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Precise large deviations for sums of two-dimensional random vectors
with dependent and real-valued components
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Abstract. In this paper, we study the precise large deviations of sums of two-dimensional random vectors
with two dependent and real-valued components. In the presence of heavy tails, we obtain some uniformly
asymptotic results for the bivariate case, which can provide novel insights into dependence structure
between two marginal components.

1. Introduction

Let {ξ⃗i = (ξ(1)
i , ξ

(2)
i )T, i ≥ 1} be a sequence of independent, identically distributed and real-valued copies

of a generic random vector ξ⃗ = (ξ(1), ξ(2))T with mean vector µ⃗ = Eξ⃗ = (µ1, µ2)T, and common marginal
distributions F1 and F2, respectively. Denote the n-th partial sums of two-dimensional random vectors by

S⃗n =:
n∑

i=1

ξ⃗i =

 n∑
i=1

ξ(1)
i ,

n∑
i=1

ξ(2)
i


T

=:
(
S(1)

n ,S
(2)
n

)T
, n ≥ 1. (1)

In this paper, we consider the precise large deviations for the partial sums of random vectors with two
dependent components of heavy tails.

An important class of heavy-tailed distributions is the long-tailed class L. Say that a distribution F
belongs to the class L, denoted by F ∈ L, if F(x) > 0 for all x > 0, and

lim
x→∞

F(x + y)

F(x)
= 1, for all y ∈ (−∞,∞).
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Another important class of heavy-tailed distribution is the dominated variation class D. Say that a distri-
bution F belongs to the classD, denoted by F ∈ D, if F(x) > 0 for all x > 0, and

lim
x→∞

F(vx)

F(x)
< ∞, for all 0 < v < 1.

A slightly smaller class of L∩D is the consistent variation class C. Say that a distribution F belongs to the
class C, if

lim
v↘1

lim inf
x→∞

F(vx)

F(x)
= 1, or equivalently, lim

v↗1
lim sup

x→∞

F(vx)

F(x)
= 1.

Finally, a distribution F is said to belong to the extended regular variation class, if for some 0 < α ≤ β < ∞,

v−β ≤ lim inf
x→∞

F(vx)

F(x)
≤ lim sup

x→∞

F(vx)

F(x)
≤ v−α, for all v ≥ 1,

where we denote F ∈ ERV(−α,−β). It is well-known that the inclusions below are proper, that is,

ERV(−α,−β) ⊂ C ⊂ L ∩D ⊂ L.

For more details on the heavy-tailed distributions and their applications, we refer to Bingham et al. (1987)
and Embrechts et al. (1997).

The precise large deviation is a classical research issue in probability theory, and also play a critical role
in many applied areas such as insurance and finance. The study of precise large deviations for sums of
heavy-tailed random variables was initiated from the pioneer works of Heyde (1967), A.V. Nagaev (1969a,b),
and S.V. Nagaev (1979), and revisited by other researchers afterwards. See, for example, Cline and Hsing
(1991), Rozovskiǐ (1993), Klüppelberg and Mikosch (1997), Mikosch and Nagaev (1998), Ng et al. (2004),
Tang (2006), and Liu (2009). For recent works, especially those with applications in risk theory, we refer
to Tang et al. (2001), Kaas and Tang (2005), Wang and Wang (2007), Konstantinides and Loukissas (2010),
Chen and Yuen (2012), Yang and Wang (2013), He et al. (2013), Lu et al. (2014), Jiang et al. (2015), Shen et
al. (2016), Liu et al. (2017), Wang and Chen (2019), Gao et al. (2020), Chen et al. (2021), Gao and Pan (2023),
and references therein.

To our best knowledge, there is a relative dearth of asymptotic results in bivariate case, namely the precise
large deviations for sums of two-dimensional random vectors. However, Shen and Tian (2016) studied the
precise large deviations for sums of nonnegative random vectors with two dependent components using
copulas for operational risk measurement, and then obtained the corresponding results for aggregate claims
in a two-dimensional risk model. Fu et al. (2022) further extended Shen and Tian’s results to the case in
which the claim-size vectors and their waiting times are arbitrarily dependent.

