

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Extended Jacobson's lemma for the generalized inverse

F. Tayebi Semnania, N. Ashrafia, R. Bahmania, M. Sheibani Abdolyousefib,

^aDepartment of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran ^bFarzanegan Campus, Semnan University, Semnan, Iran

Abstract. In this paper, we present an extended Jacobson's lemma for g-Drazin inverse in Banach algebras. Let \mathcal{A} be a Banach algebra, and let $a, b, c, d \in \mathcal{A}$ satisfying

$$(ac)^2a = acdba = dbaca = (db)^2a;$$

 $(ac)^2d = acdbd = dbacd = (db)^2d.$

Then $1 - ac \in \mathcal{A}^d$ if and only if $1 - bd \in \mathcal{A}^d$. Related generalized Jacobson's lemma for Drazin, core and p-core inverses in a Banach algebra are thereby obtained.

1. Introduction

Let \mathcal{A} be a Banach algebra with an identity. An element $a \in \mathcal{A}$ has g-Drazin inverse (i.e., generalized Drazin inverse) provided that there exists $b \in \mathcal{A}$ such that

$$b = bab, ab = ba, a - a^2b \in \mathcal{A}^{qnil}.$$

The preceding b is unique if exists, we denote it by a^d . Here, $\mathcal{A}^{qnil} = \{a \in \mathcal{A} \mid 1 + \lambda a \in \mathcal{A}^{-1} \text{ for every } \lambda \in \mathbb{C}\}$. If we replace \mathcal{A}^{qnil} in the above definition with the set of nilpotents \mathcal{A}^{nil} , then b is called the Drazin inverse of a. For a complex matrix, the g-Drazin and Drazin inverses coincide with each other. The g-Drazin inverse plays an important role in matrix and operator theory. Many authors have been studying this subject from different views (see [1, 2, 16, 19] and [18]).

Jacobson's lemma states that $1 - ab \in \mathcal{A}^{-1}$ if and only if $1 - ba \in \mathcal{A}^{-1}$. In [19, Theorem 2.3], Zhuang, Chen and Cui gave a Jacobson's lemma for generalized Drazin inverse. They proved that $1 - ab \in \mathcal{A}^d$ if and only if $1 - ba \in \mathcal{A}^d$. Recently, many generalized Jacobson's lemmas are established by many authors. Let $a, b, c \in R$ with $(ac)^2a = acaba = abaca = a(ba)^2$. The authors proved that $1 - ac \in R^d$ if and only if $1 - ba \in R^d$ (see [2, Theorem 2.2]). Let $a, b, c, d \in R$ with aca = dba, acd = dbd. Yan, Zeng Zhu proved that $1 - ac \in R^d$ if and only if $1 - bd \in R^d$ (see [15, Theorem 3.3]). The motivation of this paper is to provide a new generalized Jacobson's lemma for generalized Drazin inverse in a Banach algebra. This makes the preceding known results as our special cases.

²⁰²⁰ Mathematics Subject Classification. 15A09; Secondary 47A11

Keywords. Generalized Jacobson lemma; Generalized Drazin inverse; Drazin inverse; pseudo core inverse; core inverse; Banach algebra.

Received: 15 December 2022; Revised: 21 November 2023; Accepted: 18 December 2023

Communicated by Dijana Mosić

^{*} Corresponding author: M. Sheibani Abdolyousefi

Email addresses: ftayebis@semnan.ac.ir (F. Tayebi Semnani), nashrafi@semnan.ac.ir (N. Ashrafi), rbahmani@semnan.ac.ir (R. Bahmani), m.sheibani@semnan.ac.ir (M. Sheibani Abdolyousefi)

Let \mathcal{A} be a Banach algebra, and let $a, b, c, d \in \mathcal{A}$ satisfying

$$(ac)^2 a = acdba = dbaca = (db)^2 a;$$

 $(ac)^2 d = acdbd = dbacd = (db)^2 d.$

We prove that $1 - bd \in \mathcal{A}^d$ if and only if $1 - ac \in \mathcal{A}^d$. The generalized Jacobson's lemmas for Drazin and group inverses are also established.

An involution of a Banach algebra \mathcal{A} is an anti-automorphism whose square is the identity map 1. A Banach algebra \mathcal{A} with involution * is called a Banach *-algebra, e.g., C^* -algebra. Let \mathcal{A} be a C^* -algebra. An element $a \in \mathcal{A}$ has p-core inverse (i.e., pseudo core inverse) if there exist $x \in \mathcal{A}$ and $k \in \mathbb{N}$ such that

$$xa^{k+1} = a^k, ax^2 = x, (ax)^* = ax.$$

If such x exists, it is unique, and denote it by $a^{\mathbb{D}}$. We say that $a \in \mathcal{A}$ has core inverse if there exists some $x \in \mathcal{A}$ such that

$$xa^2 = a, ax^2 = x, (ax)^* = ax.$$

If such x exists, it is unique, and denote it by a^{\oplus} . An element a in a Banach *- algebra \mathcal{A} has core inverse if and only if there exist $x \in \mathcal{A}$ such that

$$a = axa, x\mathcal{A} = a\mathcal{A}, \mathcal{A}x = \mathcal{A}a^*.$$

Recently, many authors have studied core and p-core inverses from many different views, e.g., [4, 5, 10, 13]. An element $a \in \mathcal{A}$ has $\{1,4\}$ — inverse provided that there exists some $x \in \mathcal{A}$ such that a = axa and $(xa)^* = xa$. Let \mathcal{A} be a Banach *-algebra, and let $a,b,c,d \in \mathcal{A}$ satisfy $1-bd \in \mathcal{A}^{\mathbb{D}}$. Finally, in the last section, we prove that $1-ac \in \mathcal{A}^{\mathbb{D}}$ if and only if $acd(1-bd)^{\pi}bacac \in \mathcal{A}^{\{1,4\}}$ under the preceding same conditions. Moreover, related generalized Jacobson's lemma for the core inverse in a Banach algebra is established.

