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Available at: http://www.pmf.ni.ac.rs/filomat

Some new results on core partial order and strong core orthogonal
matrices

Xiaoji Liua, Congcong Wangb,c, Hongxing Wangb,∗

aSchool of Education, Guangxi Vocational Normal University, Nanning 530007, China
bSchool of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, China

cCollege of Mathematics and Information Science, Guangxi University, Nanning 530004, China

Abstract. Recently, Ferreyra and Malik (Some new results on the core partial order, Linear and Multilinear

Algebra, DOI: 10.1080/03081087.2020.1841078) give an example to show that A
#O
≤B does not imply (B−A) #O =

B #O
−A #O, and put forward an open question: Let A,B∈CGM

n , can A
−

≤B and (B−A) #O = B #O
−A #O

⇒ A
#O
≤B be true?

In this paper, the above problem will be completely solved. We also give some necessary and sufficient
conditions for core partial order, and we give some new characterizations of strong core orthogonality.

1. Introduction

In this paper, we use the following notations. We denote the set of all m×n complex matrices by Cm×n.
For A ∈ Cm×n, symbols A∗, R(A), rk(A), Ind(A), A−1 stand for the conjugate transpose, range, rank, index
and the inverse (m = n) of A, respectively. In refers to the n×n identity matrix.

We first review definitions of some well-known generalized inverses. Let A ∈ Cm×n, then the Moore-
Penrose inverse A† [15] of A is the unique matrix X∈Cn×m satisfying the equations: (1)AXA = A, (2)XAX =
X, (3)(AX)∗ = AX and (4)(XA)∗ = XA. The symbol A{i, . . . , j} is the set of matrices X∈Cm×n which satisfy
the conditions (i), . . . , ( j) from the Eqs.(1)-(4). A matrix X∈A{i, . . . , j} is called an {i, . . . , j}-inverse of A, and
denoted by A{i,..., j}.

For A ∈ Cn×n, when rk(A) = rk(A2), we denote Ind(A) = 1, and call A as a group matrix (or a core matrix).
The symbol C

GM

n stands for the subset of Cn×n consisting of group matrices. The group inverse A# [15] of a
group matrix A is the unique matrix X ∈ Cn×n, which satisfies the following equations: AXA = A, XAX = X
and AX = XA.

Moreover, for the square matrix A with index 1, Baksalary and Trenkler [1] give the definition of core
inverse, which refers to the unique matrix X ∈ Cn×n satisfying the conditions AX = AA†, R(X)⊆R(A), and
denoted by A #O.
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They also put forward the definition of core partial order in [1], which has attracted extensive attention
from the fields of generalized inverse theory and matrix partial order. Subsequently, a series of articles on
the core partial order appeared [5, 9, 11, 13, 14, 18].

A binary relation is called a partial order if it is reflexive, transitive and anti-symmetric on a non-empty
set. In general, we can characterize the corresponding partial order by using the known generalized inverse.
The star, minus and core partial orders are defined as follows [1–3, 6–8, 12]:

(1) A,B∈Cm×n,A
∗

≤B⇔ AA∗ = BA∗, A∗A = A∗B,

⇔ AA† = BA†, A†A = A†B;

(2) A,B∈Cm×n,A
−

≤B⇔ AA= = BA=, A−A = A−B, for some A−,A=∈A{1},
⇔ rk(B) − rk(A) = rk(B − A);

(3) A,B∈C
GM

n , A
#O

≤B⇔ AA #O = BA #O,A #OA = A #OB.

The other well-known partial orders are the sharp, Löwner, C-N, GL, CL partial orders, etc. For more
details, see [2, 3, 6, 12, 17, 19].