In the present paper, we aim to extend the study in bivariate case from nonnegative random vectors
to real-valued ones, where the main difficulty that we will encounter in the proof is due to the two-sided
support of distributions Fk, k = 1, 2. As the marginal distributions of each vectors are long-tailed or
consistent-varying-tailed, we obtain some asymptotic results of the precise large deviations for sums of
two-dimensional random vectors. Note that our study is among the initial efforts to study the precise large
deviations for sums of real-valued random vectors, and can provide invaluable insights into dependence
structure between two marginal components.

The remaining part of this paper is organized as follows: we state the main results with their motivation
in Section 2, and prove them in Sections 3 and 4, respectively.

2. Main results and their motivations

Henceforth, all limit relationships are taken as n→∞ unless otherwise stated. For two bivariate positive
functions f and 1, we write f = O(1)1 if lim sup f/1 < ∞, write f = o(1)1 if lim f/1 = 0, write f ≲ 1 or 1 ≳ f
if lim sup f/1 ≤ 1, write f ∼ 1 if f ≲ 1 and f ≳ 1.
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Tang (2006) studied the asymptotic behavior of precise large deviations for sums
∑n

i=1 ξi of a sequence
of negatively dependent random variables {ξi, i ≥ 1}, namely that for each n = 1, 2, · · · , and all x1, · · · , xn,
the two inequalities below hold simultaneously,

P(ξ1 ≤ x1, · · · , ξn ≤ xn) ≤
n∏

i=1

P(ξi ≤ xi)

and

P(ξ1 > x1, · · · , ξn > xn) ≤
n∏

i=1

P(ξi > xi).

See Lehmann (1966), Ebrahimi and Ghosh (1981), and Block et al. (1982).

Theorem A. Let {ξi, i ≥ 1} be a sequence of negatively dependent random variables with common distribution F ∈ C
and mean 0, satisfying xF(−x) = o(1)F(x) as x→∞. Then for each fixed γ > 0, it holds uniformly for all x ≥ γn that

P(Sn > x) ∼ nF(x),

namely,

lim
n→∞

sup
x≥γn

∣∣∣∣∣∣P(Sn > x)

nF(x)
− 1

∣∣∣∣∣∣ = 0.

For the bivariate case, Shen and Tian (2016) investigated the precise large deviations for sums S⃗n of
two-dimensional random vectors under the following assumptions.
A1. Let {ξ⃗i, i ≥ 1} be a sequence of independent and nonnegative random vectors with finite mean vector µ⃗ and
common marginal distributions F1 and F2, respectively. For every i ≥ 1, (ξ(1)

i , ξ
(2)
i ) has a survival copula Ĉ(·, ·)

satisfying

Ĉ
(
F1(x1),F2(x2)

)
≤MF1(x1)F2(x2) (2)

where M is a positive constant.
A2. F1 ∈ ERV(−α,−β) for some 1 < α ≤ β < ∞, and for some constant c > 0,

F2(x) ∼ cF1(x), as x→∞. (3)

A3. There exists 1 ≤ r < ∞ such that

lim
x→∞

C
(
v f (x), v1(x)

)
C( f (x), 1(x))

= vr, v > 0,

for all f (x) > 0 and 1(x) > 0 such that limx→0 f (x) = limx→0 1(x) = 0.

Theorem B. Let {ξ⃗i, i ≥ 1} be a sequence of independent and nonnegative random vectors with Assumptions A1, A2
and A3, it holds uniformly for all x⃗ ≥ γ⃗n that

P(S⃗n − nµ⃗ > x⃗) ∼
n∑

i=1

n∑
j=1

P(ξ(1)
i > x1, ξ

(2)
j > x2),

namely,

lim
n→∞

sup
x⃗≥γ⃗n

∣∣∣∣∣∣∣∣ P(S⃗n − nµ⃗ > x⃗)∑n
i=1

∑n
j=1 P(ξ(1)

i > x1, ξ
(2)
j > x2)

− 1

∣∣∣∣∣∣∣∣ = 0,
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where x⃗ = (x1, x2)T and γ⃗ = (γ1, γ2)T > 0⃗ = (0, 0)T.

Remark 2.1. As was pointed out by Shen and Tian (2016), it follows from Sklar’s Theorem that P(ξ(1) > x1, ξ(2) >

x2) = Ĉ
(
F1(x1),F2(x2)

)
. Hence, the inequality (2) can cover not only a negative dependence structure but also a

positive one.

