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Extended Jacobson’s lemma for the generalized inverse
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Abstract. In this paper, we present an extended Jacobson’s lemma for g-Drazin inverse in Banach algebras.
Let A be a Banach algebra, and let a, b, c,d € A satisfying

(ac)®a = acdba = dbaca = (db)*a;
(ac)*d = acdbd = dbacd = (db)*d.

Then 1 —ac € A? if and only if 1 — bd € A?. Related generalized Jacobson’s lemma for Drazin, core and
p-core inverses in a Banach algebra are thereby obtained.

1. Introduction

Let A be a Banach algebra with an identity. An element a € A has g-Drazin inverse (i.e., generalized
Drazin inverse) provided that there exists b € A such that

b = bab,ab = ba,a — a*b € A,

The preceding b is unique if exists, we denote it by a?. Here, A" = {a € A| 1+ Aa € A~! for every A € C}. If
we replace A7 in the above definition with the set of nilpotents A", then b is called the Drazin inverse of
a. For a complex matrix, the g-Drazin and Drazin inverses coincide with each other. The g-Drazin inverse
plays an important role in matrix and operator theory. Many authors have been studying this subject from
different views (see [1, 2, 16, 19] and [18]).

Jacobson’s lemma states that 1 —ab € A" if and only if 1 —ba € AL In [19, Theorem 2.3], Zhuang,
Chen and Cui gave a Jacobson’s lemma for generalized Drazin inverse. They proved that 1 —ab € A? if and
only if 1 — ba € AY. Recently, many generalized Jacobson’s lemmas are established by many authors. Let
a,b,c € R with (ac)’a = acaba = abaca = a(ba)®. The authors proved that 1 — ac € R if and only if 1 — ba € R?
(see [2, Theorem 2.2]). Leta,b,c,d € R with aca = dba,acd = dbd. Yan, Zeng Zhu proved that 1 —ac € R4 if
and only if 1 — bd € R (see [15, Theorem 3.3]). The motivation of this paper is to provide a new generalized

Jacobson’s lemma for generalized Drazin inverse in a Banach algebra. This makes the preceding known
results as our special cases.
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Let A be a Banach algebra, and let g, b, ¢, d € A satisfying

(ac)?a = acdba = dbaca = (db)a;
(ac)*d = acdbd = dbacd = (db)?d.

We prove that 1 — bd € A if and only if 1 — ac € A”. The generalized Jacobson’s lemmas for Drazin and
group inverses are also established.

An involution of a Banach algebra A is an anti-automorphism whose square is the identity map 1. A
Banach algebra A with involution # is called a Banach *-algebra, e.g., C*-algebra. Let A be a C*-algebra. An
element a € A has p-core inverse (i.e., pseudo core inverse) if there exist x € A and k € N such that

k+1 _ ak

xa ,ax> = x, (ax)" = ax.

If such x exists, it is unique, and denote it by 4°. We say that a € A has core inverse if there exists some
x € A such that

xa® =a,ax* = x, (ax)* = ax.
If such x exists, it is unique, and denote it by a®. An element a in a Banach *- algebra A has core inverse if
and only if there exist x € A such that

a = axa, xA = aA Ax = Aa".

Recently, many authors have studied core and p-core inverses from many different views, e.g., [4, 5, 10, 13].
An elementa € A has {1, 4}— inverse provided that there exists some x € A such that a = axa and (xa)* = xa.
Let A be a Banach *-algebra, and let a,b,c,d € A satisfy 1 — bd € A®. Finally, in the last section, we prove
that 1 — ac € A°® if and only if acd(1 — bd)"bacac € A4 under the preceding same conditions. Moreover,
related generalized Jacobson’s lemma for the core inverse in a Banach algebra is established.

Throughout the paper, all Banach *-algebras are complex with an identity. An element p € A is a
projection if p? = p = p*. AP, A°, A® and A" denote the sets of all Drazin, p-core invertible, core invertible
and nilpotent elements in A respectively. Let a € AP. We use a™ to stand for the spectral idempotent of a
corresponding to {0}, i.e., a™ = 1 — aaP.

