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Kenmotsu 3—manifold admitting gradient Ricci-Yamabe solitons and
+ — 11—Ricci-Yamabe solitons

Rajendra Prasad?®, Vinay Kumar®”

“Department of Mathematics and Astronomy, University of Lucknow, Lucknow-India

Abstract. In this paper, we classify Kenmotsu manifolds admitting gradient Ricci-Yamabe solitons and
* — n—Ricci-Yamabe solitons. We find conditions of Kenmotsu manifold about when it shrink, expand
and steady. It is shown that Kenmotsu 3-manifold endowed with gradient Ricci-Yamabe soliton and with
constant scalar curvature becomes an Einstein manifold. We, also study Kenmotsu manifold admitting
*—1— Ricci-Yamabe solitons becomes generalized n—Einstein manifold and the curvature condition R.S = 0.

Finally, we provide two examples which proves existence of gradient Ricci-Yamabe soliton and * — n— Ricci-
Yamabe soliton in Kenmotsu manifolds.

1. Introduction

In Riemannian geometry, geometric flows has an important role to analyzing the geometric structures.
In Riemannian geometry, the assumption of geometric flows is a useful mathematical tool for describing
geometric structures. A specific section of solutions on which the metric evolves by diffeomorphisms has a
signifcant impact in the investigation of singularities of the flows which are called as soliton solutions. R.S.
Hamilton ([11], [12]) introduced a geometric flow which is called as Ricci flow and is defined by

P
gg(t) =-25(t),t>0 g(0) =y, (1)

where g and r represents the Riemannian metric and the scalar curvature[11] respectively. With the help of
it, Hamilton proved three-dimensional sphere theorem [12].

A Riemannian manifold is called as Ricci soliton, if there exists a vector field V and a constant A such
that

Lyg+2S =21y,

(2)
where Ly is the Lie derivative along the vector field V and A € R.
After Ricci flow, Hamilton gave the notion of Yamabe flow defined by
J
59 =-25(),t20 g(0) =g, 3)
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where, S denotes the (0, 2)— symmetric Ricci tensor. Same as Ricci soliton, Yamabe soliton is a self-similar
solution to Yamabe flow [5] and is defined as follows:

Lyg=2(A-r)yg. 4)

There are several applications of Ricci flow and Yamabe flow especially in mathematics and physics.
S. Gular and M. Crasmareanu [3] defined a map in 2019 known as Ricci-Yamabe flow which is a linear
combination of Ricci flow and Yamabe flow given as follows:

J
591 = car(t)g(t) —25(1),t 2 0 g(0) = g, ®)
where ¢; € R.

The solutions of Ricci flow and Yamabe flow are called Ricci soliton and Yamabe soliton respectively.
Both solitons are equivalent for dimension #n = 2, although for the dimension n > 2, they are not equal. A
Ricci-Yamabe soliton on (M", g) is a structure (g, V, A, 1, ¢2) fulfilling

Lyg=-2c15-2A - cyr)g, (6)

where A, c1,c; € R. If V is a gradient of a smooth function f on the manifold (M", g), then the foregoing
notion is called gradient Ricci-Yamabe soliton and (6) takes the form

V2f = —c1S— (A - %’)g, (7)

where V2 f indicates the Hession of f.

The Ricci-Yamabe soliton (or gradient Ricci-Yamabe soliton) is said to be expanding, steady and shrink-
ing when A > 0,= 0,< 0. Moreover, if A,c; and ¢, are smooth functions on (M", g) , then Ricci-Yamabe
soliton is called an almost Ricci-Yamabe soliton. Ricci-Yamabe soliton turns into Ricci soliton (or gradient
Ricci soliton) if c; = 0,¢; = 1. Similarly, for ¢c; = 1,¢; = 0 it becomes Yamabe soliton (or gradient Yamabe
soliton). Also, it reduces to an Einstein soliton (or gradient Einstein soliton) when ¢; = —1,¢; = 1. The
Ricci-Yamabe soliton is said to be proper if c; # 0, 1. For the study of gradient Ricci-Yamabe soliton please
refer to [7],[8],[25].