More recently, Fu et al. (2022) further gave the weakly asymptotic formula for precise large deviations
for sums S⃗n of two-dimensional random vectors with dominatedly-varying-tailed components.

Theorem C. Let {ξ⃗i, i ≥ 1} be a sequence of independent and nonnegative random vectors with Assumption A1 with
the positive constant M replaced by a positive finite function. If Fk ∈ D, k = 1, 2, then for any γ⃗ > 0⃗, relation

LF1 LF2 n2F1(x1)F2(x2) ≲ P(S⃗n − nµ⃗ > x⃗) ≲ (LF1 LF2 )−1n2F1(x1)F2(x2)

holds uniformly for all x⃗ ≥ γ⃗n.

Inspired by the above-referenced results, we will further in this paper consider the following issues.
(1) We will discuss the sums of a sequence of real-valued random vectors rather than nonnegative ones
considered by Shen and Tian (2016) as well as Fu et al. (2022), and so the main difficulty in this paper is
due to the two-sided support of distributions Fk, k = 1, 2.
(2) We will extend the class of marginal distributions of random vectors from the class ERV of Shen and
Tian (2016) to the class L or C.
(3) We will remove the interrelationship (3) between F1 and F2 and Assumption A3 of Shen and Tian (2016).

In the following, we state our main results of this paper, among which the first one establishes the
asymptotic lower bound of precise large deviations for sums S⃗n of two-dimensional random vectors with
long-tailed components.

Theorem 2.1. Let {ξ⃗i, i ≥ 1} be a sequence of independent and real-valued random vectors with mean vector 0⃗. If
Fk ∈ L, k = 1, 2, and Assumption A1 is satisfied, then for any γ⃗ > 0⃗, it holds uniformly for all x⃗ ≥ γ⃗n that

P(S⃗n > x⃗) ≳
n∑

i=1

n∑
j=1

P(ξ(1)
i > x1, ξ

(2)
j > x2) ∼ n2F1(x1)F2(x2).

The second theorem provides an asymptotic formula of the precise large deviations for sums S⃗n of
two-dimensional random vectors with consistent-varying-tailed components.

Theorem 2.2. Under the conditions of Theorem 2.1 except that Fk ∈ C, k = 1, 2, it holds uniformly for all x⃗ ≥ γ⃗n
that

P(S⃗n > x⃗) ∼
n∑

i=1

n∑
j=1

P(ξ(1)
i > x1, ξ

(2)
j > x2) ∼ n2F1(x1)F2(x2).

3. Proof of Theorem 2.1

By (2) and Remark 2.1, it follows that
n∑

i=1

n∑
j=1

P
(
ξ(1)

i > x1, ξ
(2)
j > x2

)
=

n∑
i=1

P
(
ξ(1)

i > x1, ξ
(2)
i > x2

)
+

∑
1≤i, j≤n

P
(
ξ(1)

i > x1, ξ
(2)
j > x2

)
∼ n2F1(x1)F2(x2). (4)
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So it suffices to show that, uniformly for all x⃗ ≥ γ⃗n,

P(S⃗n > x⃗) ≳ n2F1(x1)F2(x2). (5)

Consider a distribution F ∈ L, there exists a function h: (0,∞) 7→ [0,∞) such that h(x)→∞, h(x) = o(1)x
and

F(x + h(x)) ∼ F(x), as x→∞. (6)

See, for example, Embrechts et al. (1997). Then for the function h(x) as above, we have

P(S⃗n > x⃗)

≥ P
(
S⃗n > x⃗,max

1≤i≤n
ξ(1)

i > x1 + h(x1),max
1≤ j≤n

ξ(2)
j > x2 + h(x2)

)
≥

n∑
i=1

n∑
j=1

P
(
S⃗n > x⃗, ξ(1)

i > x1 + h(x1), ξ(2)
j > x2 + h(x2)

)
−

n∑
i=1

∑
1≤ j1, j2≤n

P
(
ξ(1)

i > x1 + h(x1), ξ(2)
j1
> x2 + h(x2), ξ(2)

j2
> x2 + h(x2)

)
−

∑
1≤i1,i2≤n

n∑
j=1

P
(
ξ(1)

i1
> x1 + h(x1), ξ(1)

i2
> x1 + h(x1), ξ(2)

j > x2 + h(x2)
)

= I1(x⃗,n) − I2(x⃗,n) − I3(x⃗,n). (7)