Throughout the paper, all Banach *-algebras are complex with an identity. An element $p \in \mathcal{A}$ is a projection if $p^2 = p = p^*$. \mathcal{A}^D , \mathcal{A}^D , \mathcal{A}^D and \mathcal{A}^{nil} denote the sets of all Drazin, p-core invertible, core invertible and nilpotent elements in \mathcal{A} respectively. Let $a \in \mathcal{A}^D$. We use a^{π} to stand for the spectral idempotent of a corresponding to $\{0\}$, i.e., $a^{\pi} = 1 - aa^D$.

2. generalized Jacobson's lemma

In this section, we investigate new extension of Jacobson's lemma for generalized Drazin inverse in a Banach algebra. We begin with

Lemma 2.1. (see [2, Lemma 2.1]) Let \mathcal{A} be a Banach algebra, let $m \in \mathbb{N}$ and let $a \in \mathcal{A}$. Then a has g-Drazin inverse if and only if there exists $b \in \mathcal{A}$ such that

$$ab = ba, \left[ab - (ab)^2\right]^m = 0, a - a^2b \in \mathcal{A}^{qnil}.$$

In this case,

$$a^{d} = (a+1-e)^{-1}e, e = \sum_{i=0}^{m-1} {2m \choose i} (ab)^{2m-i} (1-ab)^{i}.$$

We are ready to prove:

Theorem 2.2. Let \mathcal{A} be a Banach algebra, and let $a, b, c, d \in \mathcal{A}$ satisfying

$$(ac)^2 a = acdba = dbaca = (db)^2 a;$$

 $(ac)^2 d = acdbd = dbacd = (db)^2 d.$

Then $\alpha = 1 - bd \in \mathcal{A}^d$ if and only if $\beta = 1 - ac \in \mathcal{A}^d$. In this case,

$$\beta^d = (\beta + 1 - e)^{-1}e, e = 4(y\beta)^3 - 3(y\beta)^4,$$

$$y = \left[1 - acd\alpha^{\pi}(1 - \alpha\alpha^{\pi}(1 + bd + bdbd))^{-1}bac\right](1 + ac + acac) + acd\alpha^dbac.$$

Proof.
$$\Longrightarrow$$
 Let $p = \alpha^{\pi}$, $x = \alpha^{d}$. Then $1 - p\alpha(1 + bd + bdbd) \in \mathcal{A}^{-1}$. Let
$$y = \left[1 - acdp(1 - p\alpha(1 + bd + bdbd))^{-1}bac\right](1 + ac + acac) + acdxbac.$$

Step 1.
$$[y\beta - (y\beta)^2]^2 = 0$$
. We compute that

$$y\beta a = a - [acacac - acdxbac(1 - ac)]a - acdp[1 - p\alpha(1 + bd + bdbd)]^{-1}bac[1 - (ac)^{3}]a$$

$$= a - ac[dbac - dxbac(1 - ac)]a - acdp[1 - p\alpha(1 + bd + bdbd)]^{-1}[bac - bac(ac)^{3}]a$$

$$= a - ac[dbac - dx(bac - bacac)]a - acdp[1 - p\alpha(1 + bd + bdbd)]^{-1}(bac - bacacdbac)a$$

$$= a - ac[dbac - dx(bac - bacac)]a - acdp[1 - p\alpha(1 + bd + bdbd)]^{-1}(1 - bacacd)baca$$

$$= a - ac[dbac - dx(1 - bd)bac]a - acdp[1 - p\alpha(1 + bd + bdbd)]^{-1}[1 - (bd)^{3}]baca$$

$$= a - acdpbac - acdp[1 - p\alpha(1 + bd + bdbd)]^{-1}p\alpha(1 + bd + bdbd)baca$$

$$= a - acdp[a - p\alpha(1 + bd + bdbd)]^{-1}[(1 - p\alpha(1 + bd + bdbd)) + p\alpha(1 + bd + bdbd)]baca$$

$$= [1 - acdp[1 - p\alpha(1 + bd + bdbd)]^{-1}bac]a.$$

Clearly, $(bacacd)(bd) = b[(ac)^2d]bd = b[(db)^2d]bd = bdb[(db)^2d] = bdb[(ac)^2d] = (bd)(bacacd)$; hence, $(bacacd)\alpha = \alpha(bacacd)$. This implies that (bacacd)x = x(bacacd). We verify that

$$acdp[1 - p\alpha(1 + bd + bdbd)]^{-1}bac(acdxbac)$$
$$= acd[1 - p\alpha(1 + bd + bdbd)]^{-1}(px)bacacdbac = 0.$$

Write $1 - y\beta = az$ for some $z \in \mathcal{A}$. Therefore we have

$$y\beta(1 - y\beta)$$

$$= (y\beta a)z$$

$$= [1 - acdp(1 - p\alpha(1 + bd + bdbd))^{-1}bac](az)$$

$$= [1 - acdp(1 - p\alpha(1 + bd + bdbd))^{-1}bac](1 - y\beta)$$

$$= 1 - y\beta - acdp[1 - p\alpha(1 + bd + bdbd)]^{-1}bac(1 - y\beta).$$

Let $\delta = acdp[1 - p\alpha(1 + bd + bdbd)]^{-1}$. Then we check that

$$\delta bacacdp[1 - p\alpha(1 + bd + bdbd)]^{-1}bac(1 + ac + acac)$$

$$= acdp[1 - p\alpha(1 + bd + bdbd)]^{-1}b(dbdbd)p[1 - p\alpha(1 + bd + bdbd)]^{-1}bac(1 + ac + acac)$$

$$= acdp[1 - p\alpha(1 + bd + bdbd)]^{-2}bdbdbdbac(1 + ac + acac).$$

Clearly, $acdp = \delta(1 - p\alpha(1 + bd + bdbd))$. We easily see that,

$$bacaca = b(ac)^2 a = b(dbaca) = bdbaca,$$

 $bacacaca = (bacaca)ca = (bdbaca)ca =$
 $bd(bacaca) = bd(bdbaca) = (bd)^2baca.$

Then we have

$$acdp[1 - p\alpha(1 + bd + bdbd)]^{-1}bacy\beta(1 - y\beta)$$

$$= \delta bacy(1 - ac)az$$

$$= \delta bac \Big[1 - acdp(1 - p\alpha(1 + bd + bdbd))^{-1}bac \Big] (1 + ac + acac)a(1 - ca)z$$

