “f(])q)k”N(R")
&

XAy ” L7 Ry
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Therefore, we have

)

<[ FPu| e, + ||P Y LR
< “f(j)q)k“Li(JRn) +C ”f(j)q)k”Lq‘(Rn)

<C||(f*¢<f>)®k
k+1

< Z ”(MNf)XI”L'T(IR")'

I=k-1

o

L7(R")

sz(]Rn)

Now write

) ) k+1

Z (f(j)(x)q)k(x) —Pl(j)(x)) = Z C’ |Bisal® Z ”(MNf) XZHU‘(R")

k=—c0 k=—c0 1=k-1
FDED(x) - PP(x)

o k1
C |Bk+1|" l:%l ”(MNf) Xl“[ﬁ(Rn)

CF

k=—00

Then,

(])H —_ < B ™" and each a]({j) is a central (v, §)-atom with support contained in Byy;.

k+1

2 Al < CZ Beaal ™ Y M)

k=—00 I=k-1

<C IIMNf

“’”(IR“ = C”fHHK”(JR" )

I~t remains to estimate g) Let {1,&’; Jd] < m} be the dual basis of{xﬁ Bl < m} with respect to the weight 1/ |Ak,€|
on Ay, that is

<%f = | f x 1/;d(x)dx = Opa-

Let

: (R @xa () PR g, (x) ,
() _ d ke d k+1,¢
= B (S g e

[=—0c0

We can write

0 oy
IEDID IS NP IT)
I |d<mk=—co ldI<m k=—oo
where
k+1 N
arqg =C" Z [ My f) Xl”Li(W) |Bi+2|" -
I=k-1
Note that

f Z |@1(0)x"| dx = Z f |y ()| e < Gk,

|=—00 |=—00
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Furthermore,

< C2M D Ay F(x),  x € Byyo. 4)

f oW Z @ (y)y'dy

I=—c0

Inequality (4), together with the inequality that

k _ k+1 _ k+1
(wd(x)f(flk,l (x) _ llbd (Ji)XAm,z (x)] < (2 KGr+ld) Z xi(x),
|Ak,£ | |Ak+1,£ I=k—1
shows that
()
k,d Lq(]Rn Z H(MNf)XI”LH(]R”
and
A
k,d _a
|| Li(R") k+1 . S ClByyal -
C X [[Muf) 2l ey Brs2l ™ ||
I=k-1 Li(Rn)

It has been check that al({jzi is a central (a, §)-atom with support contained in Ak,g U Akﬂ,g C Biyp, and C” = (Cq,

agg =C” Zf:kz_l H(Gf))(l”mw) |Bis2|*". Moreover, we also can get

k+1

P
Yot <c 3\ m® [ Y [ XlHW] <ALy <

I=k-1

Thus we obtain that .
0 =Y A @),

d=—c0

where each afj) is a central (a, §)-atom with support contained in Adlg U Adﬂ,g C Byin, and

(5 t] <l <o

d=—c0

. ()
Since sup j€Z ||a0 qu‘(IR")

converging in the weak* topology of L7 (R") to some ay € L1 (IR") and ay is a central (a,§)-atom supported on B.

< |Ba[™"™, by the Banach-Alaoglu theorem we can obtain a subsequence {a(()j "0)} of {a(()j )}

Repeating the above procedure for each d € Z., we can find a subsequence {ay ”d)} of =a;j )} converging weak” in L7 (IR")
to some ay € L7 (IR") which is a central (a, §)-atom supported on By.. By the usual diagonal method we obtain a

() ag in the weak” topology of L7 (R") and in S’ (R").

subsequence {j,} of Z.. such that for each d € Z,lim, . a;

Now our proof is reduced to proving that

f= Z Agag, in the sense of S’ (R").

d=—c0

For each ¢ € S(R"), noting that supp a(] ) (Ad,s U Ad+1,£) C (Ag-1UA4 U Agyq U Agsn), we have

(f,¢) = lim Z Ad f (i) (xX)(x)dx.

d_—oo
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Recall that m = [a -y %] Ifd <0, by using the Holder inequality on mixed-norm spaces, then