Many scholars have discussed the relationship among various partial orders. While proposing the
definition of core partial order, Baksalary and Trenkler [1] also consider the relationship between the core

partial order and the minus partial order. Let A,B∈CGM

n . They also point out that if A
#O

≤B, then A
−

≤B. However,

A
−

≤B does not mean A
#O

≤B.
In [7], Hartwig and Styan propose an important equivalent characterization of star partial order, which

is related to the minus partial order and dagger-subtractivity. They also give some other characterizations
of star partial order. For A,B∈Cm×n,

A
∗

≤B⇔ A
−

≤B and (B − A)† = B† − A†;

⇔ A
−

≤B and A∗B,BA∗ are both Hermitian;

⇔ A
−

≤B and A†B,BA† are both Hermitian;

⇔ A
−

≤B and B† − A† is a {1,3}-generalized inverse of B − A.

It is natural to make some similar conjectures for core partial order. In [5], Ferreyra and Malik define

the core-subtractivity property for two group invertible matrices. They give an example to show that A
#O

≤B
does not imply (B − A) #O = B #O

− A #O, and put forward an open question:

Problem 1.1. Let A,B∈CGM

n . Can

A
−

≤B and (B − A) #O = B #O
− A #O

⇒ A
#O

≤B (1)

be true?

Based on core inverse, Ferreyra and Malik give concepts of core orthogonality and strongly core orthog-
onality [4] in C

GM

n . Let A,B∈CGM

n . When A #OB = 0 and BA #O = 0, A is said to be core orthogonal to B (denoted
by A⊥ #OB); when A⊥ #OB and B⊥ #OA, A and B are said to be strongly core orthogonal (denoted by A⊥ #O,SB).
Moreover, they point out that

A⊥ #OB⇔ A
#O

≤(A + B); (2)

A⊥ #O,SB⇔ A
#O

≤(A + B) and B
#O

≤(A + B); (3)
A⊥ #O,SB⇔ A #OB = 0,BA #O = 0 and AB #O = 0. (4)
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For A,B∈Cm×n, we have the following equivalent characterization of star orthogonality, which is related
to dagger-additivity and rank-additivity [7, 12]:

A⊥∗B⇔ (A + B)† = A† + B† and rk(A + B) = rk(A) + rk(B).

For strong core orthogonality, Ferreyra and Malik[4] prove that A⊥ #O,SB implies (A + B) #O = A #O + B #O and
rk(A + B) = rk(A) + rk(B), and put forward an open question: Let A,B∈CGM

n . Can A⊥ #O,SB⇔ (A + B) #O =
A #O + B #O and rk(A + B) = rk(A) + rk(B) be true? In [10], we prove that the result is true and give some new
characterizations of strong core orthogonality. Furthermore, based on the core-EP decomposition, we give

forms of matrices A and B when A
−

≤B in [10]. This characterization is shown in Lemma 2.2, which is what
we need to use in this paper.

In this paper, we will make some new contributions by revisiting the core partial order and strong
core orthogonality. First, we consider the relationship between core partial order and core-subtractivity,
and solve the above Problem (1). We derive some new equivalent conditions of core partial order, which
are characterized by core inverse, group inverse and some Hermitian matrices. We slao get some new
characterizations of strong core orthogonality, which are about {1,3}-generalized inverse.

2. Preliminaries

In order to get our conclusions, we need to use following results in this section.

Lemma 2.1 ([16], Core-EP decomposition). Let A∈Cn×n with Ind(A) = k and rk(Ak) = p. Then, it has A =
A1 + A2, where A1∈C

GM

n , Ak
2 = 0, A∗1A2 = A2A1 = 0.

Furthermore, there exists a unitary matrix U∈Cn×n such that

A = U
[
T S
0 N

]
U∗, A1 = U

[
T S
0 0

]
U∗, A2 = U

[
0 0
0 N

]
U∗, (5)

where T∈Cp×p is nonsingular; S∈Cp×(n−p); N∈C(n−p)×(n−p) is nilpotent of index k, i.e., Nk = 0.

Lemma 2.2 ([10]). Let B∈CGM

n , and B = U
[
T S
0 0

]
U∗ be the core-EP decomposition of B, where T∈Cp×p is nonsingular

with p = rk(B) and U is unitary. If A
−

≤B, then we have

A = U
[
A11 A12
0 0

]
U∗, (6)

where A11 = A11T−1A11 and A12 = A11T−1S.