The present paper is organized in following ways: In Section 2 we present the basic results and definitions
of Kenmotsu manifolds. Section 3 and 4, deals with the study of Ricci-Yamabe and gradient Ricci-Yamabe
solitons in Kenmotsu manifolds. Moreover in section 5 and 6, we study Kenmotsu manifold admitting
+ — 11— Ricci -Yamabe solitons with curvature condition R.S = 0. Finally we give two examples of such
manifold.

2. Preliminaries

Let (M", g) be an n-dimensional smooth manifold endowed with structure (¢, &, 1, g) where ¢ is a (1,1)
tensor field, & is the vector field, n is 1- form and g is the Riemannian metric. It is well known that the
structure (¢, &, 1, g) satisfies the following conditions

pE=0, n@X1)=0, nE&)=1 (8)
$*X1 = =21 +0(XDE,  g(X1, &) = (), ©)
g(pX1, 9X) = g(X1, X2) — N(X1)n(X2), (10)
for vector fields Xy and X, on X(M).
Further,

(Vae, )X = =g(X1, pX2)E — (X)X, (11)
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Vo, & = Xy = n(X1)E, (12)

where V denotes the Riemannian connection g, then (¢, &, 1, g) is called a Kenmotsu manifold.

Kenmotsu manifold have been studied by several authors such as U.C. De and G. Pathak[9], K. Kenmotsu
[21] and many others. In Kenmotsu manifold the following relations hold[21]

(Vae, DXz = g(X1, %) = (X0)p(Xa), (13)
NR(X1, X2)X3) = n(X2)g(X1, X3) — n(X1)g(X2, Xs), (14)
R(X1, X2)E = n(X1)X2 = n(X2)Xs, (15)
R(&, X1)X2 = n(X2)Xq — g(Xq, X2)E, (16)
5(Xy, &) = —(n = 1n(Xy), (17)
(VZR)(X1, Xp)E = g(X3, X1)Xo = g(Xs, X2)X1 — R(X1, X2)X3, (18)
R(X1, &)X2 = g(X1, X2)& — n(X2) Xy, (19)
R(Xy, &) =n(X1)E — Xy, (20)

for every vector fields X1, Xy, X3 € X(M), where S and R are the Ricci tensor and Riemannian curvature
tensor respectively.

Definition 2.1. Let (M", g) be a Riemannian manifold of dimension n. Since 3-dimensional Riemannian manifold
is conformally flat then the Riemannian curvature tensor R of (MP, g) is written as

R(Xq, W)X5 = {S(W, X3)X1 = S(Xq, X3)W + g(W, X3)QX:1 — g(X1, X3)QW}
= ZlW,X5)01 = (%1, X)W} 1)

for any vector fields X1, X, X3 € X(M), where Q denotes the Ricci operator defined by S(X1, X2) = g(QX1, Xp) and r
is the scalar curvature defined by r = Y.\ S(u;, u;) = Y.i_y 9(Quj.u;) for any orthonormal basis {u;}!., of the tangent
space at any point of (M", g).

Lemma 2.2. The Ricci tensor S of a 3-dimensional Kenmotsu manifold is given by
S0, %2) = (1+ 2)g(X1,X2) = (3 -+ 2NN, @)
Proof. Taking inner product of (21) with X, we have
gRXq, W)Xz, X2) = S(W, X3)g(X1, X2) = S(X1, X3)g(W, X2)
+ (W, a)g(@%1, %) = 9(01, )g(@W, Xa) = 7 {g(W, a)g(dr, o) - 901, Xs)g(W, o). (23)

Putting W = X3 = & in (23) and using (15) (17), we get desired result (22).
O

Now equation (22) can be rewritten as
7 r
g(QX1,X) = (1 + E)g(xl,xz) -3+ E)’?(xﬂ’?(xz)
Removing X, on both sides, we get