$$= \Big[\delta bac(1 + ac + acac) - \delta bacacdp(1 - p\alpha(1 + bd + bdbd))^{-1}bac(1 + ac + acac) \Big] a(1 - ca)z$$

$$= \Big[\delta (1 + bd + bdbd)bac - acdp(1 - p\alpha(1 + bd + bdbd))^{-2}(bd)^{3}(1 + bd + bdbd)bac \Big] a(1 - ca)z$$

$$= \Big[\delta (1 - p\alpha(1 + bd + bdbd))^{-1}(bd)^{3} \Big] (1 + bd + bdbd)bac \Big] a(1 - ca)z$$

$$= \Big[\delta (1 - p\alpha(1 + bd + bdbd))^{-1} \Big[p - p\alpha(1 + bd + bdbd) - p(bd)^{3} \Big] (1 + bd + bdbd)bac \Big] a(1 - ca)z = 0.$$

Hence

$$y\beta(1-y\beta)y\beta = (1-y\beta)y\beta - acdp[1-p\alpha(1+bd+bdbd]^{-1}bac(1-y\beta)y\beta = (1-y\beta)y\beta, \text{ and so } (1-y\beta)^2y\beta = 0.$$
 Therefore $\left[y\beta - (y\beta)^2\right]^2 = \left[(1-y\beta)^2y\beta\right]y\beta = 0.$

Step 2. $y \in comm(\beta)$. Let s = ac. Then we have

Claim 1. $\beta(acdxbac) = (acdxbac)\beta$. Obviously, we have

$$p = (bd)^3 p[1 - p\alpha(1 + bd + bdbd)]^{-1} = (bd)^6 p[1 - p\alpha(1 + bd + bdbd)]^{-2}.$$

(1) We prove that $acd\alpha xbacs = sacd\alpha xbac$.

$$sacdpbac = acacd(bd)^{6}p[1 - p\alpha(1 + bd + bdbd)]^{-2}bac$$

$$= acd(bd)^{7}p[1 - p\alpha(1 + bd + bdbd)]^{-2}bac$$

$$= acdp[1 - p\alpha(1 + bd + bdbd)]^{-2}(bd)^{7}bac$$

$$= acdp[1 - p\alpha(1 + bd + bdbd)]^{-2}(bd)^{5}b(dbdba)c$$

$$= acdp[1 - p\alpha(1 + bd + bdbd)]^{-2}(bd)^{5}b(dbaca)c$$

$$= acdp[1 - p\alpha(1 + bd + bdbd)]^{-2}(bd)^{6}bacac$$

$$= acdpbacs,$$

as claimed.

Moreover, we have

$$acdbd\alpha xbacs = ac(acd\alpha xbac)s$$

= $acs(acd\alpha xbac)$
= $s(acacd)\alpha xbac$
= $sacdbd\alpha xbac$.

Therefore

$$acd(1 + bd)\alpha xbacs = sacd(1 + bd)\alpha xbac.$$

That is,

$$acdxbacs - acd(bd)^2xbacs = sacdxbac - sacd(bd)^2xbac.$$

(2) We compute that

$$acd(bd)^2xbacs = acdbdbdxbacac$$

 $= acdxbdb(dbaca)c$
 $= acdxbdb(dbdba)c$
 $= acdbdbdbdxbac$
 $= sacd(bd)^2xbac$.

Hence s(acdxbac) = (acdxbac)s, and so $\beta(acdxbac) = (acdxbac)\beta$.

Claim 2.

$$s\left[1 - acdp(1 - p\alpha(1 + bd + bdbd)^{-1}bac\right](1 + ac + acac)$$
$$= \left[1 - acdp(1 - p\alpha(1 + bd + bdbd)^{-1}bac\right](1 + ac + acac)s.$$

Set $t = acdp(1 - p\alpha(1 + bd + bdbd)^{-1}bac(1 + ac + acac)$. Then we compute that

$$st = acacdp[1 - p\alpha(1 + bd + bdbd)]^{-1}bac(1 + ac + acac)$$

= $acacd(bd)^{6}p[1 - p\alpha(1 + bd + bdbd)]^{-3}bac(1 + ac + acac)$
= $acdp[1 - p\alpha(1 + bd + bdbd)]^{-3}(bd)^{7}bac(1 + ac + acac)$

Also we have

$$\begin{array}{lll} ts & = & acdp[1-p\alpha(1+bd+bdbd)]^{-1}bac(1+ac+acac)ac\\ & = & acdp[1-p\alpha(1+bd+bdbd)]^{-3}(bd)^{6}bacac(1+ac+acac)\\ & = & acdp[1-p\alpha(1+bd+bdbd)]^{-3}(bd)^{5}b(dbaca)c(1+ac+acac)\\ & = & acdp[1-p\alpha(1+bd+bdbd)]^{-3}(bd)^{5}b(dbdba)c(1+ac+acac). \end{array}$$

Then st = ts; hence, $\beta t = t\beta$. Accordingly, $y \in comm(\beta)$.