(i) _ (iv) DPp(0)
fl;n adj (0)p(x)dx| = f}Rn ad] (x)[(p(x)— Z i xﬁ]dx

|Bl<m

<C f ol )| - 1k
]Rn
< Cpdom+n) ||, G) [Fe e
T Ny VR
<O (m+1 04+Z1 7 )
Y 1

Ifd > 0, let ko € Z such that ko > Y,i, q — a. Again by using Holder’s inequality on mixed-norm spaces,

() f () K —dko || () (k°+“ ; *')
a;(x)px)dx| < C a; ()| x| dx < C27 ||a Gy S =)
‘jﬂ;n d ( )(P( ) R d ( ) | | d sz(]Rn) ”XBd+2 L7 (]Rn)
Let
g = 112 ) aco,
d =
—d|ko+a—
PRER - N
Then
5 Jol €| 3 w] <Ml <
d=—o0 d=—co
and
| [ o] <
IRn
which imply that
(o)=Y lim A, f M@= Y A, f a4()p(x)dx
—t V=00 R" —t R"
This mean that f = Y.5°_ Agag in the sense of S’ (R").
Suﬁ‘tczency we will prove the conclusion for two different cases: 0 <p < land 1 <p < oo.
If0 < p < 1, it suffices to show that for each central (a, §)-atom a,
||MNIZ||I(‘;VP(R”) < C
with the constant C > 0 independent of a.
For a fixed central (a, §) -atom a, with supp a(x) C B (O, 2k0) for some ko € Z.. Write
k0+3
I Myall’, ooy Z 27 |(Mna) Xl gy * Z 2P |(Mua) xll? ey = THIL
k=—c0 k=ko+4

By the L7 (R") boundedness of the grand maximal operator My from Proposition 2.11, we have

ko+3 ko+3

1< Y 2 IMyall, . < Clall’,

kap
Li(R") Li(R") Z 2 <C
k=—00 =—00

4405
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The next step is to consider II. We need a pointwise estimate for Mya(x) on Ag.
Let ¢ € An, m € N such that a — Y.i_ 17 l, < m + 1. Denote by Py, the m-th order Taylor series expansion. If

|x — yl| < t, then from the vanishing moment condztzon of a we can get

o gu(w)| = 1" f @057 ) - a3 )iz
< f () |§‘m+1 (1 N ly —tez|)(n+m+1) -
R

<C f laz)llz™ 2 (t + |y — Oz])~ " Ddz,
]Rn

where 0 < 6 < 1.
Since x € Ay for k > ko + 4, we have |x| > 2 - 20*1. From |x — y| < t and |z| < 25*1, we have

t+|y—Gz|>|x—y|+|y—92|>|x|—|z|>%.

Thus, by the Holder inequality, we have
‘a*qbt(y f |a( Z)Hzlmﬂ(lx _ |+ |]/ 0z|)~ (n+m+1) g
< Czko(m+1)|x|—(n+m+1) f |ﬂ(Z)|dZ
R"
S s, e
Therefore, we have

MNCI(X) <C

”L’f'(]R”) , xX€Ar k>ky+4

Asa consequence,
= 0 (ho—K)(m+1-a+ Y, )
kapnko(m+1)—k(n+m+1)nkoap i=1 i
I<C Y 2k 29% [l )7 o iy < € D 2 i<
k=ko+4 k=ko+4

If1 < p < oo, write

p 00 k=2 p
ke S Z 2"“*’[2 IAzIIIazllm(]Rn] + Z 2"“”[2 IA1||I(MNa1))(kIILq(W)] = I +1V.

vl

k=—00 I=k-1 k=—o0 I=—c0

Using the Holder inequality on mixed-norm spaces, we get

e

o0 4
m<c 2’“)4’[2 |Az||BzI3]
k=—c0 I=k-1
. 5
[2 A 1B 3 ][Z 1B ]
I=k-1 I=k-1

0o

Llp
2kap/2 [l |By| 2
S

gk '.'Mg

»
i
8

Al

N
0
1

o0



Y. Zhao et al. / Filomat 38:13 (2024), 4395-4415 4407

Now suppose & — Yi_y & < m + 1. As in the argument for II, we can obtain that

i=1 q

SEES I(m+1)—k 1 | B| ’
IV < CkZ Z |Ay] 2K )(IF) s, (R") Xl ]R"]

k) (1 k)(m+1 a+ Z %)

<C [A;]2 i=1 %

Ll

r
<C i kZ_%‘ [P 2(l_k>(m+1_a+é%)§] (kZ: 2(1 k)(mﬂ MZ );,z]q’

The proof is finished. [

4. Molecular characterization of mixed Herz-Hardy spaces

In this section, we will obtain the molecular decomposition of mixed Herz-type Hardy spaces. We first
give the notation of central (¢, 7; s, ¢);-molecule.