QX1 = (1+ )% = B+ n0)E. (24)
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Lemma 2.3. In 3-dimensional Kenmotsu manifold, we have
2(r+ 6) = &r. (25)

Proof. Taking covariant derivative of (24) along vector field X3, we have

= 1 1
(Var, QX1 = 5(X5)X1 = 5 (Xann(Xn)é - G + %){!](xhxa)é = 2n(X1)n(X3)E + Xan(Xq)}.  (26)
On contracting with respect to X3, we get
(& +2(r+ O))n(X1) = 0

which implies equation (25) and hence it completes the proof. [

3. Ricci-Yamabe solitons in Kenmotsu manifolds

Let us assume that 3-dimensional Kenmotsu manifold (M?, g) admits Ricci-Yamabe soliton, then equa-
tion (6) yields

Lyg(X1, Xa) = =2¢15(X1, X2) = 2A = c21)g(Xy, Xy). (27)
Taking covariant derivative of (27), we obtain
(Vat Lvg) (X1, X2) + (Lvg)(Var, X1, X)

+ (LV!])(:X:L%DQY) = —261{(63635)(9@, Xo) + 5(%63351, Xo) + 5(x1,§x3y)}
+ (X3 g(X1, X2) + (car — 2A){(Vae, 9)(X1, X2) + 9(Vor, X1, Xa) + (X1, Vi, Y)) - (28)

Now, using (27) in (28), we get
(Var, Lvg)(X1, X2) = =201 (Vae, )(X1, X2) + 2(X3r)g(X1, Xo). (29)

From equation (22), we get

(T2,5)(01,22) = 3 (Usn)gQy, ) = 5 (ar(X)(CLa)
- (34 Hlg, Wa)n(Xa) + gz, X)) = 20X, (30)

With the help of (30), (29) becomes

(Fvvxgﬁvg)(xl, X2) = (c2 = c1)(X37)g(Xq, X2) + c1(X3r)n(Xq1)n(X2)
+ ¢1(6 + ){g(X1, X3)n(X2) + g(X2, X3)n(X1) — 20X )n(X2)n(Xz)}.  (31)

Following Yano [25], the following relation holds

(LvVa,g = Lx,Vvg = Vix,mg)(Xz, X3) = —g(LyV)(X1, X2), X3) = g(Ly V)X, Xz), X2), (32)
which implies that
(Va, Lvg)(X2, X3) = g((LyV)(X1, X2), X3) + g((LyV)(X1, X3), Xo). (33)

Now, since (vaﬁ) is a (1,2) type symmetric tensor, i.e.
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(LyV)(X1, %) = (LyV)(X2, X1), then (33) turns into

g(LyV)(X1, X2), X3) = %(gxlﬁvg)(xz, X3) + %ﬁyﬂvg)(fxl,xa) - %(gxsivg)(xlf X2). (34)
Using (31) in (34) entails that
29((£v€)(x1, X2), X3) = (c2 — c){(X17)g(X2, X3) + (Y7)g(Xy, X3) = (X3r)g(X1, X2)}

+ ct{(Xr)n(X)n(Xz) + (Yr)n(X1)n(Xz) — (Xar)n(X1)n(X2)}
+ 2¢1(6 + 1){g(X1, X2)1n(X3) — 2n(X1)n(X2)n(X3)}  (35)