2. generalized Jacobson’s lemma

In this section, we investigate new extension of Jacobson’s lemma for generalized Drazin inverse in a
Banach algebra. We begin with

Lemma 2.1. (see [2, Lemma 2.1]) Let A be a Banach algebra, let m € IN and let a € A. Then a has g-Drazin inverse
if and only if there exists b € A such that
ab = ba, [ab - (@b)?]" = 0,a - a?b € AT,

In this case,
m—1

a'=@+1-e)lee= Z( 2:.” )(ab)z*"-f(l — aby'.

i=0
We are ready to prove:
Theorem 2.2. Let A be a Banach algebra, and let a, b, c,d € A satisfying

(ac)’a = acdba = dbaca = (db)’a;
(ac)*d = acdbd = dbacd = (db)?d.

Then o =1 —bd € A ifand only if p = 1 — ac € A?. In this case,

pr=(B+1-e)ee=4yp) - 3(yp),
y= [1 —acda™(1 — aa™(1 + bd + bdbd))‘lbac](l + ac + acac) + acda’bac.
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Proof. = Letp = a™,x = a’. Then 1 — pa(1 + bd + bdbd) € A~". Let

y= [1 —acdp(1 — pa(1l + bd + bdbd))‘lbac](l + ac + acac) + acdxbac.

Step 1. [yﬁ - (‘1/[-3)2]2 = 0. We compute that

ypa = a — [acacac — acdxbac(1 — ac)la — acdp[1 — pa(1 + bd + bdbd)]bac[1 - (ac)’]a

= a — ac[dbac — dxbac(1 — ac)]a — acdp[1 — pa(1 + bd + bdbd)]*[bac — bac(ac)3]a
= a — ac[dbac — dx(bac — bacac)la — acdp[1 — pa(1 + bd + bdbd)] ™" (bac — bacacdbac)a
= a — ac[dbac — dx(bac — bacac)la — acdp[1 — pa(1 + bd + bdbd)] ™ (1 - bacacd)baca
= a — ac[dbac — dx(1 — bd)bacla — acdp[1 — pa(l + bd + bdbd)] 1 — (bd)*|baca
= a — acdpbac — acdp[1 — pa(1 + bd + bdbd)]_lpa(l + bd + bdbd)baca
= a — acdpla — pa(1 + bd + bdbd)] [ (1 - pa(1 + bd + bdbd)) + pa(1 + bd + bebd) |baca

=[1 - acdp[l — pa(1l + bd + bdbd)] ' baca.

Clearly, (bacacd)(bd) = b[(ac)*d]bd = b[(db)>d]bd = bdb[(db)*d] = bdb|(ac)*d] = (bd)(bacacd); hence,
(bacacd)a = a(bacacd). This implies that (bacacd)x = x(bacacd). We verify that

acdp[1 — pa(1 + bd + bdbd)]™ ' bac(acdxbac)
=acd[1 — pa(l + bd + bdbd)] ™ (px)bacacdbac = 0.
Write 1 — yB = az for some z € A. Therefore we have
yp(L — yp)
= (ypa)z
= [1 - acdp(1 - pa(1 + bd + bdbd))  bac](az)
= [1 - acdp(1 - pa(1 + bd + bdbd))_lbac](l — yp)
=1 - yB —acdp[1 — pa(l + bd + bdbd)] 'bac(1 - yp).
Let 6 = acdp[1 — pa(1 + bd + bdbd)]™. Then we check that

dbacacdp[1 — pa(1 + bd + bdbd)] ™ bac(1 + ac + acac)
= acdp[1 — pa(1 + bd + bdbd)] "' b(dbdbd)p[1 — pa(1 + bd + bdbd)] ™ bac(1 + ac + acac)
=acdp[l — pa(1 +bd + bdbd)]~2bdbdbdbac(1 + ac + acac).
Clearly, acdp = 6(1 — pa(1l + bd + bdbd)). We easily see that,
bacaca = b(ac)*a = b(dbaca) = bdbaca,

bacacaca = (bacaca)ca = (bdbaca)ca =
bd(bacaca) = bd(bdbaca) = (bd)*baca.