Definition 4.1. Letn—Z,:1 17, Sa<00,0<p<eol< §<oo,ands > [a— n+):l 1 1]beanon negative integer.
Set ¢ > max{$, & + 1y 1q——1} a=1-1y" 1q Steandb=1-1%7 1q +e. A function M; € L7 (R")
withl € Z (or | € ]N) is said to be a dyadic central (a,;s, €)-molecule (or dyadic central (o, ;s, €);)-molecule of

restricted type) if it satisfies
(d) ”Ml”LLT(]Rn 2_la
1-a/b
(&) Ry (M) = Ml (I MO ey <

(f) Jpo Mi(x)xPdx = 0, for any B with |B] <'s.

Deﬁnition4.2.Letn—Z?zlql a<o0,0<p<oo,l<f<oo,ands>[a-n+Yyr, L 71 be a non-negative

integer.Sete>max{%,%+%2i21;— 1},a=1-1 leq———+eandb— ——Z,l—+s

i) A function M € L7 (IR") is said to be a central (a,;s, €)-molecule if it satisfies

; 1-a/b
(g)%(M) VI - MO gy < -

Li(R")

(h) [ M()xPdx = 0, for any p with |B| <

(ii) A function M € L7 (R") is said to be a centml (v, s, €)-molecule of restricted type if it satisfies (g),(h) in (i)
and (g)’ ”M”Lq(]Rn 1.

The following lemma implies that the molecule is a generalization of atom.

Lemma4.3.Letn—Z?11 a<oo,0<p<oo,l<qf<ooands>[a—n+LL ;]beanon-negative integer.
Set & > max({%, %+ Ellq }a—l——Z,lq———+sandb—1—lZl1—+£ Iszsacentml(a:f)atom(or

(a, §)-atom of restrzcted type), then M is also a central (a, §;s, €)-molecule (or (a, §; s, €)-molecule of restricted type)
such that Ry(M) < C with C independent of M.

Proof. We only need consider the case that a is a (a,§)-atom with support on a ball B(0,r). A straightforward
computation leads to that

||M||Lq‘(]er) < 2_0‘1
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Furthermore,
1-a/b

a/b
M L

Li(Rn)

| M| e < 7P OUM ey < CF70 < C.
This finishes the proof. [
Now we give the molecular decomposition of mixed Herz-type Hardy spaces.
Theorem 4.4. Letn—Y.. 17, Sa<00,0<p<ool< J<oo,ands>[a—-n+Y1, 1]beanon negative integer.

Set ¢ > max{£, 4 + 137 1q——l ll—l_ﬁZi:lE—%‘FSﬂYldb—l—nZl:lq‘+€. Then we have

(i fe HK;p (R") if and only if f can be represented as

f= Z MMy, in the sense of S’ (R"),

k=—o0

where each My is a dyadic central (a, J; s, €)x-molecule, and Y ;> |Ax[P < co. Moreover,

—00

1/p
ey ~ mf(Z w] :

k=—o0

where the infimum is taken over all above decompositions of f.
(ii) f € HK;”’ (R™) if and only if

f= Z AkMy,  in the sense of 8" (R"),
k=0

where each My is a dyadic central (a, q; s, €)x-molecule of restricted type, and Y ;" |kl < co. Moreover,

1/p
Il ey ~ mf[x w] ,

k=0

where the infimum is taken over all above decompositions of f.

Theorem 4.5. Letn—Zfl <a<o,0<p<oo,l<f<coands>[a- n+2111]beanonnegutwemteger
Set & > max{}, & + leq——l ﬂ—l_lZzlq___+€ll7’ldb 1-iy”

(i fe HK;p (R™) if and only if f can be represented as

-1 q— + €. Then we have

f= Z AkMy,  in the sense of S’ (R"),
k=1

where each My is a central (a, f; s, €)-molecule, and Y. Akl < oo. Moreover,

00 1p
sap omy & INf AP,
sk [;" u]

where the infimum is taken over all above decompositions of f.
(ii) f € HK;W (R™) if and only if

f= Z AkMy,  in the sense of 8" (R"),
k=1



Y. Zhao et al. / Filomat 38:13 (2024), 4395-4415 4409

where each My is a central (, J; s, €)-molecule of restricted type, and Y ;- |AlP < co. Moreover,

o0 /p
v ey & INF AP,
ke ey [;| u)

where the infimum is taken over all above decompositions of f.