Lemma 2.3 ([16, 21]). Let A∈Cn×n be as in (5). Then rk(A) = rk(A2)⇔N = 0, that is

A = U
[
T S
0 0

]
U∗. (7)

In that case, we have

A #O = U
[
T−1 0

0 0

]
U∗, A# = U

[
T−1 T−2S

0 0

]
U∗. (8)

Lemma 2.4 ([10]). Let A ∈ CGM

n have the block form that is A =
[
A11 A12
A21 A22

]
, where A11 ∈ Ct×t and t is any

nonnegative number satisfying 0≤t≤n. Then

(1) A21 = 0 and A22 = 0⇔ A11∈C
GM

t and A #O =

[
A #O

11 0
0 0

]
;

(2) A11 = 0 and A12 = 0⇔ A22∈C
GM

n−t and A #O =

[
0 0
0 A #O

22

]
.
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Lemma 2.5 ([1, 20]). Let A = U
[
T S
0 Z

]
U∗∈Cn×n, where T∈Cp×p is nonsingular and Z∈CGM

n−p. Then

A #O = U
[
T−1

−T−1SZ #O

0 Z #O

]
U∗. (9)

Lemma 2.6 ([4]). Let A,B∈CGM

n with rk(A) = t and rk(B) = p. Then the following statements are equivalent:
(1) A⊥ #O,SB;
(2) There exist nonsingular matrices T1 ∈ Ct×t and T2 ∈ Cp×p, a unitary matrix U ∈ Cn×n, S ∈ Ct×(n−p−t) and

S2 ∈ Cp×(n−p−t) such that

A = U

T1 0 S
0 0 0
0 0 0

U∗, B = U

0 0 0
0 T2 S2
0 0 0

U∗. (10)

3. The equivalent conditions for core partial order

According to Lemma 3 in Section 3 of [1], we give forms of matrices A,B∈CGM

n when they satisfy the core
partial order under the core-EP decomposition.

Theorem 3.1. Let A,B∈CGM

n , then the following statements are equivalent:

(1) A
#O

≤B;
(2) There exist nonsingular matrix T∈Cp×p and a unitary matrix U such that

A = U
[
T S
0 0

]
U∗, B = U

[
T S
0 B22

]
U∗, (11)

where B22∈C
GM

n−p.

In [7], the authors gave an equivalent characterization of star partial order, which is A
∗

≤B⇔A
−

≤B and
B† − A† is a {1,3}-generalized inverse of B − A. Next, we consider similar conditions of core partial order.

Theorem 3.2. Let A,B∈CGM

n , then the following statements are equivalent:

(1) A
#O

≤B;

(2) A
−

≤B and B #O
− A #O

∈(B − A){1, 3}.

Proof. (1)⇒(2) If A
#O

≤B, then from Lemma 2.5 and Theorem 3.1, we can obtain that A and B have decompo-
sition forms as in (11), and

A #O = U
[
T−1 0

0 0

]
U∗, B #O = U

[
T−1

−T−1SB #O

22
0 B #O

22

]
U∗,

B − A = U
[
0 0
0 B22

]
U∗, B #O

− A #O =

[
0 −T−1SB #O

22
0 B #O

22

]
.

It is obvious that rk(B) − rk(A) = rk(B22) = rk(B − A), that is A
−

≤B. And

(B − A)(B #O
− A #O)(B − A) = U

[
0 0
0 B22

]
U∗ = B − A,

((B − A)(B #O
− A #O))∗ = U

[
0 0
0 B22B #O

22

]
U∗ = (B − A)(B #O

− A #O),
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which implies B #O
− A #O

∈(B − A){1, 3}.