Step 3. $\beta - \beta y\beta \in \mathcal{A}^{qnil}$. As is well known, $\mathcal{A}^{qnil} = \{r \in \mathcal{A} \mid 1 + zr \in \mathcal{A}^{-1} \text{ if } zr = rz\}$. Then we have

$$\begin{array}{ll} bacacdbdbdbdbdbdbdbdbdp\alpha[1-p\alpha(1+bd+bdbd)]^{-3}\\ = & (bd)^9[1-p\alpha(1+bd+bdbd)]^{-3}(\alpha-\alpha^2\alpha^d)\\ \in & \mathcal{A}^{qnil}. \end{array}$$

By hypothesis, we see that $d\alpha bdbdbdbd \in a\mathcal{A}$. By virtue of [9, Lemma 3.1], we get

Since $1 - y\beta \in a\mathcal{A}$, by using [9, Lemma 3.1], we have

$$beta(1 - y\beta)^{3}$$

$$= \beta[acdp(1 - p\alpha(1 + bd + bdbd))^{-1}bac][acdp(1 - p\alpha(1 + bd + bdbd))^{-1}bac](1 - y\beta)$$

$$= \beta[acdp(1 - p\alpha(1 + bd + bdbd))^{-1}](bdbdbdp)[(1 - p\alpha(1 + bd + bdbd))^{-1}bac](1 - y\beta)$$

$$= \beta acdbdbdbdp(1 - p\alpha(1 + bd + bdbd))^{-2}bac(1 - y\beta)$$

$$= (1 - ac)a(cdbdbdbd)p(1 - p\alpha(1 + bd + bdbd))^{-2}bac(1 - y\beta)$$

$$= (acdbdbdbd - acacdbdbdbd)p(1 - p\alpha(1 + bd + bdbd))^{-2}bac(1 - y\beta)$$

$$= (dbdbdbdbd - dbdbdbdbdbd)p(1 - p\alpha(1 + bd + bdbd))^{-2}bac(1 - y\beta)$$

$$= d\alpha bdbdbdbdbdp(1 - p\alpha(1 + bd + bdbd))^{-2}bac(1 - y\beta) \in \mathcal{A}^{qnil}.$$

Then $\beta(1-y\beta)^3 \in \mathcal{A}^{qnil}$, and so $(\beta-\beta^2y)^3 = \beta(1-y\beta)^3\beta^2 \in \mathcal{A}^{qnil}$. Hence $\beta-\beta^2y \in \mathcal{A}^{qnil}$. Therefore we are through by Lemma 2.1.

 \Leftarrow Since $1 - ac \in \mathcal{A}^d$, it follows by Jacobson's Lemma that $1 - ca \in \mathcal{A}^d$. Applying the preceding discussion, we obtain that $1 - bd \in \mathcal{A}^d$, as desired. \square

Corollary 2.3. Let \mathcal{A} be a Banach algebra, and let $a,b,c \in \mathcal{A}$ satisfying satisfying

$$(ac)^2 a = acaba = abaca = a(ba)^2$$
.

Then $\alpha = 1 - ba \in \mathcal{A}^d$ if and only if $\beta = 1 - ac \in \mathcal{A}^d$. In this case,

$$\beta^d = (\beta + 1 - e)^{-1}e, e = 4(y\beta)^3 - 3(y\beta)^4,$$

$$y = \left[1 - aca\alpha^{\pi}(1 - \alpha\alpha^{\pi}(1 + ba + baba))^{-1}bac\right](1 + ac + acac) + aca\alpha^abac.$$

Proof. By hypothesis, we check that

$$(ac)^2a = acaba = abaca = (ab)^2a;$$

 $(ac)^2a = acaba = abaca = (ab)^2a.$

This completes the proof by Theorem 2.2. \Box

Theorem 2.4. Let \mathcal{A} be a Banach algebra, let $\lambda \in \mathbb{C}$, and let $a, b, c, d \in \mathcal{A}$ satisfying

$$(ac)^2 a = acdba = dbaca = (db)^2 a;$$

 $(ac)^2 d = acdbd = dbacd = (db)^2 d.$

Then $\lambda - bd \in \mathcal{A}^d$ if and only if $\lambda - ac \in \mathcal{A}^d$. In this case, $(ac)^d = a[(bd)^d]^2c$. If $\lambda \neq 0$, then

$$\begin{array}{rcl} (\lambda-ac)^d & = & (\beta+\lambda-\lambda e)^{-1}e, \\ e & = & 4\lambda^{-3}(y\beta)^3-3\lambda^{-4}(y\beta)^4, \\ y & = & \lambda^{-2}\Big[1-acd\alpha^\pi(\lambda^3-\alpha\alpha^\pi(\lambda^2+\lambda bd+bdbd))^{-1}bac\Big] \\ & & (\lambda^2+\lambda ac+acac)+\lambda^{-2}acd\alpha^dbac. \end{array}$$

Proof. Case 1. $\lambda = 0$. By virtue of [3, Theorem 2.2], we prove that $bd \in \mathcal{A}^d$ if and only if $ac \in \mathcal{A}^d$. Additionally, we have $(ac)^d = a[(bd)^d]^2c$.

Case 2. $\lambda \neq 0$. Set $a' = \lambda^{-1}a$ and $b' = \lambda^{-1}b$. Then

$$(a'c)^2a' = a'cdb'a' = db'a'ca' = (db')^2a';$$

 $(a'c)^2d = a'cdb'd = db'a'cd = (db')^2d.$

In view of Theorem 2.2, $1 - b'd \in \mathcal{A}^d$ if and only if $1 - a'c \in \mathcal{A}^d$. Obviously, we have

$$\begin{array}{rcl} \lambda - bd & = & \lambda [1 - (\lambda^{-1}b)d], \\ \lambda - ac & = & \lambda [1 - (\lambda^{-1}a)c]. \end{array}$$

Therefore $\lambda - bd \in \mathcal{A}^d$ if and only if $\lambda - ac \in \mathcal{A}^d$.

Further, we prove that

$$(\lambda - ac)^{d} = \lambda^{-1} (1 - a'c)^{d}$$

$$= \lambda^{-1} (\beta' + 1 - e)^{-1} e, e = (y\beta')^{4} + 4(y\beta')^{3} (1 - y\beta'),$$

$$y = \left[1 - a'cd(\alpha')^{\pi} (1 - \alpha'(\alpha')^{\pi} (1 + b'd + b'db'd))^{-1} b'a'c \right]$$

$$(1 + a'c + a'ca'c) + a'cd(\alpha')^{d}b'a'c,$$

where $\alpha' = 1 - b'd$ and $\beta' = 1 - a'c$.