Lemma 4.6. Letn—Z?lql<a<oo,O<p<oo 1<g§<oo, ands>[a—n+21"1l]beanon—negativeinteger.
Sete>max{s,¢+1yt L1} g=1-1y" L _24eqndb=1-1 leq

i=1 qi i=1 qi
@ Ifo< p < 1, there exists a constant C such that for any central (a,§;s, €) molecule (or (@, ; s, €)-molecule of
restricted type) M,

Ml < C ( o Ml oy < c).

(ii) There exists a constant C such that for any | € Z(or | € IN) and dyadic central (a, §; s, €);-molecule (or dyadic
central (a, ; s, €)-molecule of restricted type) M,

Ml e < C(or Ml ey < c).

Proof. We just prove (i) for the homogeneous case, since the non-homogeneous case and the proof of (ii) can be proved
similarly.
Let M be a central (a, cf, s, €)-molecule. Write

0 =Ml o, Eo=fx:lxl <o}

and
Eio = {x: 20 < x| < 20} ke 2.

Set By, = {x Dl < 2"0} and denote by Xy the characteristic function of Ey ;. Immediately, we have

M) = Y M) ().
k=0

Let Mi(x) = M(x)Xko(x), Pm be the class of all real polynomials of degree m, and P, My € Py, be the unique
polynomial satisfying

(Mi(x) = Pr, M(x)) Pdx =0, |B| <5
Ek,ﬁ

Set Qk(x) = (PE”Mk) () Xk, (x). If we can prove that
(a) there is a constant C > 0 and a sequences of numbers {A}2, such that Y12 |AklP < oo, we have

My = Qk = A,

where each ay is a (a, §)-atom;
(b) Yioo Qx has a (a, §)-atom decomposition; then our desired conclusion can be deduced directly.
We first show (a). Without loss of generality, we suppose that Ry(M) = 1, which implies

I MOy = M = 0™

Let {(p;‘ < s} C P, (R") such that

1
<(Pl‘f1/ (P‘}i>EkU = |Ek,6| «fE‘k,‘, (p’;l(x)(pﬁ(x)dx = 5‘uv-
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It is easy to deduce that
Qk(x) = Z (Mk, (pé‘)Ek @k (x), if x € Ex,
lli<s ’
and
i< |Y, = [ Mepiwdsgiol < = [ meie
i< )Ekﬂ’ Eyo |Ek,o| Ero

Thus for any k € Z.,, we have

1Mk — Qkllp ey < IMllLagrey + Q7R

C
< IMill ey + 7= IMill7re)

[Erol

<C I MO gy [250]

AExs || 14 (R “X Eto

LLT(IRH)

-

—C |2to] ™ o™ = 27 By,
We see that My — Qx = Awax, with Ay = C27%" and ay a central (a, q)-atom supported in By,. Moreover, one can
easily get Y p"o Ikl < oo.
Next we will show (b). Let {1{/;‘ < s} C Ps (R") be the dual basis of {x* : |a| < s} with respect to the weight
1/ |Ek,6| on Ey . First, by the same way in [17, pp.1384-1385], we conclude that there is a constant C > 0 such that

lpk)| < C (Zk‘la)_lll . ©6)
Futhermore, setting
NF = Z]; IEjo| (Mj,x’)Ew, keN,
=
it is readily to see that
N? = Z |E]-,g| <Mj, xl>E_ = Zf M(x)xdx = f M(x)x'dx =0,
=0 20 YEie R
and for k € Z.,., there exists E, C Ej,; such that |E;| = min{l, E j,5|}. Therefore,
|Nf‘| < Z f |Mj(x)xl| dx
j=k YEjo
< CZk IO Fll gy 17 e
]:
o E,o|} e
- \lll-nb o ] =
< CZk (210) ||| ) |nij(-)”L¢(]R,,)( IE]ol ] ”XEJ”U‘»(W)
=
< Cglll_wé ;Tzk(|l|—nb+i; qi)
This, together with (6) shows that
o Mgt < corb ) Lo )
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By using (7) and Abel transform, it yields