(2)⇒(1) Let B = U
[
T S
0 0

]
U∗ be the core-EP decomposition of B, where T∈Cp×p is nonsingular with

rk(B) = p and U is unitary. From A
−

≤B and Lemma 2.2, the decomposition form of A is shown as in (6). Then
from Lemma 2.4, it follows that

B − A = U
[
T − A11 S − A12

0 0

]
U∗, B #O

− A #O = U
[
T−1
− A #O

11 0
0 0

]
U∗. (12)

Using (12) and B #O
− A #O

∈(B − A){1, 3}, we have

(T − A11)(T−1
− A #O

11)(T − A11) = T − A11, (13)

((T − A11)(T−1
− A #O

11))∗ = (T − A11)(T−1
− A #O

11). (14)

Let A11 = V
[
T1 S1
0 0

]
V∗ be the core-EP decomposition of A11, where T1∈Ct×t is nonsingular with t =

rk(A11) and V is unitary. Then, A #O

11 = V
[
T−1

1 0
0 0

]
V∗. Partitioning T−1 in conformation with partition of A11,

gives T−1 = V
[
F11 F12
F21 F22

]
V∗.

From A11 = A11T−1A11, we have[
T1 S1
0 0

]
=

[
(T1F11 + S1F21)T1 (T1F11 + S1F21)S1

0 0

]
.

T1 is nonsingular, so

T1F11 + S1F21 = I. (15)

As (13), (14), A11 = A11T−1A11, A11A #O

11A11 = A11 and T is nonsingular, we have

−TA #O

11T + A11A #O

11T + TA #O

11A11 − A11 = 0 and (TA #O

11 + A11T−1)∗ = TA #O

11 + A11T−1.

Next, write X = T1F12 + S1F22. Pre-multiply and post-multiply the first equation by T−1 respectively,
−A #O

11 + T−1A11A #O

11 + A #O

11A11T−1
− T−1A11T−1 = 0. By combining equation (15), it can be calculated that[

0 T−1
1 X − F11X

0 F21X

]
= 0,

which leads to

T−1
1 X = F11X and F21X = 0. (16)

Let’s consider the second equation. TA #O

11 + A11T−1 = T(A #O

11 + T−1A11T−1)(T−1)∗T∗ and

(
A #O

11 + T−1A11T−1
) (

T−1
)∗
= V
[
T−1

1 F∗11 + F11F∗11 + F11XF∗12 T−1
1 F∗21 + F11F∗21 + F11XF∗22

F21F∗11 F21F∗21

]
V∗,

we get

T−1
1 F∗21 + F11F∗21 + F11XF∗22 =

(
F21F∗11

)∗
= F11F∗21.
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Therefore,

F21 = −F22X∗F∗11T∗1. (17)

Using (16) and (17), we can obtain that

0 = −F21X = F22X∗F∗11T∗1X = F22(T−1
1 X)∗T∗1X = F22X∗X.

Since F21 = −F22X∗F∗11T∗1 and T−1 = V
[
F11 F12
F21 F22

]
V∗ is nonsingular, we get that F22 is nonsingular.

Furthermore, we get X∗X = 0, i.e., X = 0; and F21 = 0. Then, from (15) it is simple to observe that F11 = T−1
1 .

So,

T−1 = V
[
T−1

1 F12
0 F22

]
V∗.

Then

T−1A11A #O

11 = V
[
T−1

1 0
0 0

]
V∗ = A #O

11, A #O

11A11T−1 = V
[
T−1

1 0
0 0

]
V∗ = A #O

11,

which imply

A11A #O

11 = TA #O

11 and A #O

11A11 = A #O

11T. (18)

From A12 = A11T−1S, we have

A #O

11A12 = A #O

11A11T−1S = A #O

11S. (19)

By applying (18) and (19), we have

AA #O = V
[
A11A #O

11 0
0 0

]
V∗ = V

[
TA #O

11 0
0 0

]
V∗ = BA #O,

A #OA = V
[
A #O

11A11 A #O

11A12
0 0

]
V∗ = V

[
A #O

11T A #O

11S
0 0

]
V∗ = A #OB,

that is A
#O

≤B.