Set $\alpha = \lambda - bd$ and $\beta = \lambda - ac$. Then $\alpha' = \lambda^{-1}\alpha$ and $\beta' = \lambda^{-1}\beta$. Then we compute that

$$\begin{array}{rcl} (\lambda - ac)^d & = & (\beta + \lambda - \lambda e)^{-1}e, \\ e & = & 4(y\beta')^3 - 3(y\beta')^4 \\ & = & 4\lambda^{-3}(y\beta)^3 - 3\lambda^{-4}(y\beta)^4, \\ y & = & \left[1 - a'cd\alpha^{\pi}(1 - \alpha'\alpha^{\pi}(1 + b'd + b'db'd))^{-1}b'a'c\right] \\ & & (1 + a'c + a'ca'c) + a'cd(\alpha')^db'a'c \\ & = & \lambda^{-2}\left[1 - acd\alpha^{\pi}(\lambda^3 - \alpha\alpha^{\pi}(\lambda^2 + \lambda bd + bdbd))^{-1}bac\right] \\ & & (\lambda^2 + \lambda ac + acac) + \lambda^{-2}acd\alpha^dbac. \end{array}$$

This completes the proof. \Box

The g-Drazin spectrum is defined by

$$\sigma_d(a) = \{ \lambda \in \mathbb{C} \mid \lambda - a \notin \mathcal{A}^d \}.$$

Corollary 2.5. *Let* A, B, C, $D \in \mathcal{A}$ *such that*

$$(AC)^2A = ACDBA = DBACA = (DB)^2A;$$

 $(AC)^2D = ACDBD = DBACD = (DB)^2D.$

then $\sigma_d(BD) = \sigma_d(AC)$.

Proof. This corollary is a direct sequence of Theorem 2.4. \Box

3. extended Jacobson's lemma for Drazin inverse

The aim of this section is to investigate the generalzied Jacobson's lemma for Drazin inverse. We now derive

Theorem 3.1. Let \mathcal{A} be a Banach algebra, and let $a, b, c, d \in \mathcal{A}$ satisfying

$$(ac)^2 a = acdba = dbaca = (db)^2 a;$$

 $(ac)^2 d = acdbd = dbacd = (db)^2 d.$

Then $\alpha = 1 - bd \in \mathcal{A}^D$ if and only if $\beta = 1 - ac \in \mathcal{A}^D$. In this case,

$$\beta^D = [1 - acd\alpha^{\pi} rbacac][1 + ac + (ac)^2 + (ac)^3] + acd\alpha^D bacac,$$

where
$$r = \sum_{j=0}^{n-1} [1 - (bd)^4]^j$$
 and $n = i(\alpha)$.

Proof. \Longrightarrow Let $y = 1 + ac + (ac)^2 + (ac)^3 + acd\alpha^D bacac$. Then we check that

$$y\beta = 1 - acacacac + acd\alpha^{D}bacac(1 - ac)$$

$$= 1 - (acdbac)ac + acd\alpha^{D}(1 - bd)bacac$$

$$= 1 - acd(1 - \alpha\alpha^{D})bacac$$

$$= 1 - acd\alpha^{\pi}bacac,$$

$$\beta y = 1 - acacacac + (1 - ac)acd\alpha^{D}bacac$$

$$= 1 - acdbacac + acd\alpha^{D}(1 - bd)bacac$$

$$= 1 - acd(1 - \alpha\alpha^{D})bacac$$

$$= 1 - acd\alpha^{\pi}bacac,$$

Therefore $y\beta = \beta y$. Moreover, $1 - y\beta = acd\alpha^{\pi}bacac$.

Hence, $(1 - y\beta)\beta = acd\alpha^n bacac(1 - ac) = acd\alpha^n \alpha bacac$. Set $n = i(\alpha)$. Then $\alpha^n \alpha^n = \alpha^n - \alpha^D \alpha^{n+1} = 0$. By induction, we have $(1 - y\beta)\beta^n = acd\alpha^n \alpha^n bacac = 0$; hence, $\beta^n = \beta^{n+1}y$. This implies that β has Drazin inverse. Moreover, $\beta^D = \beta^n y^{n+1}$. We check that

$$[1 - acd\alpha^{\pi}bacac]acd\alpha^{D}bacac = acd\alpha^{D}bacac.$$

Thus, $[1 - acd\alpha^{\pi}bacac]^n acd\alpha^D bacac = acd\alpha^D bacac$. Accordingly, we compute that

$$\begin{split} \beta^D &= (\beta y)^n y \\ &= [1 - acd\alpha^{\pi}bacac]^n [1 + ac + (ac)^2 + (ac)^3] \\ &+ [1 - acd\alpha^{\pi}bacac]^n acd\alpha^Dbacac \\ &= [1 - acd\alpha^{\pi}bacac]^n [1 + ac + (ac)^2 + (ac)^3] + acd\alpha^Dbacac. \end{split}$$

We compute that

$$[1 - acd\alpha^{\pi}bacac]^{2}$$

$$= 1 - acd\alpha^{\pi}bacac - acd\alpha^{\pi}bacac + acd\alpha^{\pi}b(acaca)cd\alpha^{\pi}bacac$$

$$= 1 - acd\alpha^{\pi}bacac - acd\alpha^{\pi}bacac + acd\alpha^{\pi}bdb(dbacd)bacac$$

$$= 1 - acd\alpha^{\pi}bacac - acd\alpha^{\pi}bacac + acd\alpha^{\pi}bdb(dbdbd)bacac$$

$$= 1 - acd\alpha^{\pi}bacac - acd\alpha^{\pi}bacac + acd\alpha^{\pi}bdb(dbdbd)bacac$$