) o k
2 aw0=2Y [Z |Ej.] (M5, xl>E}_U] X {IBre [ 50 ) = Bl U 001,00}
k=0 '

li<s k=0 \ j=0

= Y N ko B 600}

ks k=0

Meanwhile,

N {|Ek,a|_1 YA X0 () = |Ersn| 05 () Xkﬂ,g(x)}
< CNF |Exn " [ )]
Ly L —1-a/n

< C2‘k”” |Ek+1,a| =R

Set Ay = C27% gpnd

ar = A3t (-NF) {|Ek,o|‘1 PR — [Erna wlk*l(x)xkﬂ,o(x)} .

Then
Z Qk(x) = Z Z Al
=0 l<s k=0

with ay a (a, §)-atom, and Y ys Y.i2g IAklP < co. The conclusion (b) then holds. [

5. Application

In this section, we will give two applications for atom decomposition and molecular decomposition of
mixed Herz-Hardy spaces. This applications are devoted to building a boundedness criterion for certain

sublinear operators from HK;”’ (R™) to K;f’p (R™) ( from HK;:”’ (R™) to K;’p (]R”)). The result can be stated as
follows.

Theorem 5.1. Let Z?ﬂql; <a<0,0<p<oo,1<q< ocoand the integer s = [a - Z?:lql’( . Suppose T is a
sublinear operator satisfying:

(i) T is bounded on L7 (R");

(ii) there exists a constant 6 > 0 such that s + 6 > a — Y.\, ql;, and for any compact support function f with

fxPdx=0, |pl<s,
IR'”

Tf satisfies the size condition
ITf(0)l < C(diam(supp /)™ | fllpsre),  if dist(x, supp f) > [x1/2.

Then T can be extended to be a bounded operator from HK:;’” (R™) to K;f’p (R™) ( from HK;”” (R™) to K:;,’p (]R”)).



Y. Zhao et al. / Filomat 38:13 (2024), 4395-4415 4412

Proof. It suffices to prove the homogeneous case. Suppose f € HKZJP (R™). By Theorem 3.3, we may rewrite

fas f =Y _Ajbjin the sense of &’ (R"), where each b; is a central (a, §)-atom with support contained in

Bj and
1/p
I fllsges e ~ 1nf[ Z | A]|p]
j=—o0
Then, we get
p
<l (B k] £ L]0
jm—oo

Let us first estimate I;. By the size condition of T and the Holder inequality, it yields
. s+0
|Tbj(x)| < C(diam(supp b)) k=" *)bllps o)
< Claf~Orrstonfe+e) ||bj||L'7(]R”) XB/'HU’(IRH)

< Coftromakerorm |y | R

Asa consequence,

. n l’ .
H Xk” ) < Czj(s+670z)fk(s+6+n) ”XB/||Lq7(Rn) ”XB;(”L;(IRV,) < (i k)(s+5+i}::1 ‘7,‘) ja

Therefore, when 0 < p < 1,by YL, <a <s+5+ >=:1 L, we get
k_Z_; 2|y []:m|/\ ||| (Tb;) xe H(]R”)]p
ck;mzkar’ []_Z;o ] 2 Aopred ) )]
- c];o A k;2 2(j_k)(s+é+f§ hap < cj_zw Il

For 1 < p < oo, noting that Y,/ 17 i<a<s+o+)Yl, q,, by the estimate of |Tb;(x)| and the Holder
inequality, we have !

L<C i zkap[ki |/\j|2(] (S+<‘3+’21 1) ]P

K=o fmr
<C i [f )Aj'p 2(]-,,( (S+6+,Z1 Ia)p] y ( =2 2(] k(s+6+[21 xa)pz/];/
k=—co \ j=—c0 jE=eo
<C = 1 I (] k(s+6+§fl—a) ]
Z(Err

[N

<C i A i 2(]'_“(5“3 E4- <c Yl

j=—o0 k=j+2 jE—oo
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Let us now estimate I,. When 0 < p < 1, by the L7 (R") boundedness of T, there holds