Example 3.3. Let A =
[
1 1
0 0

]
, B =

[
1 1
0 1

]
. Then

A #O =

[
1 0
0 0

]
, B #O =

[
1 −1
0 1

]
, B − A =

[
0 0
0 1

]
, B #O

− A #O =

[
0 −1
0 1

]
.

It is obvious that rk(B) − rk(A) = rk(B − A) = 1, i.e. A
−

≤B.

(B − A)(B #O
− A #O)(B − A) =

[
0 0
0 1

] [
0 −1
0 1

] [
0 0
0 1

]
=

[
0 0
0 1

]
,

(B − A)(B #O
− A #O) =

[
0 0
0 1

] [
0 0
0 1

]
=

[
0 0
0 1

]
,

which imply B #O
− A #O

∈(B − A){1, 3}.
In that case,

AA #O = BA #O =

[
1 0
0 0

]
, A #OA = A #OB =

[
1 1
0 0

]
,

that is, A
#O

≤B.
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Remark 3.4. Let A,B∈CGM

n , it is obvious that

A
−

≤B, (B − A) #O = B #O
− A #O

⇒ A
−

≤B, B #O
− A #O

∈(B − A){1, 3}.

Therefore, by Theorem 3.2, we can give the conclusion to Problem 1, that is

A
−

≤B and (B − A) #O = B #O
− A #O

⇒ A
#O

≤B

is true.
Now, Problem 1 has been solved completely. More importantly, we get an equivalent characterization of core

partial order with the minus partial order and {1,3}-generalized inverse.

Theorem 3.5. Let A,B∈CGM

n , then the following statements are equivalent:

(1) A
#O

≤B;

(2) A
−

≤B,BA #O is Hermitian and AA #OB = A;

(3) A
−

≤B,BA #O and A∗B are Hermitian.

Proof. (1)⇒(2), (3) If A
#O

≤B, then A and B have decomposition forms as in (11), so A #O = U
[
T−1 0

0 0

]
U∗. Then,

B − A = U
[
0 0
0 B22

]
U∗, BA #O = U

[
Ip 0
0 0

]
U∗,

AA #OB = U
[
T S
0 0

]
U∗ = A, A∗B = U

[
T∗T T∗S
S∗T S∗S

]
U∗ = A∗A.

It is obvious that rk(B) − rk(A) = rk(B − A) = rk(B22), that is, A
−

≤B. And (2), (3) are true.

Let B = U
[
T S
0 0

]
U∗ be the core-EP decomposition of B, where T∈Cp×p is nonsingular with p = rk(B) and

U is unitary. From A
−

≤B and Lemma 2.2, we can get that A has the decomposition form as in (6). Then

A #O = U
[
A #O

11 0
0 0

]
U∗, B #O = U

[
T−1 0

0 0

]
U∗, (20)

AA #O = U
[
A11A #O

11 0
0 0

]
U∗, A #OA = U

[
A #O

11A11 A #O

11A12
0 0

]
U∗, (21)

BA #O = U
[
TA #O

11 0
0 0

]
U∗, A #OB = U

[
A #O

11T A #O

11S
0 0

]
U∗, (22)

AA #OB = U
[
A11A #O

11T A11A #O

11S
0 0

]
U∗, A∗B = U

[
A∗11T A∗11S
A∗12T A∗12S

]
U∗. (23)

Let A11 = V
[
T1 S1
0 0

]
V∗ be the core-EP decomposition of A11, where T1∈Ct×t is nonsingular with t =

rk(A11) and V is unitary. Then, A #O

11 = V
[
T−1

1 0
0 0

]
V∗. Partitioning T−1 in conformation with partition of A11,

gives T−1 = V
[
F11 F12
F21 F22

]
V∗.
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(2)⇒(1) Because BA #O is Hermitian, it is obvious that TA #O

11 is Hermitian. Then, by T1 is nonsingular we
have

(TA #O

11)∗ = TA #O

11 ⇒ T−1(A #O

11)∗ = A #O

11(T−1)∗

⇒

[
F11(T−1

1 )∗ 0
F21(T−1

1 )∗ 0

]
=

[
T−1

1 F∗11 T−1
1 F∗21

0 0

]
⇒ F21(T−1

1 )∗ = 0
⇒ F21 = 0.