$$= 1 - acd\alpha^{\pi}[1 + (1 - (bd)^{4})]bacac,$$

$$[1 - acd\alpha^{\pi}bacac]^{3}$$

$$= [1 - acd\alpha^{\pi}[1 + (1 - (bd)^{4})]bacac][1 - acd\alpha^{\pi}bacac]$$

$$= 1 - acd\alpha^{\pi}[1 + (1 - (bd)^{4})]bacac$$

$$-acd\alpha^{\pi}[1 - [1 + (1 - (bd)^{4})]bacacacd\alpha^{\pi}]bacac$$

$$= 1 - acd\alpha^{\pi}[1 + (1 - (bd)^{4})](bd)^{4}\alpha^{\pi}]bacac$$

$$= 1 - acd\alpha^{\pi}[1 + (1 - (bd)^{4})]bacac$$

$$-acd\alpha^{\pi}[1 - (bd)^{4} - (1 - (bd)^{4})(bd)^{4}]bacac$$

$$-acd\alpha^{\pi}[1 - (bd)^{4} - (1 - (bd)^{4})(bd)^{4}]bacac$$

$$= 1 - acd\alpha^{\pi}[1 + (1 - (bd)^{4})(bd)^{4}]bacac$$

$$= 1 - acd\alpha^{\pi}[1 + (1 - (bd)^{4})(bd)^{4}]bacac$$

$$= 1 - acd\alpha^{\pi}[1 + (1 - (bd)^{4})(bd)^{4}]bacac$$

By induction, we have

$$[1 - acd\alpha^{\pi}bacac]^{n} = 1 - acd\alpha^{\pi}rbacac,$$

where $r = \sum_{j=0}^{n-1} [1 - (bd)^4]^j$. Therefore we get

$$\beta^{D} = (\beta y)^{n} y$$

= $[1 - acd\alpha^{\pi} rbacac][1 + ac + (ac)^{2} + (ac)^{3}] + acd\alpha^{D}bacac,$

as desired.

 \leftarrow This is symmetric. \square

As a consequence of Theorem 3.1, we have

Corollary 3.2. Let \mathcal{A} be a Banach algebra, and let $a, b, c, d \in \mathcal{A}$ satisfying

$$(ac)^2 a = acdba = dbaca = (db)^2 a;$$

 $(ac)^2 d = acdbd = dbacd = (db)^2 d.$

Then $\alpha = 1 - bd \in \mathcal{A}^{\#}$ if and only if $\beta = 1 - ac \in \mathcal{A}^{\#}$. In this case,

$$\beta^{\#} = [1 - acd\alpha^{\pi}bacac][1 + ac + (ac)^{2} + (ac)^{3}] + acd\alpha^{\#}bacac.$$

Proof. Suppose that $\alpha = 1 - bd \in \mathcal{A}^{\sharp}$. Then $\alpha \in \mathcal{A}^{D}$. In view of Theorem 3.1, $\beta^{D} = [1 - acd\alpha^{\pi}bacac][1 + ac + (ac)^{2} + (ac)^{3}] + acd\alpha^{\sharp}bacac$. Then $\beta\beta^{D} = \beta^{D}\beta$ and $\beta^{D} = \beta^{D}\beta\beta^{D}$. Set $y = 1 + ac + (ac)^{2} + (ac)^{3} + acd\alpha^{\sharp}bacac$. Moreover, we have $\beta^{D} = \beta y^{2}$ and $\beta = \beta^{2}y$. Then

$$\beta \beta^D \beta = \beta^2 (\beta y^2) = (\beta^2 y)(\beta y) = \beta^2 y = \beta.$$

Therefore $\beta^{\#} = \beta^{D}$, as desired.

The proof of the opposite implication is similar to the above. \Box

Example 3.3.

Let $\mathcal{A} = \mathbb{C}^{3\times 3}$. Choose

$$a = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, b = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$
$$c = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, d = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{A}.$$

Then we check that

$$(ac)^2a = acdba = dbaca = (db)^2a;$$

 $(ac)^2d = acdbd = dbacd = (db)^2d.$

But $(ac)^2 a \neq a(ba)^2$ and $aca \neq dba$.

4. generalized Jacobson's lemma in Banach *-algebras

The purpose of this section is to establish generalized Jacobson's lemma for core and p-core inverses in a Banach *-algebra. For future use, we now record the following.

Lemma 4.1. (see [13, Theorem 3.3]) Let \mathcal{A} be a C^* -algebra, and let $\alpha \in \mathcal{A}$. Then $\alpha \in \mathcal{A}^{\mathbb{D}}$ if and only if

- (1) $\alpha \in \mathcal{A}^D$;
- (2) $\alpha^{\pi} \in \mathcal{A}^{\{1,4\}}$.

In this case,

$$\alpha^{\odot} = \alpha^{D} [1 - (\alpha^{\pi})^{\{1,4\}} \alpha^{\pi}].$$

We have accumulated all the information necessary to prove the following.

Theorem 4.2. Let \mathcal{A} be a C^* -algebra, and let $a, b, c, d \in \mathcal{A}$ satisfying

$$(ac)^2 a = acdba = dbaca = (db)^2 a;$$

 $(ac)^2 d = acdbd = dbacd = (db)^2 d.$

If $\alpha = 1 - bd \in \mathcal{A}^{\mathbb{D}}$, then the following are equivalent:

- (1) $\beta = 1 ac \in \mathcal{R}^{\mathbb{Q}}$. (2) $acd\alpha^{\pi}bacac \in \mathcal{R}^{\{1,4\}}$.

In this case,

$$\beta^{\odot} = [1 - acd\alpha^{\pi}rbacac][1 + ac + (ac)^{2} + (ac)^{3} + acd\alpha^{D}bacac]$$
$$[1 - (acd\alpha^{\pi}bacac)^{\{1,4\}}acd\alpha^{\pi}bacac],$$

where
$$r = \sum_{i=0}^{n-1} [1 - (bd)^4]^j$$
 and $n = i(\alpha)$.