Firstly, we consider I1(x⃗,n), which is written as

I1(x⃗,n)

≥

n∑
i=1

n∑
j=1

P


n∑

k=1,k,i

ξ(1)
k > −h(x1),

n∑
k=1,k, j

ξ(2)
k > −h(x2),

ξ(1)
i > x1 + h(x1), ξ(2)

j > x2 + h(x2)


≥

n∑
i=1

n∑
j=1

P
(
ξ(1)

i > x1 + h(x1), ξ(2)
j > x2 + h(x2)

)
−

n∑
i=1

n∑
j=1

P

ξ(1)
i > x1 + h(x1), ξ(2)

j > x2 + h(x2),
n∑

k=1,k,i

ξ(1)
k < −h(x1)


−

n∑
i=1

n∑
j=1

P

ξ(1)
i > x1 + h(x1), ξ(2)

j > x2 + h(x2),
n∑

k=1,k, j

ξ(2)
k < −h(x2)


= I11(x⃗,n) − I12(x⃗,n) − I13(x⃗,n), (8)

where the second step is due to an elementary inequality P(ABC) ≥ P(A)− P(AB)− P(AC). For I12(x⃗,n), one
has

I12(x⃗,n) =

n∑
i=1

P
(
ξ(1)

i > x1 + h(x1), ξ(2)
i > x2 + h(x2)

)
P

 n∑
k=1,k,i

ξ(1)
k < −h(x1)


+

∑
1≤i, j≤n

P
(
ξ(1)

i > x1 + h(x1)
)

P

ξ(2)
j > x2 + h(x2),

n∑
k=1,k,i

ξ(1)
k < −h(x1)


= I121(x⃗,n) + I122(x⃗,n). (9)
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By the law of large numbers, it holds that

lim
n→∞

sup
x1≥γ1n

P

 n∑
k=1,k,i

ξ(1)
k < −h(x1)

 = 0,

which leads to

lim
n→∞

sup
x⃗≥γ⃗n

I121(x⃗,n)
I11(x⃗,n)

≤ lim
n→∞

sup
x⃗≥γ⃗n

∑n
i=1 P(ξ(1)

i > x1 + h(x1), ξ(2)
i > x2 + h(x2))P

(∑n
k=1,k,i ξ

(1)
k < −h(x1)

)
∑n

i=1 P(ξ(1)
i > x1 + h(x1), ξ(2)

i > x2 + h(x2))
= 0 (10)

Clearly, one knows that

I122(x⃗,n)

=
∑

1≤i, j≤n

P
(
ξ(1)

i > x1 + h(x1)
)

P

ξ(2)
j > x2 + h(x2),

n∑
k=1,k,i

(−ξ(1)
k ) > h(x)


≤

∑
1≤i, j≤n

P
(
ξ(1)

i > x1 + h(x1)
)

P

ξ(2)
j > x2 + h(x2),

n∑
k=1,k,i

ξ(1)−
k > h(x)


where ξ(1)−

k = max{−ξ(1)
k , 0}, k = 1, 2, · · · ,n. Now we construct two independent nonnegative random

variables η(1) and η(2) with their tails as

G1(x1) = min{1,KF1(−x1)},

and

G2(x2) = min{1,KF2(x2)} ∼ KF2(x2),

for some K > 1 such that (ξ(1)−
j , ξ

(2)
j ) ≤st (η(1), η(2)). Let (η(1), η(2)) be independent of the other sources of

randomness. Then, it follows that

I122(x⃗,n)

≤

∑
1≤i, j≤n

P
(
ξ(1)

i > x1 + h(x1)
)

P

η(2) > x2 + h(x2),
n∑

k=1,k,i, j

ξ(1)−
k + η(1) > h(x1)


=

∑
1≤i, j≤n

P
(
ξ(1)

i > x1 + h(x1)
)

P
(
η(2) > x2 + h(x2)

)
P

 n∑
k=1,k,i, j

ξ(1)−
k + η(1) > h(x1)


Again by the law of large numbers, one gets

lim
n→∞

sup
x1≥γ1n

P

 n∑
k=1,k,i, j

ξ(1)−
k + η(1) > h(x1)

 = 0,

which yields that

lim
n→∞

sup
x⃗≥γ⃗n

I122(x⃗,n)
I11(x⃗,n)