From AA #OB = A, we get A11A #O

11T = A11 and A11A #O

11S = A11T−1S. F21 = 0, T and T1 are nonsingular, so
we have

A11A #O

11 = A11T−1
⇒

[
It 0
0 0

]
=

[
T1F11 T1F12 + S1F22

0 0

]
⇒ T1F11 = It,T1F12 + S1F22 = 0
⇒ F11 = T−1

1 ,F12 + T−1
1 S1F22 = 0.

In that case,

T−1A11A #O

11 = V
[
T−1

1 F12
0 F22

] [
T1 S1
0 0

] [
T−1

1 0
0 0

]
V∗ = V

[
T−1

1 0
0 0

]
V∗ = A #O

11,

A #O

11A11T−1 = V
[
T−1

1 0
0 0

] [
T1 S1
0 0

] [
T−1

1 F12
0 F22

]
V∗ = V

[
T−1

1 0
0 0

]
V∗ = A #O

11,

that is,

A11A #O

11 = TA #O

11, A #O

11A11 = A #O

11T. (24)

On the other hand, from A11A #O

11 = A11T−1, we have

A #O

11A12 = A #O

11A11T−1S = A #O

11A11A #O

11S = A #O

11S. (25)

Substituting equations (24), (25) into (21) and (22), it is obvious that AA #O = BA #O and A #OA = A #OB are true,

i.e., A
#O

≤B.
(3)⇒(1) Substituting their decomposition forms into the equation A11 = A11T−1A11 and because of the

nonsingularity of T1, we can obtain

T1F11 + S1F21 = It. (26)

Because A∗B is Hermitian, we can get A∗11T is Hermitian. Then by (26) and T,T1 are nonsingular, we
have

(A∗11T)∗ = A∗11T ⇒ A11T−1 = (T−1)∗A∗11

⇒

[
It T1F12 + S1F22
0 0

]
=

[
It 0

(T1F12 + S1F22)∗ 0

]
⇒ T1F12 + S1F22 = 0.

Because BA #O is Hermitian and by the proof in (2)⇒(1), we have F21 = 0. Then since T1 are nonsingular
and by (26), we can get F11 = T−1

1 .

Then, we can obtain A
#O

≤B.
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In [14], Rakić and Djordjević give some equivalent conditions for A and B to satisfy core partial order

provided A
−

≤B, most of which are related to Moore-Penrose inverse and group inverse. In the following
theorem, we give some equivalent conditions, which are characterized by core inverse and group inverse.

Theorem 3.6. Let A,B∈CGM

n , then the following statements are equivalent:

(1) A
#O

≤B;
(2) A∗A = A∗B and BA #O is Hermitian;
(3) A∗A = A∗B and B(A#)2 = (A #O)2B;
(4) A∗A = A∗B and B(A #O)2 = A #O;
(5) A∗A = A∗B and A #OB = AA#;
(6) A∗A = A∗B and A #OB = BA#;
(7) A #OB = AA# and BA #O is Hermitian;
(8) A #OB = AA# and B(A#)2 = (A #O)2B;
(9) A #OB = AA# and B(A #O)2 = A #O;
(10) A #OB = AA# = BA#;
(11) A∗B is Hermitian and B(A#)2 = (A #O)2B;
(12) A∗B is Hermitian and B(A #O)2 = A #O;
(13) A∗B is Hermitian and A #OB = AA#.

Proof. (1)⇒(2)-(13) If A
#O

≤B, then A,B have decomposition forms as in (11) and

A #O = U
[
T−1 0

0 0

]
U∗, A# = U

[
T−1 T−2S

0 0

]
U∗.