Then we have

acdp[1 — pa(1 + bd + bdbd)] ' bacyp(1 - yp)
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= Obacy(1 — ac)az
= 6bac[1 —acdp(1 — pa(1 + bd + bdbd))‘lbac](l + ac + acac)a(l — ca)z
= [6bac(1 +ac + acac) — dbacacdp(1 — pa(1 + bd + bdbd)) 'bac(1 + ac + acac)]a(l —ca)z
= [8(1 + bd + bdbd)bac — acdp(1 - pa(1 + bd + bdbd))>(bd)*(1 + bd + bdbd)bac]a(1 - ca)z
=[6-06(1 — pa(l + bd + bdbd))"' (bd)*](1 + bd + bdbd)bac]a(l —ca)z

= [6(1 - pa(1 + bd + bdbd)) ™ [p - pa(1 + bd + bdbd) - p(bd)°|(1 + bd + bdbd)bac]a(1 - ca)z = 0.

Hence,
yB(1— yP)yp = (1 —yB)yp —acdp[1 — pa(1 + bd + bdbd] " bac(1 — yB)yp = (1 - yP)yp, and so (1 - yp)*yp = 0.

2
Therefore [y,B - (yﬁ)Z] = [(1 - yB)*yP)lyp = 0.

Step 2. y € comm(f). Let s = ac. Then we have

Claim 1. B(acdxbac) = (acdxbac)p. Obviously, we have

p = (bd)*p[1 — pa(1 + bd + bdbd)] ™! = (bd)®p[1 — pa(1 + bd + bdbd)] 2.
(1) We prove that acdaxbacs = sacdaxbac.
sacdpbac = acacd(bd)6p[1 —pa(l +bd + bdbd)] *bac

= acd(bd)’p[1 — pa(1 + bd + bdbd)]*bac
= acdp[1 — pa(1 + bd + bdbd)]~>(bd)” bac
= acdp[l — pa(1l + bd + bdbd)]~2(bd)’b(dbdba)c
= acdp[l — pa(1l + bd + bdbd)]~%(bd)*b(dbaca)c
= acdp[l — pa(1l + bd + bdbd)]~%(bd)®bacac
= acdpbacs,

as claimed.
Moreover, we have
acdbdaxbacs = ac(acdaxbac)s

= acs(acdaxbac)
= s(acacd)axbac
= sacdbdaxbac.

Therefore
acd(1 + bd)axbacs = sacd(1 + bd)axbac.

That is,
acdxbacs — acd(bd)*xbacs = sacdxbac — sacd(bd)*xbac.

(2) We compute that

acd(bd)?xbacs acdbdbdxbacac
acdxbdb(dbaca)c
acdxbdb(dbdba)c
acdbdbdbdxbac

sacd(bd)?xbac.

Hence s(acdxbac) = (acdxbac)s, and so B(acdxbac) = (acdxbac)p.
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Claim 2.
s[l —acdp(1 —pa(l + bd + bdbd)_lbac](l + ac + acac)

= [1 —acdp(l — pa(l + bd + bdbd)_lbac](l + ac + acac)s.
Set t = acdp(1 — pa(1 + bd + bdbd) " bac(1 + ac + acac). Then we compute that

acacdp[1 — pa(1 + bd + bdbd)] 'bac(1 + ac + acac)
acacd(bd)®p[1 — pa(1 + bd + bdbd)]3bac(1 + ac + acac)
acdp[1 — pa(1 + bd + bdbd)] 3 (bd)” bac(1 + ac + acac)

st

Also we have

ts acdp[1 — pa(1 + bd + bdbd)] 'bac(1 + ac + acac)ac
acdp[1 — pa(1 + bd + bdbd)]=3(bd)®bacac(1 + ac + acac)
acdp[1 — pa(1 + bd + bdbd)]=3(bd)*b(dbaca)c(1 + ac + acac)

acdp[1 — pa(1 + bd + bdbd)]3(bd)*b(dbdba)c(1 + ac + acac).