which implies that

2(LyV)(X1, %X2) = (2 = )17 Xz + (X2r) X1 — g(X1, Xo) (D))
+ e {(G)N)E + (Xan(Xn)& = (X)) (D)} + 261(6 + 1){g(X1, X2)& — 2n(X1)n(X2)E}  (36)
Putting X, = & in the foregoing equation, we get
2ALyV)(X1, &) = (c2 = e){(N1r)E + (ENX1 = (X) (DN} + ca{(Xr)E + (ENNXa)E = n(Xa) (D))
+ 2c1(6 + ){n(X1)E = 2n(X1)E). (37)
From equation (25), if we take r = constant, we obtain r = —6.
Hence equation (37) implies
(LyV)(X1,E) =0 = (Vai, LyV)(Xy, &) = 0. (38)
Next, we know that
(LvR)(X1, X2)X5 = (Vor, Ly V) (X2, X3) = (Vor, Ly V)(X1, Xa). (39)
Replacing X3 = & in (39), infers
(LyR)(X1, X2)E = (Vor, Ly V)(Xa, &) = Vo, LuV)(Xy, &) (40)
Using (38) in (40), we infer
(LvR)(X1,X)é =0 41)
Putting X, = & in above equation, we get
(LyR)(X1, E)E = 0. (42)
Now equation (16) can be rewritten as
R(X1, &)Xz = (X1, X2)& = 7(X2)Xs (43)
which implies
R(X1, E)& = n(X1)é - Xy (44)
Taking covariant derivative of (44) and using (15), (43), we get

(LvR)(X1, E)E = 2n(Ly &)Xy + (Lyn)X1& — g(Xq, Ly E)E. (45)
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Substituting X, = £ and using (17) (for n = 3), we get
(£V77)DC1 = g(xl,Lvé) + (4C1 + Cor — 2A)T](3C1). (46)

Putting X; = £ in foregoing equation, we infers

NLvE) = ~3 (er + cor - 20). )
With the help of (46) and (47), (45) yields

(LvR)(Xy, £)E = —(4cy + cor = 2A) (X1 — (X1)E). (48)
Using (42) in (48), we get

4c1 +cr—2A =0,
which by taking r = —6 gives

A =(2c1 — 3c3). (49)
Hence we have:

Theorem 3.1. If 3-dimensional Kenmotsu manifold admits Ricci-Yamabe soliton, then the constant A, ¢y and ¢, are
related by the equation

A= (2C1 - 3C2), (50)

provided that the scalar curvature r is constant. If we take c; = 1 and ¢, = —1, then from (50), we get

A=5. (51)
From which we get the following corollary:

Corollary 3.2. If (M3, g) Kenmotsu manifold with constant scalar curvature admits an Einstein soliton, then the
soliton is expanding.

Aguin, if we take ¢c1 = 0 and c; = 1, from (50) we obtain

A=-3. (52)
Thus we have:

Corollary 3.3. If (M®, g) Kenmotsu manifold with constant scalar curvature admits a Yamabe soliton, then the
soliton is shrinking.

Next when we take c; = 1 and ¢, = 0, equation (50), implies

A=2. (53)
Hence we have:

Corollary 3.4. If (M3, g) Kenmotsu manifold with constant scalar curvature admits a Ricci soliton, then the soliton
is expanding.
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4. Gradient Ricci-Yamabe solitons in Kenmotsu manifolds
Let (M?, g) Kenmotsu manifold admits gradient Ricci-Yamabe solitons, then (7) implies
= Cor
Vo, Df = —1QX; — QA—JLma
Taking covariant derivative of (54), we obtain
= = = = c or =
VxZVxl Df = —cl(szQ)DCl - le(szxl) + EZ(:X:QV)xl - (/\ - %)szxl
Simillarily from (54), we have
cor
VQC1Vx2Df = -0 Vxl ):X:2 - C1Q(VQC1 :X:Q) + —(:X:ﬂ’):X:z — (/\ - %)Vxl :X:z
and
= = = Cr .= Cr .=
Vix,01Df = =@V, X2) + c1Q(V, X1) — (A - T)Vm X2+ (A - T)VDCle-
We know that
R(X1, X2)X3 = Vg, Ve, X3 = Vg, Var, X3 = Ve, 0,1-
Using equation (55) — (57), in equation (58), we have
= = c
R(X1, X2)Df = —c1{(Vo, QX2 — (Vor, QX1 } + EZ{(fxlf)xz — (X2r) Xy}
In veiw of (26), (59) becomes

c1)

R(X1, Xp)Df = L{(xﬂ’)xz = (Xr) X1} + %{(xlr)ﬂ(xz)é = (Xar)n(Xy)E}

+ a3+ g){xm(m — Xan(X)).