Proof. Since $\alpha = 1 - bd \in \mathcal{A}^{\mathbb{D}}$, we have $\alpha \in \mathcal{A}^{\mathbb{D}}$. In view of Theorem 3.1, $\beta \in \mathcal{A}^{\mathbb{D}}$ and

$$\beta^{D} = [1 - acd\alpha^{\pi} rbacac][1 + ac + (ac)^{2} + (ac)^{3}] + acd\alpha^{D}bacac,$$

where
$$r = \sum_{j=0}^{n-1} [1 - (bd)^4]^j$$
. Then

$$\beta^{\pi} = 1 - \beta \beta^{D}$$

$$= 1 - \beta (\beta^{n} y^{n+1})$$

$$= 1 - (\beta y)^{n+1}$$

$$= 1 - \beta y$$

$$= acd \alpha^{\pi} bacac.$$

According to Lemma 4.1, $\beta \in \mathcal{A}^{\mathbb{D}}$ if and only if $acd\alpha^{\pi}bacac \in \mathcal{A}^{[1,4]}$. We compute that

$$\beta^{D} = [1 - acd\alpha^{\pi}rbacac][1 + ac + (ac)^{2} + (ac)^{3}] + acd\alpha^{D}bacac$$
$$= [1 - acd\alpha^{\pi}rbacac][1 + ac + (ac)^{2} + (ac)^{3} + acd\alpha^{D}bacac].$$

In this case, we have

$$\begin{array}{lll} \beta^{\mathrm{D}} & = & \beta^{D}[1-(\beta^{\pi})^{\{1,4\}}\beta^{\pi}] \\ & = & \beta^{D}[1-(acd\alpha^{\pi}bacac)^{\{1,4\}}acd\alpha^{\pi}bacac] \\ & = & [1-acd\alpha^{\pi}rbacac][1+ac+(ac)^{2}+(ac)^{3}+acd\alpha^{D}bacac] \\ & [1-(acd\alpha^{\pi}bacac)^{\{1,4\}}acd\alpha^{\pi}bacac]. \end{array}$$

This completes the proof. \Box

As consequences of Theorem 4.2, we derive

Corollary 4.3. Let \mathcal{A} be a C^* -algebra, and let $a, b, c \in \mathcal{A}$ satisfying

$$(ac)^2 a = acaba = abaca = a(ba)^2$$
.

Then $\alpha = 1 - ba \in \mathcal{A}^{\mathbb{Q}}$ if and only if

- (1) $\beta = 1 ac \in \mathcal{A}^{\mathbb{D}}$;
- (2) $aca\alpha^{\pi}bacac \in \mathcal{A}^{\{1,4\}}$.

In this case,

$$\beta^{\mathbb{O}} = [1 - aca\alpha^{\pi}rbacac][1 + ac + (ac)^{2} + (ac)^{3} + aca\alpha^{D}bacac]$$
$$[1 - (aca\alpha^{\pi}bacac)^{\{1,4\}}aca\alpha^{\pi}bacac].$$

where
$$r = \sum_{i=0}^{n-1} [1 - (ba)^4]^j$$
 and $n = i(\alpha)$.

Corollary 4.4. Let \mathcal{A} be a C^* -algebra, and let $a, b, c \in \mathcal{A}$ satisfying

$$aca = dba, acd = dbd.$$

Then $\alpha = 1 - bd \in \mathcal{A}^{\mathbb{D}}$ if and only if

- (1) $\beta = 1 ac \in \mathcal{A}^{\mathbb{Q}}$;
- (2) $acd\alpha^{\pi}bacac \in \mathcal{A}^{\{1,4\}}$.

In this case,

$$\beta^{\mathbb{D}} = [1 - acd\alpha^{\pi}rbacac][1 + ac + (ac)^{2} + (ac)^{3} + acd\alpha^{D}bacac]$$
$$[1 - (acd\alpha^{\pi}bacac)^{\{1,4\}}acd\alpha^{\pi}bacac].$$

For the core invertibility, we are ready to prove:

Theorem 4.5. Let \mathcal{A} be a C^* -algebra, and let $a, b, c, d \in \mathcal{A}$ satisfying

$$(ac)^2a = acdba = dbaca = (db)^2a;$$

 $(ac)^2d = acdbd = dbacd = (db)^2d.$

If $\alpha = 1 - bd \in \mathcal{A}^{\oplus}$, then the following are equivalent:

- (1) $\beta = 1 ac \in \mathcal{A}^{\oplus}$;
- (2) $acd\alpha^{\pi}bacac \in \mathcal{A}^{\{1,4\}}$.

In this case,

$$\beta^{\oplus} = [1 + ac + (ac)^2 + (ac)^3 + acd\alpha^D bacac]$$
$$[1 - (acd\alpha^\pi bacac)^{\{1,4\}} acd\alpha^\pi bacac].$$

Proof. Since $\alpha = 1 - bd \in \mathcal{A}^{\oplus}$, it follows by [4, Theorem 2.5] that $\alpha \in \mathcal{A}^{\oplus}$. In view of Theorem 4.2, $\beta = 1 - ac \in \mathcal{A}^{\mathbb{Q}}$. Moreover, we have

$$\beta^{\mathbb{D}} = [1 - acd\alpha^{\pi}bacac][1 + ac + (ac)^{2} + (ac)^{3} + acd\alpha^{D}bacac]$$
$$[1 - (acd\alpha^{\pi}bacac)^{\{1,4\}}acd\alpha^{\pi}bacac].$$

In view of Corollary 3.2, $\beta \in \mathcal{A}^{\#}$ and so $\beta \in \mathcal{A}^{\#}$.