Then st = ts; hence, t = {f. Accordingly, y € comm(p).
Step 3. B — Byp € AM!. As is well known, A™M! = {r € A |1+ zr € AL if zr = rz}. Then we have

bacacdbdbdbdbdbdbdpall — pa(1 + bd + bdbd)] ™3
= (bd)’[1 - pa(1 + bd + bdbd)]3(a — aa?)
e A,

By hypothesis, we see that dabdbdbdbd € aA. By virtue of [9, Lemma 3.1], we get
(1 - yp)dabdbdbdbdp(1 — pa(1 + bd + bdbd)) >bac
= acdp[l — pa(1 + bd + bdbd)]*lbacdabdbdbdbdp(l —pa(l + bd + bdbd))~2bac
= acdp[1 — pa(1 + bd + bdbd)]' bdbdabdbdbdbdp(1 — pa(1 + bd + bdbd)) *bac
= acdbdbdbdbdbdbdpal1 — pa(l + bd + bdbd)] >bac € A,

Since 1 — yB € aA, by using [9, Lemma 3.1], we have
beta(1 — yp)°

= ﬁ[acdp(l —pa(l +bd + bdbd))_lbac][acdp(l —pa(l +bd + bdbd))_lbac](l - yp)
= Blacdp(1 - pa(1 + bd + bbd))  (bdbdbdp)[(1 - pa(1 + bd + bdbd))  bacl(1 - yp)

= pacdbdbdbdp(1 - pa(1 + bd + bdbd))_zbac(l —yp)
= (1 — ac)a(cdbdbdbd)p(1 — pa(1 + bd + bdbd)) *bac(1 — ypB)
= (acdbdbdbd — acacdbdbdbd)p(1 — pa(1 + bd + bdbd)) *bac(1 — yp)
= (dbdbdbdbd — dbdbdbdbdbd)p(1 — pa(1 + bd + bdbd)) >bac(1 - yp)
= dabdbdbdbdp(1 — pa(1 + bd + bdbd))bac(1 - yp) € A™!.

Then B(1 — yp)> € A™, and so (B — f2y)® = B(1 — yp)>p? € A™!. Hence  — p*y € A™M!. Therefore we are
through by Lemma 2.1.

& Since 1 —ac € A", it follows by Jacobson’s Lemma that 1 — ca € A?. Applying the preceding
discussion, we obtain that 1 — bd € A%, as desired. O
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Corollary 2.3. Let A be a Banach algebra, and let a, b, c € A satisfying satisfying

(ac)’a = acaba = abaca = a(ba)>.
Then o =1 —ba € A% ifand only if = 1 — ac € A% In this case,

Bl =B+1-e)"ee=4yp)° - 3(yp)",
y= [1 —acaa™(1 — aa™(1 + ba + baba))‘lbac](l + ac + acac) + acaa™bac.

Proof. By hypothesis, we check that

(ac)’*a = acaba = abaca = (ab)?a;

(ac)’a = acaba = abaca = (ab)?a.
This completes the proof by Theorem 2.2. [
Theorem 2.4. Let A be a Banach algebra, let A € C, and let a, b, c,d € A satisfying

(ac)’a = acdba = dbaca = (db)’a;
(ac)®d = acdbd = dbacd = (db)*d.

Then A — bd € A% if and only if A — ac € A% In this case, (ac)’ = a[(bd)*)?c. If A # 0, then

(A—ac)® = (B+A—-Ae)le,
e = 4A7(yp)’ - 317 (yp)",
y = /\‘2[1 —acda™(A® — aa™ (A2 + Abd + bdbd))‘lbac]
(A% + Aac + acac) + A %acda‘bac.
Proof. Case 1. A = 0. By virtue of [3, Theorem 2.2], we prove that bd € A if and only if ac € A"

Additionally, we have (ac)? = a[(bd)]*c.
Case2. A #0. Seta’ = A~'aand b’ = A~'b. Then

(@c)a’ =a’cdb’a’ =db'a’ca’ = (db')a’;
(@'c)’d =a’cdb’d = db’a’cd = (db’)?d.
In view of Theorem 2.2, 1 — b’d € A? if and only if 1 — a’c € A?. Obviously, we have

A=bd = A[l—A-lb)d],
A —ac A1 = (A ta)c).