= 0. (11)
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Hence by substituting (10) and (11) into (9), we obtain that

lim sup
n→∞

sup
x⃗≥γ⃗n

I12(x⃗,n)
I11(x⃗,n)

= 0. (12)

Similarly, we still obtain that

lim sup
n→∞

sup
x⃗≥γ⃗n

I13(x⃗,n)
I11(x⃗,n)

= 0. (13)

So by (8), (12) and (13), it holds uniformly for all x⃗ ≥ γ⃗n that

I1(x⃗,n) ≳ I11(x⃗,n). (14)

Subsequently, we turn to consider I2(x⃗,n), which is formulated as

I2(x⃗,n) =
∑

1≤ j1, j2≤n

P
(
ξ(1)

j1
> x1 + h(x1), ξ(2)

j1
> x2 + h(x2)

)
P
(
ξ(2)

j2
> x2 + h(x2)

)
+

n∑
i=1,i, j1

∑
1≤ j1, j2≤n

P
(
ξ(1)

i > x1 + h(x1), ξ(2)
j2
> x2 + h(x2)

)
P
(
ξ(2)

j1
> x2 + h(x2)

)
≤ nF2(x2 + h(x2))

n∑
j1=1

P
(
ξ(1)

j1
> x1 + h(x1), ξ(2)

j1
> x2 + h(x2)

)
+nF2(x2 + h(x2))

n∑
i=1

n∑
j2=1

P
(
ξ(1)

i > x1 + h(x1), ξ(2)
j2
> x2 + h(x2)

)
≤ 2nF2(x2 + h(x2))I11(x⃗,n),

which implies that

lim sup
n→∞

sup
x⃗≥γ⃗n

I2(x⃗,n)
I11(x⃗,n)

≤ lim
n→∞

sup
x2≥γ2n

2nF2(x2 + h(x2)).

≤ lim
x2→∞

2x2

γ2
F2(x2 + h(x2))

= 0. (15)

Similarly, it still holds that

lim sup
n→∞

sup
x⃗≥γ⃗n

I3(x⃗,n)
I11(x⃗,n)

= 0. (16)

Therefore, we substitute (14)-(16) into (7) to obtain that, uniformly for all x⃗ ≥ γ⃗n,

P(S⃗n > x⃗) ≳ I11(x⃗,n). (17)

Note that by Fk ∈ L, k = 1, 2, (2), (6) and Remark 2.1, it holds uniformly for all x⃗ ≥ γ⃗n that

I11(x⃗,n) = nP(ξ(1) > x1 + h(x1), ξ(2) > x2 + h(x2)
+ (n2

− n)F̄1(x1 + h(x1))F̄2(x2 + h(x2))
∼ n2F1(x1)F2(x2),

which, along with (17), proves that relation (5) holds uniformly for all x⃗ ≥ γ⃗n, and then completes the proof
of Theorem 2.1.
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4. Proof of Theorem 2.2

Consider a distribution F ∈ Dwith its upper Matuszewska index

J+F = − lim
y→∞

log F∗(y)
log(y)

,

where F∗(y) = lim infx→∞
F(xy)
F(x)

for y > 0. By Proposition 2.2.1 of Bingham et al. (1987), one knows that for
any p > J+F , there exist positive constant x0 and C such that

F(y)

F(x)
≤ C

(
x
y

)p

(18)

holds for all x ≥ y ≥ x0.
According to Theorem 2.1, it suffices to establish the asymptotic upper bound of P(S⃗n > x⃗), namely that,

uniformly for all x⃗ ≥ γ⃗n,

P(S⃗n ≥ x⃗) ≲ n2F1(x1)F2(x2). (19)

For any 0 < v < 1, we apply a standard truncation argument to obtain that

P(S⃗n > x⃗) ≤

n∑
i=1

n∑
j=1

P
(
ξ(1)

i > vx1, ξ
(2)
j > vx2

)
+ P

(
S⃗n > x⃗,max

1≤i≤n
ξ(1)

i ≤ vx1,max
1≤ j≤n

ξ(2)
j ≤ vx2

)
+ P

(
S⃗n > x⃗,max

1≤i≤n
ξ(1)

i ≤ vx1,max
1≤ j≤n

ξ(2)
j > vx2

)
+ P

(
S⃗n > x⃗,max

1≤i≤n
ξ(1)

i > vx1,max
1≤ j≤n

ξ(2)
j ≤ vx2

)
=

4∑
i=1

Ki(x⃗,n) (20)