Then,

A∗A = A∗B = U
[
T∗T T∗S
S∗T S∗S

]
U∗,

BA #O = U
[
Ip 0
0 0

]
U∗,

B(A#)2 = (A #O)2B = U
[
T−1 T−2S

0 0

]
U∗,

B(A #O)2 = A #O = U
[
T−1 0

0 0

]
U∗,

BA# = AA# = A #OB = U
[
Ip T−1S
0 0

]
U∗.

Obviously, (2)-(13) are true.

Let A = U
[
T S
0 0

]
U∗ be the core-EP decomposition of A, where T∈Cp×p is nonsingular with p = rk(A)

and U is unitary. Then,

A #O = U
[
T−1 0

0 0

]
U∗, A# = U

[
T−1 T−2S

0 0

]
U∗.
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Partitioning B in conformation with partition of A, gives B = U
[
B11 B12
B21 B22

]
U∗. Then

A∗A = U
[
T∗T T∗S
S∗T S∗S

]
U∗, A∗B = U

[
T∗B11 T∗B12
S∗B11 S∗B12

]
U∗,

BA #O = U
[
B11T−1 0
B21T−1 0

]
U∗, A #OB = U

[
T−1B11 T−1B12

0 0

]
U∗,

AA# = U
[
Ip T−1S
0 0

]
U∗, BA# = U

[
B11T−1 B11T−1S
B21T−1 B21T−1S

]
U∗,

BA2 = U
[
B11T2 B11TS
B21T2 B21TS

]
U∗, ABA = U

[
TB11T + SB21T TB11S + SB21S

0 0

]
U∗,

(A #O)2B = U
[
T−2B11 T−2B12

0 0

]
U∗.

(2)⇒(1) From A∗A = A∗B and T is nonsingular, we can obtain

B11 = T, B12 = S. (27)

From BA #O is Hermitian and T is nonsingular, we can obtain

B21 = 0. (28)

Applying (27) and (28), we have

A = U
[
T S
0 0

]
U∗, B = U

[
T S
0 B22

]
U∗,

Then by Theorem 3.1, A
#O

≤B.
Similarly, under the above decomposition of A and B, as long as the conditions (27) and (28) are true,

then A
#O

≤B. It is easy to see that each of conditions (3)-(13) implies (27) and (28).

4. Some new characterizations of the strong core orthogonality

In this section, we give some new results on strong core orthogonality.
First, from (2) and Theorem 3.2, it is easy to check that

A⊥ #O(B − A)⇔ A
#O

≤B⇔A
−

≤B and B #O
− A #O

∈(B − A){1, 3}.

Considering the matrices A and B in Example 3.3, then

A #O(B − A) =
[
1 0
0 0

] [
0 0
0 1

]
= 0,

(B − A)A #O =

[
0 0
0 1

] [
1 0
0 0

]
= 0,

A(B − A) #O =

[
1 1
0 0

] [
0 0
0 1

]
=

[
0 1
0 0

]
,

which mean that A⊥ #O(B − A), but A⊥ #O,S(B − A) does not hold.
Next, we add some conditions to make it be equivalent to strong core orthogonality.
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Theorem 4.1. Let A,B∈CGM

n , then the following statements are equivalent:
(1) A⊥ #O,S(B − A);

(2) A
−

≤B, B #O
− A #O

∈(B − A){1, 3} and AB #O = B #OABB #O;
(3) A⊥ #O(B − A) and AB #O = B #OABB #O;

(4) A
#O

≤B and AB #O = B #OABB #O.

Proof. (1)⇒(2) It can be easily proved by decomposition forms of A,B in Lemma 2.6.

(2)⇒(1) Let B = U
[
T S
0 0

]
U∗ be the core-EP decomposition of B, where T∈Cp×p is nonsingular with

p = rk(B) and U is unitary. From Lemma 2.2, we have

A = U
[
A11 A11T−1S
0 0

]
U∗, B − A = U

[
T − A11 (T − A11)T−1S

0 0

]
U∗,

where A11 = A11T−1A11.