Therefore A — bd € A? if and only if A — ac € A”.
Further, we prove that

A=-ac) = A1 -ac)
= AT 1= e e = (yp) + 4B (1 - yp),
y = [1-acd@)(1-a'@)(+bd+drd) ' vac|

(A+dc+acac)+a'cd)bac,
wherea’ =1-b'dand p’' =1—-a'c.
Seta =A—bdand f = A —ac. Then @ = A'aand p’ = A7'B. Then we compute that
(A—ac)® = (B+A-Ae)le,
e = 4ypy -3(yp)
= 4A7°(yp)* - 3A7H(yp)*,
y = [1 —d'cda™(1—a’a™(1 +b'd + b’db’d))‘lb’a’c]
(1+a’c+aca’c)+acdl)ba’c
= A1 -acda™(A® - aa™(A% + Abd + bdbd))~'bac|
(A% + Aac + acac) + A %acda‘bac.

This completes the proof. [
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The g-Drazin spectrum is defined by
040) ={AeC|A-ag¢AY.
Corollary 2.5. Let A,B,C,D € A such that

(AC)?A = ACDBA = DBACA = (DB)2A;
(AC)*D = ACDBD = DBACD = (DB)?D.

then O'd(BD) = O'd(AC)

Proof. This corollary is a direct sequence of Theorem 2.4. [J

3. extended Jacobson’s lemma for Drazin inverse

The aim of this section is to investigate the generalzied Jacobson’s lemma for Drazin inverse. We now
derive

Theorem 3.1. Let A be a Banach algebra, and let a, b, c,d € A satisfying

(ac)?a = acdba = dbaca = (db)a;
(ac)*d = acdbd = dbacd = (db)?d.

Then o =1 —bd € AP if and only if p = 1 — ac € AP. In this case,

ﬁD = [1 — acda™rbacac][1 + ac + (ac)* + (ac)*] + acdaPbacac,
n—-1 .
wherer = Y [1 — (bd)*) and n = i(a).
=0

Proof. => Lety =1+ ac + (ac)* + (ac)® + acdaPbacac. Then we check that
yB = 1 — acacacac + acdaPbacac(1 — ac)

=1 — (acdbac)ac + acdaP (1 — bd)bacac
=1 —acd(1 — aaP)bacac
=1 —acda™bacac,

By = 1 — acacacac + (1 — ac)acda®bacac
=1 — acdbacac + acda® (1 — bd)bacac
=1 —acd(1 — aaP)bacac
=1 —acda™bacac,

Therefore yf = By. Moreover, 1 — yf = acda™bacac.

Hence, (1 — yp)B = acda™bacac(l — ac) = acda™abacac. Set n = i(@). Then a™a" = a" — aPa™! = 0. By
induction, we have (1 — yB)p" = acda™a"bacac = 0; hence, " = f"*1y. This implies that 8 has Drazin inverse.
Moreover, P = "y"*1. We check that

[1 — acda™bacaclacdaPbacac = acdaPbacac.

Thus, [1 — acda™bacac]"acdaPbacac = acdaPbacac. Accordingly, we compute that

pP By"y

[1 = acda™bacac]™[1 + ac + (ac)? + (ac)?]

[1 — acda™bacac]*acdaPbacac

[1 = acda™bacac]™[1 + ac + (ac)? + (ac)®] + acdaPbacac.

=+ 1
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We compute that
[1 — acda™bacac]?