Clearly, by Fk ∈ C, k = 1, 2, (2) and Remark 2.1, it follows that

lim sup
n→∞

sup
x⃗≥γ⃗n

K1(x⃗,n)

n2F1(x1)F2(x2)
≤ lim

v↗1
lim sup

n→∞
sup
x⃗≥γ⃗n

F1(vx1)F2(vx2)

F1(x1)F2(x2)
= 1. (21)

Now we deal with K2(x⃗,n), where the method we used is motivated by those of Tang (2006) and Shen
and Tian (2016), but the main difficulty we encounter is due to the two-sided support of distributions Fk of
real-valued random variable ξ(k), k = 1, 2. Define ξ̃(1)

i = min{ξ(1)
i , vx1}, ξ̃

(2)
i = min{ξ(2)

i , vx2}, i = 1, 2, · · · ,n, and
S̃(1)

n =
∑n

i=1 ξ̃
(1)
i , S̃

(2)
n =

∑n
i=1 ξ̃

(2)
i . Take a1 = max{− log nF1(vx1), 1} and a2 = max{− log nF2(vx2), 1}, which both

tend to ∞ uniformly for all x⃗ ≥ γ⃗n. For two arbitrarily fixed h1(x1,n) > 0 and h2(x2,n) > 0, it follows from
Chebyshev’s inequality that

K2(x⃗,n) ≤ P(S̃(1)
n > x1, S̃

(2)
n > x2)

≤ e−h1x1−h2x2 (Eeh1ξ̃
(1)
1 +h2ξ̃

(2)
1 )n.
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The expectation Eeh1ξ̃
(1)
1 +h2ξ̃

(2)
1 is divided as

Eeh1ξ̃
(1)
1 +h2ξ̃

(2)
1

= 1 +
∫ vx2

−∞

∫ vx1

−∞

(eh1t1+h2t2 − 1)F(dt1, dt2) +
∫ vx2

−∞

∫
∞

vx1

(eh1vx1+h2t2 − 1)F(dt1, dt2)

+

∫
∞

vx2

∫ vx1

−∞

(eh1t1+h2vx2 − 1)F(dt1, dt2) +
∫
∞

vx2

∫
∞

vx1

(eh1vx1+h2vx2 − 1)F(dt1, dt2)

= 1 +
4∑

i=1

Hi(x⃗),

where F(t1, t2) is the joint distribution of random vector (ξ(1), ξ(2)). Hence, we have

K2(x⃗,n)
K1(x⃗,n)

≤
e−h1x1−h2x2

n(n − 1)F1(vx1)F2(vx2)
·

1 +
4∑

i=1

Hi(x⃗)


n

≤
n

n − 1
exp

n
4∑

i=1

Hi(x⃗) − h1x1 − h2x2 + a1 + a2

 , (22)

where in the last step we used an elementary inequality 1 + s ≤ es for all s. For H1(x⃗), it is divided as

H1(x⃗) ≤

∫ 0

−∞

∫ 0

−∞

+

∫ vx2/a2
2

0

∫ vx1/a2
1

−∞

+

∫ vx2/a2
2

−∞

∫ vx1/a2
1

0
+

∫ vx2/a2
2

−∞

∫ vx1

vx1/a2
1

+

∫ vx2

vx2/a2
2

∫ vx1/a2
1

−∞

+

∫ vx2

vx2/a2
2

∫ vx1

vx1/a2
1

 (eh1t1+h2t2 − 1)F(dt1, dt2)

=:
6∑

i=1

H1i(x⃗) (23)

By the elementary inequality s ≤ es
− 1 ≤ ses for all s, we get that for all t1 ≤ 0, t2 ≤ 0,

0 ≤
eh1t1+h2t2 − 1 − (h1t1 + h2t2)

h1 + h2
≤

(h1t1 + h2t2)(eh1t1+h2t2 − 1)
h1 + h2

≤ −
h1t1 + h2t2

h1 + h2

≤ −(t1 + t2). (24)

Considering the arbitrariness of h1 and h2, we take (h1, h2) ↘ (0, 0), and h1 = O(1)h2, h2 = O(1)h1, which
means that 0 < lim inf h1/h2 ≤ lim sup h1/h2 < ∞, and so for all large n, there exist constants B1 > 0 and
B2 > 0 such that B1 < h1/h2 < B2. Then by combining (24) and the dominated convergence theorem, we
derive that

lim
(h1,h2)↘(0,0)