On contracting the above equation with respect to X1, we obtain the following
1 cf?’
5(X2, Df) = (5 = 2)(Xar) + cin(X){ 5 + (6 + 1)}
Now from equation (22) we have

S(X,Df) = (1+ )(Xof) - (3+ NS

Equations (61) and (62) implies that

(& = )00 + ey + 6+ 0] = (1+ )0 - B+ DnCwES
Putting X, = £ in (63) and using (25), above yields

£f = (2¢c, - 3;1)(1’ + 6).

Taking inner product of (64) with £ and using (14), gives
(X)X f = n(X)Xof = ém(xz) Xar}.

Substituting X; = £ in (65) and using equation (64), (25) gives

262 - 361
2
Now, if we take r = constant, then equation (25), gives r = —6 and hence equation (66) implies

Xof = (r +6){c + 1n(%2) — %(xzr).

4575

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)
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Naf =0, (67)

which shows that f is constant. Thus the soliton is trivial. Hence the manifold becomes an Einstein manifold
and being 3-dimensional, the manifold becomes a space of constant curvature.
Thus we have:

Theorem 4.1. If 3-dimensional Kenmotsu manifold of constant scalar curvature admits gradient Ricci-Yamabe
soliton, then the soliton is trivial and (M", g) is a space of constant curvature.

5. * — n— Ricci-Yamabe soliton on Kenmotsu manifolds

The notion of *—Ricci solitons was first established by Kaimakamis and Panagiotidou [20]. After this,
the notion of *—Ricci tensor on almost Hermitian manifolds was introduced by S. Tachibana [24] and then
by T. Hamada [13] in case of real hypersurface on non flat complex space forms. On the smooth manifold
(M?", g), the Riemannian metric g is known as *— Ricci soliton if a smooth vector field V and a real number
A satisfies

Lyg=-25 -2Ag, (68)
where
5(X1, X2) = g(@ X1, Xp) = Trace{ o R(Xy1, pX)}, (69)

for every vector fields X1, X, € X(M) and S* and Q" are the *— Ricci tensor and *— Ricci operator respec-
tively. For the study of *— Ricci soliton and n— Ricci solitons on contact Riemannian geometry please see
the references ([1], [4], [5], [6], [7], [14], [17], [18], [19], [23]).

Extending the notion of Ricci soliton, J. T. Cho and M. Kimura [2] introduced n—Ricci soliton which is
obtained by perturbing the equation (2) by multiple of a certain (0, 2)-tensor field n ® 1.

The concept of * — n— Ricci soliton was presented by S. Dey and S. Roy [22]. A Riemannian manifold
(M, g) is called * — n— Ricci soliton fulfilling

Lyg=-25 -2 Ag-2un®n (70)
A Riemannian manifold (M", g) is named * — — Ricci-Yamabe soliton of type (ci, c2) satisfying
Lyg=-2015" - Q2A —cr)g —2un®m, (71)

where c1, ¢, A, u € R.

Lemma 5.1. On a Kenmotsu manifold, we have

R(U, V, W, pE) = —g(V, pW)g(U, $E) — g(U, W)g(V, E)
+ g(U, pW)g(V, oE) + g(V, W)g(U, E) + n(R(U, V)W, E). (72)

for any U, V, W, E on X(M), where R(U, V, W, E) = g(R(U, V)W, E).
Proof. By the notion of well known definition of curvature tensor, we have

R(UV, W, $E) = g(VuVvdW, 6E) - g(VyVudW, ¢E) - g(ViuvioW, ¢E), (73)
which by using (8), (11) to (14) takes the form (72). O
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Lemma 5.2. The *— Ricci tensor S* of Kenmotsu manifold is given by
STV, W) = S(V, W) + (1 = 2)g(V, W) + n(V)n(W) — ag(V, pW) (74)

Proof. Let{u;}!_, be an orthonormal basis of the tangent space at each point of the manifold. By the definition

of »— Ricci tensor and from (72), we get following:

SV, W) = Y (R, V, W), du)
i=1

n n

= Y oV, W)gus, $u) = Y, glaus, W)g(V, )
1 i=1

i=

+ Y g, @W)g(V, dup) + Y g(V, Wyglus,u) + Y g(R(wi, VIW, ).
i=1 i=1 i=1

After simplification, above equation becomes
SV, W) = S(V, W) + (1 = 2)g(V, W) + (V)(W) — ag(V, o W), (75)
O

Now, let n— dimensional Kenmotsu manifold admitting * — 17— Ricci-Yamabe soliton, then from equation
(71), we have

Lyg(X1,Xz) = =2¢157 (X1, X2) — (2A = c2r)g(Xq, X2) = 2un(X1)n(Xz). (76)
We know that Lyg(X;, Xp) = g(%xl &, X)) + g(%l,rﬁxzé). Using this and (12) in (76), we obtain

r—2A-2

1-
50, %) = (5200, ) + (—E )0, 77)

Using lemma (5.2), equation (77) yields

Cor —2A =2

1—
5o (1= 2)}g(x1, Xs) + {T“ = 1n(X0)n(X2) + ag(Xa, o). (78)

5061, %2) = {

Substituting X, = & in (78), infers

Cor —2A =2

s(01,8) = { F57

L-p
- (1=2)+ (—E - D). (79)
Equation (79) together with (17), gives

_or
A+ == (80)

Hence we have

Theorem 5.3. If (M", g) Kenmotsu manifold admits +—n— Ricci-Yamabe soliton, then manifold become a generalized

n— Einstein manifold and the constant A, y and c, are related by the equation (A + ) = %
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6. Kenmotsu manifold admitting * — n— Ricci-Yamabe soliton satisfying R(, X1).S = 0

Letann-dimensional Kenmotsu manifold admitting *—n— Ricci-Yamabe soliton and satisfying R(&, X1).S =
0, then R(&, X1).S = 0 implies that

(R(&, X1).5) (X2, X3) = S(R(E, X1)X2, X3) — (X2, R(&, X1)X3) = 0, (81)
which by using (16) yields
1(X2)S(X1, X3) — g(X1, X2)S(E, X3) + 1(X3)S(X2, X1) — g(X1, X3)S(X2, &) = 0. (82)

Taking X3 = £ and using (78) for the value of S(X1, &) and S(¢, &), we get

Cor —2A =2 = 2c1u — 2c1n + 4y
5041, %) = { : bgcs, ). (83)
C1
From equations (78) and (83), we have
2-2u—2c¢
i+ == =0, (84)
C1

C

Which implies y = 1,(since c; # 0) then from (80) we get A = 2F — 1.
Using these values in (83), we have

S(X1, X2) = (1 = m)g(Xy, Xo). (85)
Thus we have:

Theorem 6.1. Ifan n-dimensional Kenmotsu manifold admits —n— Ricci-Yamabe soliton and satisfying R(E, X1).S =

0, then p=1and A = % - 1.

Corollary 6.2. Ifan n-dimensional Kenmotsu manifold admits —n— Ricci-Yamabe soliton and satisfying R(E, X1).5 =
0, then the manifold become an Einstein manifold.

7. Examples

Example 7.1. We consider the 3-dimensional manifold
M={(x,y,2) e R%,z> 0},

where (x,y,z) are the standard coordinates in R3. Let uq, uy and us be the vector fields on M given by

— 29 — 20 — _pzd
up =g, Uy =g, Uy = € g,

which are linearly independent at each point p of M and hence form a basis of T, M. Define a Lorentzian metric
g on M such that

1, =<3
g(ulruj)_{o, l»fl?gj

Let 1 be the 1-form on M defined by n(X1) = g(X1, &), for all X1 € X(M). Let ¢ be the (1,1)-tensor field on M defined
as

(]51/{1 = —Uy, (pMz = —Uq, (Plxlg =0.
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Using the linearty of ¢ and g, we have
n(us) =1, ¢*X1 = Xy + n(Xr)us, g(dX1, dX2) = g(X1, X2) + n(X1)n(X2)