=1 —acda™bacac — acda™bacac + acda™b(acaca)cda™bacac
=1 —acda™bacac — acda™bacac + acda™bdb(dbacd)bacac
=1 —acda™bacac — acda™bacac + acda™ bdb(dbdbd)bacac
=1 —acda™[1 + (1 — (bd)*)]bacac,
[1 — acda™bacac]®
=[1 - acda™[1 + (1 — (bd)*)]bacac][1 — acda™bacac]
=1—acda™1 + (1 — (bd)*)]bacac
—acda™[1 - [1 + (1 — (bd)*)bacacacda™ |bacac
=1—acda™[1 + (1 — (bd)*)|bacac
—acda™[1 - [1 + (1 — (bd)*)](bd)*a™ |bacac
=1 —acda™[1 + (1 — (bd)*)|bacac
—acda™[1 — (bd)* — (1 — (bd)*)(bd)*|bacac
=1—acda™[1 + (1 - (bd)*) + (1 — (bd)*)*]bacac.
By induction, we have

[1 —acda™bacac]® = 1 — acda™ rbacac,

n-1 .
where r = Y [1 — (bd)*]. Therefore we get
j=0

B° = (By"y

= [1-acda™rbacac][1 + ac + (ac)* + (ac)®] + acdaPbacac,

as desired.
&= This is symmetric. [J

As a consequence of Theorem 3.1, we have
Corollary 3.2. Let A be a Banach algebra, and let a,b, c,d € A satisfying

(ac)’a = acdba = dbaca = (db)?a;
(ac)’d = acdbd = dbacd = (db)*d.

Then a =1—bd € A* ifand only if B = 1 — ac € A*. In this case,
ﬁ# = [1 — acda™bacac][1 + ac + (ac)* + (ac)®] + acda*bacac.
Proof. Suppose that « = 1 —bd € A*. Then a € AP. In view of Theorem 3.1, ¥ = [1 — acda™bacac][1 +

ac + (ac)? + (ac)®] + acda*bacac. Then P = BPB and BP = BPRBP. Set y = 1 + ac + (ac)* + (ac)® + acda*bacac.
Moreover, we have P = fy? and g = ?y. Then

BB = B (BY*) = (B*y)(By) = By = B.

Therefore g* = pP, as desired.
The proof of the opposite implication is similar to the above. [

Example 3.3.
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010 0 0O
a:(O 0 1],192(0 1 0],
0 0O 0 0O
0 0 1 00
1 0],01:[—1 0 O]Eﬂ.

01 0 0 O

(ac)?a = acdba = dbaca = (db)a;
(ac)’d = acdbd = dbacd = (db)*d.

Let A = C33. Choose

Then we check that

But (ac)?a # a(ba)* and aca # dba.

4. generalized Jacobson’s lemma in Banach *-algebras

The purpose of this section is to establish generalized Jacobson’s lemma for core and p-core inverses in
a Banach *-algebra. For future use, we now record the following.

Lemma 4.1. (see [13, Theorem 3.3]) Let A be a C*-algebra, and let o € A. Then a € AP if and only if

(1) aeAP;
() a™ € A4,

In this case,
a® = aP[1 - (™) am).
We have accumulated all the information necessary to prove the following.

Theorem 4.2. Let A be a C*-algebra, and let a, b, c,d € A satisfying

(ac)’a = acdba = dbaca = (db)’a;
(ac)*d = acdbd = dbacd = (db)?d.

Ifa =1-bd € A°, then the following are equivalent:

(1) p=1—-ace A"
(2) acda™bacac € A4,

In this case,
B = [1-—acda™rbacac][l + ac + (ac)® + (ac)® + acdaPbacac]
[1 = (acda™bacac)"Hacda™bacac],

n-1
where v = Y [1 — (bd)*]/ and n = i(«).
j=0

Proof. Since a =1 —bd € AP, we have a € AP. In view of Theorem 3.1, § € AP and

ﬁD = [1 — acda™rbacac][1 + ac + (ac)* + (ac)*] + acdaPbacac,

n—-1 .
where r = Y [1 — (bd)*]/. Then

j=0
BT o= 1-pp°
— 1_ﬁ(ﬁn]/n+1)
— 1_(‘By)n+1
= 1-py

acda™bacac.
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According to Lemma 4.1, f € AP if and only if acda™bacac € A4, We compute that

BP = [1-acda™rbacac][1 + ac + (ac)* + (ac)®] + acdaPbacac
= [1=acda™rbacac][1 + ac + (ac)? + (ac)® + acdaPbacac].