∫ 0

−∞

∫ 0

−∞
(eh1t1+h2t2 − 1)F(dt1, dt2)

h1 + h2

≤ lim
(h1,h2)↘(0,0)

{∫ 0

−∞

∫ 0

−∞

eh1t1+h2t2 − 1 − (h1t1 + h2t2)
h1 + h2

F(dt1, dt2)

+

∫
∞

−∞

∫ 0

−∞

h1t1

h1 + h2
F(dt1, dt2) +

∫ 0

−∞

∫
∞

−∞

h2t2

h1 + h2
F(dt1, dt2)

}
≤ B(µ1− + µ2− ),
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where B = { B1
1+B1
, 1

1+B2
}, µ1− = Eξ(1)1{ξ(1)≤0}, and µ2− = Eξ(2)1{ξ(2)≤0}. So there exists a bivariate real function

ε(·, ·) with ε(h1, h2)→ 0 as (h1, h2)↘ (0, 0), such that

H11(x⃗) ≤ (1 + ε(h1, h2))B(h1 + h2)(µ1− + µ2− ).

Again by the elementary inequality es
− 1 ≤ ses for all s, we have

H12(x⃗) ≤

∫ vx2/a2
2

0

∫ vx1/a2
1

−∞

(h1t1 + h2t2)eh1t1+h2t2 F(dt1, dt2)

≤ eh1vx1/a2
1+h2vx2/a2

2

∫ vx2/a2
2

0

∫ vx1/a2
1

−∞

(h1t1 + h2t2)F(dt1, dt2)

≤ eh1vx1/a2
1+h2vx2/a2

2

{∫
∞

−∞

∫
∞

−∞

h1t1F(dt1, dt2) +
∫
∞

0

∫
∞

−∞

h2t2F(dt1, dt2)
}

≤ eh1vx1/a2
1+h2vx2/a2

2 h2µ2+ ,

where µ2+ = Eξ(2)1{ξ(2)>0}, and the last step is also due to µ1 = 0. Similarly, we still have

H13(x⃗) ≤ eh1vx1/a2
1+h2vx2/a2

2 h1µ1+ ,

where µ1+ = Eξ(1)1{ξ(1)>0}. For H14(x⃗), H15(x⃗) and H16(x⃗), we obtain that

H14(x⃗) ≤

∫ vx2/a2
2

−∞

∫ vx1

vx1/a2
1

eh1t1+h2t2 F(dt1, dt2)

≤ eh1vx1+h2vx2/a2
2 F1(vx1/a2

1),

H15(x⃗) ≤ eh1vx1/a2
1+h2vx2 F2(vx2/a2

2),

and

H16(x⃗) ≤ eh1vx1+h2vx2 F(vx1/a2
1, vx2/a2

2).

Therefore by (23) and the above derivations for H1i(x⃗), i = 1, 2, · · · , 6, we derive that

H1(x⃗) ≤ (1 + ε(h1, h2))(h1 + h2)(µ1− + µ2− ) + eh1vx1/a2
1+h2vx2/a2

2 (h1µ1+ + h2µ2+ )

+eh1vx1+h2vx2/a2
2 F1(vx1/a2

1) + eh1vx1/a2
1+h2vx2 F2(vx2/a2

2)

+eh1vx1+h2vx2 F(vx1/a2
1, vx2/a2

2). (25)

For H2(x⃗), it holds that

H2(x⃗) =

∫ vx2/a2
2

−∞

∫
∞

vx1

+

∫ vx2

vx2/a2
2

∫
∞

vx1

 (eh1vx1+h2t2 − 1)F(dt1, dt2)

≤ eh1vx1+h2vx2/a2
2 F1(vx1) + eh1vx1+h2vx2/a2

2 F(vx1, vx2/a2
2). (26)

Similarly, it still holds that

H3(x⃗) =

∫ ∞

vx2

∫ vx1/a2
1

−∞

+

∫
∞

vx2

∫ vx1

vx1/a2
1

 (eh1t1+h2vx2 − 1)F(dt1, dt2)