4579

forall Xq, Xy € X(M). Thus for uz = &, (¢, &, 1, g) defines an almost contact metric structure on M.
Let V be the Levi Civita connection with respect to the Lorentzian metric g. Then, we have

[u1, upl=[ua, u1]=0, [u1, usl= uy, [us, w1l= —u1, [uz, us]= —uy, [uz, uz]= us.

and

29(Vox, X, X3) = X19(Xa, X3) + Xag(X3, X1) — Xag (X1, Xa) — g(X1, [Xz, X3]) + 9(Xa, [ X3, X11) + g(Xs, [X1, Xo1),

which is known as Koszul’s formula. Using Koszul’s formula, we can easily calculate

Vi1 = —uz, Vyup =0,V us = ug, Vy,up =0,

(86)
Fvvuzuz = —M3,§u2M3 =1y, §z¢3M1 =0, FVvuguz =0, Fvvu3u3 =0.
From the above equation, it can be easily verify that the manifold satisfies
Vi & = X = n0)E, for & = ua.
Hence the manifold is a Kenmotsu manifold.
Now, let
3 .
X =Y Xu;= X'y + X2 + Xus,
i=1
3 .
Y=Y Y= Y'ug + YVup + Yous+,
i=1
and
3 .
7= Z Ziu; = Zuy + Z2us + Zus.
i=1
As we know that
R(X1, X2)X2 = Vi, Var, X2 = Vi, Var, X2 = Vioe, 56,1 X (87)
From equation (86) and (87), we can verify the following results
R(uy, uz)uz = —un, R(uy, us)us = —uy, R(uz, u)ur = —uiz, (88)
R(uz, uz)uz = —uz, R(u, ur)ur = —uz, R(us, ux)ur = —us,

and

S(uy, uq) = S(ug, uz) = S(uz, uz) = —2.

With the help of above equations, we obtain r = —6.
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Now suppose that there exist a function f on (M3, g) such that
Vo, Df = —1QX; — (A — %)xl.
Since Df = (u1f)ur + (uaf)uz + (usf)us, then we have

Va, Df = (s (ur ) + (us iy + {(ua (s f) — (s f) s + ua (utz fuia,
Aviusz = up(uy flug + {uz(uaf) + (usf)huz + {uz(uzf) — (uz fus}

and

§H3Df = u3(u1f)u1 + ug(uzf)MQ + (u3(u3f) — (u3f)u3.
Thus from (24) and (54), f satisfies the following equations:

w(urf) +usf = (2c1 —3c2 — A),

up(uaf) +usf = (2c1 —3c2 — A),

u3(u3)f = (261 - 3C2 - /\),

ui(uaf) =0,

up(u1f) =0,

up(usf) —usf =0,

Which again equivalent to

LPfof

62 W—E g =(2C1—3C2—A),
(PfOf

62 a—y2—€ g =(2Cl—3C2—A),
82

ezza—ZJ; =(2c1 —3c; - A),

P
e f_ (2c1 — 3¢ — A),

dxdy
aZf )f
e Dyo= ezgy =(2c1 =3¢, = 7).
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(89)

These equations implies that f is constant when A = 2c1 — 3co. Thus the equation (54) is satisfied. Hence g
becomes gradient Ricci-Yamabe soliton with soliton vector field V = Df, where f = constant and A = 2c; — 3c,.

Therefore, theorem (4.1) is verified.
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Example 7.2. We consider the 5-dimensional manifold
M= {(x1,%2,x3,%4,2) € R®,2 > 0}, (90)

where (x1, X2, X3, X4, 2) are the standard coordinates in R®. Let uy, uy, u3, uy and us be the vector fields on M given by

which are linearly independent at each point p of M, and hence form a basis of T,(M). Define a metric g on M by

gQui, uj) = {(1): Zi z j <5

Let 1 be the 1-form on M defined by n(X1) = g(X1, us) = g(X1, &) for all Xy € X(M) and let ¢ be the (1,1)-tensor
field on M defined as
Quy = —uy, Pup = —uy, Puz = —uy, Pugy = —us, Pus = 0.
By applying linearty of ¢ and g, we have

n&) = g(&, &) =1, X1 = Xy + n(X1)E, n(pX1) =0,

9(Xy, &) = n(Xq), g(PXs, ¢Xz2) = g(X1, X2) + n(X1)n(X2),

for all X1, X € X(M).