In this case, we have

ﬁD[l _ (ﬁ?‘l){l,‘l}ﬁ?‘[]

BP[1 - (acda™bacac)**acda™bacac]

= [1 =acda™rbacac][1 + ac + (ac)? + (ac)® + acdaPbacac]
[1 = (acda™bacac)" acda™bacac].

ﬁ@

This completes the proof. O
As consequences of Theorem 4.2, we derive
Corollary 4.3. Let A be a C*-algebra, and let a, b, c € A satisfying
(ac)*a = acaba = abaca = a(ba)>.
Then o =1 — ba € A® if and only if

(1) B=1-aceA®%
(2) acaa™bacac € ANA,

In this case,

p° = [1-—acaa™rbacac][1 + ac + (ac)* + (ac)® + acaaPbacac]
[1 = (acaa™bacac)*acaa™bacac].

n—-1
where ¥ = Y [1 — (ba)*) and 1 = i(«a).
j=0

Corollary 4.4. Let A be a C*-algebra, and let a, b, c € A satisfying
aca = dba,acd = dbd.
Then o = 1 — bd € A® if and only if

(1) p=1-ace A°
(2) acda™bacac € AL,

In this case,
p° = [1—acda™rbacac][1 + ac + (ac)* + (ac)® + acdaPbacac]
[1 = (acda™bacac)" ¥ acda™bacac].

For the core invertibility, we are ready to prove:
Theorem 4.5. Let A be a C*-algebra, and let a, b, c,d € A satisfying

(ac)’a = acdba = dbaca = (db)’a;
(ac)®d = acdbd = dbacd = (db)*d.

Ifa =1-bd € A®, then the following are equivalent:

(1) p=1-ace A%
(2) acda™bacac € AL,

4646
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In this case,
e = [1+ac+ (ac)® + (ac)® + acdaPbacac]
[1 = (acda™bacac)"Hacda™bacac].

Proof. Since a = 1 —bd € A%, it follows by [4, Theorem 2.5] that « € A®. In view of Theorem 4.2,
B =1-ac € A°. Moreover, we have

p° = [1—acda™bacac][1 + ac + (ac)* + (ac)® + acdaPbacac]
[1 = (acda™bacac)"Hacda™bacac].

In view of Corollary 3.2, 8 € A* and so g € A°®.
We easily check that

acda™bacac(ac) = acda™bdbdbac
acda™b(dbdba)c
acda™b(dbaca)c
(ac)acda™bacac,
acda™b(acaca)cdaPbacac
acda™b(dbdba)cdaPbacac
acda™bdbdbdbdaPbacac
0.

acda™bacac(acdaPbacac)

Likewise, we have

acdaPbdbdbacda™bacac
acdaPbdbdbdbda™bacac
= 0.

(acdaPbacac)acda™bacac

Thus,
[1 - acda™bacac][1 + ac + (ac)? + (ac)® + acdaPbacac)
= [1+ac+ (ac)* + (ac)® + acdaPbacac][1 — acda™bacac].
Accordingly,
pB® = B°
= [1+ac+ (ac)® + (ac)® + acdaPbacac)
[1 — acda™bacac][1 — (acda™bacac) " acda™bacac]
= [1+ac+ (ac)® + (ac)® + acdaPbacac)
[1 — (acda™bacac) "M acda™bacac].

This completes the proof. O
Corollary 4.6. Let A be a C*-algebra, and let a, b, c € A satisfying

(ac)*a = acaba = abaca = a(ba)>.
Then o =1 —ab € A® if and only if

(1) p=1-ace A%
(2) acda™bacac € AV,

In this case,
B® = [1+ac+ (ac)® + (ac)® + acdaPbacac]
[1 — (acda™bacac) " acda™bacac).

Corollary 4.7. Let A be a C*-algebra, and let a, b, c € A satisfying
aca = dba,acd = dbd.
Then a =1 — ba € A® if and only if
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(1) p=1-ace A%
(2) acda™bacac € A4,

In this case,
B® = [1+ac+ (ac)® + (ac)® + acdaPbacac]
[1 — (acda™bacac) "M acda™bacac).
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