≤ eh1vx1/a2
1+h2vx2 F2(vx2) + eh1vx1/a2

1+h2vx2 F(vx1/a2
1, vx2), (27)

and

H4(x⃗) ≤ eh1vx1+h2vx2 F(vx1, vx2). (28)
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Take h1(x1,n) = a1−2p1 log a1

vx1
and h2(x2,n) = a2−2p2 log a2

vx2
, where p1 > J+F1

and p2 > J+F2
. Hence, by substituting

(25)-(28) into (22), and using (18) and (2), we conclude that for all large n, there exist constants C1 and C2,
depending on F1 and F2, respectively, such that

K2(x⃗,n)
K1(x⃗,n)

≤
n

n − 1
exp

{[
(1 + ε(h1, h2))(µ1− + µ2− ) + e

1
a1
+ 1

a2 (µ1+ + µ2+ )
]

n(h1 + h2)

+ C1e
1

a2 + C2e
1

a1 +
MC1C2

n
+ o(1)e

1
a2 + o(1)e

1
a1 + o(1)

MC1

n

+ o(1)
MC2

n
+ o(1)

M
n
− h1x1 − h2x2 + a1 + a2

}
≤ O(1) exp

{
o(1)n(h1 + h2) +

(
1 −

1
v

)
(a1 + a2)

}
= O(1) exp

{
o(1)a1 + o(1)a2 +

(
1 −

1
v

)
(a1 + a2)

}
,

which implies that

lim sup
n→∞

sup
x⃗≥γ⃗n

K2(x⃗,n)
K1(x⃗,n)

= 0. (29)

Subsequently, we turn to estimate K3(x⃗,n). By (2), it holds uniformly for all x⃗ ≥ γ⃗n that

K3(x⃗,n)

≤

n∑
j=1

P(S̃(1)
n > x1, ξ

(2)
j > vx2)

=

n∑
j=1

∫ vx1

0
· · ·

∫ vx1

0
P
(
ξ(1)

j > x1 − x(1)
1 − · · · − x(1)

j−1 − x(1)
j+1 − · · · − x(1)

n , ξ
(2)
j > vx2

)
G j(dx(1)

1 , · · · , dx(1)
j−1, dx(1)

j+1, · · · , dx(1)
n )

≤M
n∑

j=1

∫ vx1

0
· · ·

∫ vx1

0
P
(
ξ(1)

j > x1 − x(1)
1 − · · · − x(1)

j−1 − x(1)
j+1 − · · · − x(1)

n

)
·P(ξ(2)

j > vx2)G j(dx(1)
1 , · · · , dx(1)

j−1, dx(1)
j+1, · · · , dx(1)

n )

=MnF2(vx2)P(S̃(1)
n > x1),

where G j is the joint distribution of (ξ(1)
1 , · · · , ξ

(1)
j−1, ξ

(1)
j+1, · · · , ξ

(1)
n ). Thus we obtain that, uniformly for all

x⃗ ≥ γ⃗n,

K3(x⃗,n)
K1(x⃗,n)

≤
MnF2(vx2)P(S̃(1)

n > x1)

n(n − 1)F1(vx1)F2(vx2)

=
MP(S̃(1)

n > x1)

(n − 1)F1(vx1)
.

By mimicking the proof of Theorem 3.1 of Tang (2006), and taking a = max{1,− log(n − 1)F1(vx1)} and
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h = a−2p log a
vx1

, we derive that for all large n,

P(S̃(1)
n > x1)

(n − 1)F1(vx1)
≤ e−hx+a

(
(1 + ε(h))hu1− + e

1
a hu1+ +O(1)eaF1(vx1) + 1

)n

≤ exp
{
[1 + ε(h))u1− + e

1
a u1+ ]nh +O(1)eaF1(vx1) − hx + a

}
= O(1) exp {o(1)nh − hx + a}

= O(1) exp
{
o(a) +

(
1 −

1
v

)
a
}

= o(1),

which leads to

lim sup
n→∞

sup
x⃗≥γ⃗n

K3(x⃗,n)
K1(x⃗,n)

= 0. (30)

Similarly, we also get that

lim sup
n→∞

sup
x⃗≥γ⃗n

K4(x⃗,n)
K1(x⃗,n)

= 0. (31)

Consequently, we substitute (21), (29)-(31) into (20) to show that relation (19) holds uniformly for all x⃗ ≥ γ⃗n,
and then give the proof of this theorem.
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