From A
−

≤B, B #O
− A #O

∈(B − A){1, 3} and Theorem 3.2, we can obtain

F11 = T−1
1 , F21 = 0 and T1F12 + S1F22 = 0. (29)

Because AB #O = B #OABB #O and

AB #O = U
[
A11 A11T−1S
0 0

] [
T−1 0

0 0

]
U∗ = U

[
A11T−1 0

0 0

]
U∗,

B #OABB #O = U
[
T−1 0

0 0

] [
A11 A11T−1S
0 0

] [
T S
0 0

] [
T−1 0

0 0

]
U∗ = U

[
T−1A11 0

0 0

]
U∗,

we get A11T−1 = T−1A11. Substitute (29) into it, and because T is nonsingular, we can obtain

A11T−1 = T−1A11 ⇒

[
T1 S1
0 0

] [
T−1

1 F12
0 F22

]
=

[
T−1

1 F12
0 F22

] [
T1 S1
0 0

]
⇒

[
It 0
0 0

]
=

[
It T−1

1 S1
0 0

]
⇒ S1 = 0.

Furthermore,

A11 = V
[
T1 0
0 0

]
V∗, T−1 = V

[
T−1

1 0
0 F22

]
V∗, T = V

[
T1 0
0 F−1

22

]
V∗.

Substitute the results into the following equations:

A #O(B − A) = U
[
A #O

11(T − A11) A #O

11(T − A11T−1S)
0 0

]
U∗,

(B − A)A #O = U
[
(T − A11)A #O

11 0
0 0

]
U∗,

A(B − A) #O = U
[
A11(T − A11) #O 0

0 0

]
U∗.

Then it is easy to check that A #O(B − A) = 0, (B − A)A #O = 0,A(B − A) #O = 0, i.e., A⊥ #O,S(B − A).
It is obvious that (2)⇔(3)⇔(4).
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Theorem 4.2. Let A,B∈CGM

n , then the following statements are equivalent:
(1) A⊥ #O,S(B − A);

(2) A
−

≤B, B #O
− A #O

∈(B − A){1, 3} and BA #O = A #OB2B #O;
(3) A⊥ #O(B − A) and BA #O = A #OB2B #O;

(4) A
#O

≤B and BA #O = A #OB2B #O.

Proof. (1)⇒(2) It can be easily proved by decomposition forms of A,B in Lemma 2.6.

(2)⇒(1) We continue to use decomposition forms of A,B,A11 and T−1 as in Theorem 4.1. From A
−

≤B,
B #O
− A #O

∈(B − A){1, 3} and Theorem 3.2, we can obtain

F11 = T−1
1 , F21 = 0 and T1F12 + S1F22 = 0. (30)

Because

BA #O = U
[
T S
0 0

] [
A #O

11 0
0 0

]
U∗ = U

[
TA #O

11 0
0 0

]
U∗,

A #OB2B #O = U
[
A #O

11 0
0 0

] [
T S
0 0

]2 [
T−1 0

0 0

]
U∗ = U

[
A #O

11T 0
0 0

]
U∗,

and BA #O = A #OB2B #O, we get TA #O

11 = A #O

11T. Because T and T1 is nonsingular and substitute result (30) into it,
we can obtain

TA #O

11 = A #O

11T ⇒ A #O

11T−1 = T−1A #O

11

⇒

[
T−1

1 0
0 0

] [
T−1

1 F12
0 F22

]
=

[
T−1

1 F12
0 F22

] [
T−1

1 0
0 0

]
⇒

[
T−2

1 T−1
1 F12

0 0

]
=

[
T−2

1 0
0 0

]
⇒ F12 = 0.

Because T is nonsingular, we can obtain F22 is nonsingular. By using (30), we have S1 = 0. It follows that

A11 = U
[
T1 0
0 0

]
U∗, T−1 = U

[
T−1

1 0
0 F22

]
U∗.

Therefore, A⊥ #O,S(B − A).
It is obvious that (2)⇔(3)⇔(4).

Remark 4.3. According to Theorem 4.1, Theorem 4.2 and the characterizations of core partial order (e.g. Theorem
3.6), one can derive a number of equivalent conditions of strong core orthogonality.
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