A ) p
S
¥ o [ Y L I e }

k=—00 j=k-1
<C Z 2kap[2 )/\]‘P ]:p]
k=—o0 j=k-1
S j+1 )
=c Y Y 2% < Y Al
JE—o k=—00 j=—co

When 1 < p < oo, again by the L7 (R") boundedness of T and the Holder inequality, we have

ﬂ/
I, <C Z zkaiﬂ{z );\ ‘P“ :rb Xk LR }[Z ” lsen ],,

j=k-1

cc 32| 2Tl || 2 Il ]p/

j=k-1 j=k-1
ya
o || & < |”
ce 2| $ | £ i)
j=k-1 j=k-1
<C Z 2"“?”[2 Al |Bj] Z"]<c Yl
j=k-1 j=—00

Combining all the estimates above, we arrive at
||Tf||1'<;'”(1Rn) < C||f||H1‘<‘q§"’(1R”)'

Thus, the proof is completed. []

Now we give some concrete operators satisfying the conditions of Theorem 5.1.

The classical Calder6n-Zygmund operator T is a initially L?(R") bounded operator with the associated
standard kernel K, that is to say, functions K(x, y) defined on R" X R"\ {(x, x) : x € R"} satisfying

(i) the size condition:

A
K(x, y)| < ,
IK(x, y)l =y

for some constant A > 0;
(ii) the regularity conditions: for some 6 > 0,

Alx=x°
_ y|)n+6

[K(x, ) - K (', y)| <

(

y|) and

holds whenever |x — x’| < % max (lx -

[K(x, ) - K (x,v)| <

n+o6
_ /)

(Ix—y|+
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~y)

holds whenever <3 max(
Then T can be represented as

Tf(x) = fR K@,y fydy, x¢suppf,

which is obvious a L7 (R")-bounded operator.

Theorem 5.2. Suppose that T is an above Calderdn-Zygmund operator, and that 0 < 6 < 11is the constant associated
with the standard kernel K, then for Yy 5 < a < Yily ;; + 6 and 0 < p < oo, T is bounded from HK;”J (R") to

K& (R).

Proof. Noting that Y= g Sa< pa 177 + 0 implies that s = [a — Y 7 11 =0, the operator T satisfies the

conditions of Theorem 5 1 with s = 0. "fhe desired conclusion follows directly. [

Theorem 5.3. For any central (a, §)-atom f, let

T@) = [ Koy, x# supp f

satisfying j;Rn T f(x)dx = 0 be a bounded operator on L7 (R") for some 1 < § < oo, and the kernel K satisfies that there
are constants C' > 0and 0 < 6 < 1 such that

yl°

IK(x, y) = K(x, 0)| < C'W/ x| > 2lyl.

Then for any a and p with 2?21% <ac< Z?ﬂ% +06and 0 < p < oo, there exists a constant C such that
IT g ey < CCor I fllergey < c).

Proof. We only prove the homogeneous case. Let f be‘a central (o, §)-atom supporting in B0, r)(r > O) It suffices to
showalsacentml(oc 7,0, €)-molecule for some 1+2 -1yt | L > ¢ > & 1370 Leta=1%1" L-281¢b=

i=1 q i=1 q
iy q + &. Next, we will verify the size condition for molecules, that is

llq

1-a/b

RATF) = T A (11O ey <

with C independent of f. To do this, we first estimate ||| [""(T£)(- H In fact, we have

L7(R")
- PP T OO 12y < CPIT sy < CPE70

Moreover, the vanishing moment of f and the regularity of K give us that for x with |x| > 2r,
= | [ ks
|| ) - ke, ons|

lyl®
< C u |x |n+§ |f(]/)|dy

Crn+b|x|—(n+b)_f |f(y)|d]/
‘B(O,r)‘ B,

< Cr”+‘5|x|_(”+‘5)Mf(x).



Y. Zhao et al. / Filomat 38:13 (2024), 4395-4415 4415
Therefore, by the fact nb —n — 6 < 0, we further get
b 8 b-n—5
1@ AO gy < 1 MO 12

Crn+b+nb_n_b”Mf”in(]Rn)

< Crl fllpsgroy < Cr72,

N

Consequently,

1-a/b

RATH) = T A I T TAO ey

b —)(1-
< C”f”;g(]R”)r(nb a)(1-a/b)

< C},—au/b+(nb—a)(l—a/b) <C.

This completes the proof. [
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