Let V be the Levi Civita connection with respect to the Lorentzian metric g. Hence we have

(w1, up]=[u1, usl=[ur, usl=[u, usl=[u, us]=[us, us]=0,

(w1, us] = uy, [uz, us] = up, [uz, us] = us, [us, us] = ug.

Now, the Koszul's formula is defined as

ZEJ(FV-DQ X2, X3) = X1g(Xz, X3) + X2g(X3, X1) — X3g(X1, X2) — g(X1, [X2, X3]) + g(X, [X3, X1]) + g(X3, [X1, X2]),

Using Koszul's formula we easily calculate

Vit = —M5,§u11¢2 = 0,614&!3 =0, %11«!4 =0, 6141“5 =1u, 91)

vuzul = 0/ Vu2u2 = _MSIVMZM3 = 0/ v1421’14 = 0/ Vu2u5 = u2/

Vi1 =0,V,,up =0,V us = —us, Vy,us = 0,V us = us,

v1¢4u1 =0, V114“2 =0, Vu4u3 =0, Vu4u4 = —Uus, vu4u5 = Uy,
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FVVusul = 0, §u5M2 = 0,%'”51/[3 = O,FVVHSM = O,FVVusu5 =0.

Also one can easily verify that

Vi, & = =X = n(X1)E and (Voe, )X = —g(X1, X2)& — n(X2)pXs.

Hence the manifold is Kenmotsu manifold of dimension 5.
Now let
5
X =Y X = X'uy + X2y + Xouz + Xhuy + Xus,

i=1
5

Y = Z Yiu; = Yhug + Y2up + Y3us + Y4ug + Yous
i=1

and

5
7= Z Ziu; = Zuy + Z2us + Z2us + Z4uy + Zus.
i=1

It is known that

R(xl, XQ):X:3 = %xl’ﬁxzx;; - ’ﬁngxl 'X3 - %J[xl/xﬂx;;.

With the help of (91) and (92), we get the components of the curvature tensor and Ricci tensor as

R(uq, up)ur = up, R(uy, up)up = —u1, R(uq, up)uz = 0, R(uq, up)us = 0, R(uq, uz)us = 0,

R(uz, uz)uy = 0, R(uz, us)uy = uz, R(ua, uz)uz = —uz, R(uz, uz)uy = 0, R(uz, uz)us = 0

R(uz, us)ur = 0, R(uz, us)us = 0, R(uz, us)uz = ua, R(us, us)us = —uz, R(us, ug)us = 0

R(ug, us)uy = 0, R(ug, us)uz = 0, R(uy, us)uz = 0, R(ug, us)uy = us, R(ug, us)us = —uy

R(u1, us)ur = us, R(uq, us)up = 0, R(u, us)uz = 0, R(u1, us)us = 0, R(uq, us)us = 0.

With the help of above expressions of the curvature tensors, it follows that
R(X1, X2)X5 = g(Xa, X3)Xq — g(X1, X3)Xa.

From (94), we get
5(X2, X3) = 4g9(X2, X3).

On contracting (95), we get r = 20.
The Ricci tensor S is given by

S(ur,u1) = S(up, up) = S(uz, uz) = S(ug, us) = S(us, us) = 4.
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(92)

(93)

(94)

(95)

(96)

If this manifold admits = — n— Ricci-Yamabe soliton then from (76) and (96), we find u = —(7c; + 1) and

A = (10c + 7c1 + 1), which satisfies A + y = %
Thus the example satisfies the theorem (5.2).
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