We easily check that

 $acd\alpha^{\pi}bacac(ac) = acd\alpha^{\pi}bdbdbac$ $= acd\alpha^{\pi}b(dbdba)c$ $= acd\alpha^{\pi}b(dbaca)c$ = $(ac)acd\alpha^{\pi}bacac$, $acd\alpha^{\pi}bacac(acd\alpha^{D}bacac) = acd\alpha^{\pi}b(acaca)cd\alpha^{D}bacac$ = $acd\alpha^{\pi}b(dbdba)cd\alpha^{D}bacac$ $acd\alpha^{\pi}bdbdbdbd\alpha^{D}bacac$

Likewise, we have

$$(acd\alpha^{D}bacac)acd\alpha^{\pi}bacac = acd\alpha^{D}bdbdbacd\alpha^{\pi}bacac$$

= $acd\alpha^{D}bdbdbdbd\alpha^{\pi}bacac$
= $0.$

Thus,

$$[1 - acd\alpha^{\pi}bacac][1 + ac + (ac)^{2} + (ac)^{3} + acd\alpha^{D}bacac]$$

$$= [1 + ac + (ac)^{2} + (ac)^{3} + acd\alpha^{D}bacac][1 - acd\alpha^{\pi}bacac].$$

Accordingly,

$$\beta^{\oplus} = \beta^{\oplus}$$

$$= [1 + ac + (ac)^{2} + (ac)^{3} + acd\alpha^{D}bacac]$$

$$= [1 - acd\alpha^{\pi}bacac][1 - (acd\alpha^{\pi}bacac)^{\{1,4\}}acd\alpha^{\pi}bacac]$$

$$= [1 + ac + (ac)^{2} + (ac)^{3} + acd\alpha^{D}bacac]$$

$$[1 - (acd\alpha^{\pi}bacac)^{\{1,4\}}acd\alpha^{\pi}bacac].$$

This completes the proof. \Box

Corollary 4.6. Let \mathcal{A} be a C^* -algebra, and let $a, b, c \in \mathcal{A}$ satisfying

$$(ac)^2 a = acaba = abaca = a(ba)^2$$
.

Then $\alpha = 1 - ab \in \mathcal{A}^{\oplus}$ if and only if

- (1) $\beta = 1 ac \in \mathcal{A}^{\oplus}$; (2) $acd\alpha^{\pi}bacac \in \mathcal{A}^{\{1,4\}}$.

In this case,

$$\beta^{\oplus} = [1 + ac + (ac)^2 + (ac)^3 + acd\alpha^D bacac]$$
$$[1 - (acd\alpha^{\pi}bacac)^{\{1,4\}}acd\alpha^{\pi}bacac].$$

Corollary 4.7. Let \mathcal{A} be a C^* -algebra, and let $a, b, c \in \mathcal{A}$ satisfying

$$aca = dba, acd = dbd.$$

Then $\alpha = 1 - ba \in \mathcal{A}^{\oplus}$ if and only if

- (1) $\beta = 1 ac \in \mathcal{A}^{\oplus}$;
- (2) $acd\alpha^{\pi}bacac \in \mathcal{A}^{\{1,4\}}$.

In this case,

$$\beta^{\oplus} = [1 + ac + (ac)^2 + (ac)^3 + acd\alpha^D bacac]$$
$$[1 - (acd\alpha^{\pi}bacac)^{\{1,4\}}acd\alpha^{\pi}bacac].$$

Acknowledgement

The authors would like to thank the referee for her/his careful reading of the paper and the valuable comments which greatly improved the presentation of this article.

References

- [1] C. Bu; K. Zhang and J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, *Linear Multilinear Algebra*, **59**(2011), 863-877.
- [2] H. Chen and M.S. Abdolyousefi, Generalized Jacobson's Lemma in a Banach algebra, Comm. Algebra, 49(2021), 3263–3272.
- [3] H. Chen and M.S. Abdolyousefi, Generalized Cline's formula for the generalized Drazin inverse in rings, Filomat, 37(2023), 3021-3028.
- [4] Y. Gao and J. Chen, Pseudo core inverses in rings with involution, Comm. Algebra, 46(2018), 38-50.
- [5] Y. Gao and J. Chen, The pseudo core inverse of a lower triangular matrix, it Rev. R. Acad. Cienc. Exactas Fis.Nat., Ser. A Mat., 113(2019), 423–434.
- [6] Y. Liao; J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37(2014), 37–42.
- [7] V.G. Miller and H. Zguitti, New extensions of Jacobson's lemma and Cline's formula, Rend. Circ. Mat. Palermo, II. Ser., 67(2018), 105–114.
- [8] D. Mosić, Extensions of Jacobson's lemma for Drazin inverses, Aequat. Math., 91(2017), 419-428.
- [9] D. Mosić, On Jacobson's lemma and Cline's formula for Drazin inverses, , Revista de la Unión Matemática Argentina, 61(2020), 267–276.
- [10] N. Mihajlović, Group inverse and core inverse in Banach and C*-algebras, Comm. Algebra, 48(2020), 1803–1818.
- [11] V.G. Miller and H. Zguitti, New extensions of Jacobson's lemma and Cline's formula, Rend. Circ. Mat. Palermo, II. Ser., 67(2018), 105–114.
- [12] D.S Rakic; N.C. Dincic and D.S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, *Linear Algebra Appl.*, **463**(2014), 115–133.
- [13] G. Shi; J. Chen; T. Li and M. Zhou, Jacobson's lemma and Cline's formula for generalized inverses in a ring with involution, *Comm. Algebra*, **48**(2020), 3948–3961.
- [14] K. Yan; Q. Zeng and Y. Zhu, On Drazin spectral equation for the operator products, *Complex Analysis and Operator Theory*, (2020) 14:12 https://doi.org/10.1007/s11785-019-00979-y.
- [15] K. Yan; Q. Zeng and Y. Zhu, Generalized Jacobson's lemma for Drazin inverses and its applications, *Linear and Multilinear Algebra*, **68**(2020), 81–93.
- [16] D. Zhang and D. Mosić, Explicit formulae for the generalized Drazin inverse of block matrices over a Banach algebra, *Filomat*, **32**(2018), 5907-5917.
- [17] M. Zhou; J. Chen and X. Zhu, The group inverse and core inverse of sum of two elements in a ring, Comm. Algebra, 48(2020), 676-690.
- [18] H. Zou; D. Mosić and J. Chen, Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and its applications, *Turk. J. Math.*, **41**(2017), 548–563.
- [19] G. Zhuang; J. Chen and J. Cui, Jacobson's lemma for the generalized Drazin inverse, Linear Algebra Appl., 436(2012), 742–746.