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GSEP elements in a ring with involution
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Abstract. In this paper, we characterize SEP elements and GSEP elements by various methods. SEP
elements are mainly characterized by a element in a given set, and then extended to GSEP elements. GSEP

elements are characterized by (b,c)-inverse, inner invertible elements and equations. We obtain a lot of new
characterizations of SEP elements and GSEP elements.

1. Introduction

Generalized inverses of rings plays an important role in solving equations with one or two variables [1-5].
Therefore, generalized inverses of rings have important applications in many fields, such as mathematical
statistics, system theory, optimization theory, modern control theory, and so on. Now more and more
people explore the generalized inverses of rings [6-17]. In recent years, with the help of the expression
of the solution of the generalized inverse equation in an involution ring, people have adopted some new
methods to characterize EP elements, SEP elements and normal elements. Many new characterization of
EP elements and SEP elements are obtained [18-27].

In this paper, we introduce a new kind of generalized inverse, so-called GSEP, which is between EP and
SEP. The goal of this paper is to give some new characterizations of SEP elements and GSEP elements.

Let R be a ring and * : R — R be a map satisfying
@) =a (a+b)=a"+Vb", (ab)" =b'a* fora, b e R.
Then R is called an involution ring or a *-ring .
Let R be aring and a € R. Then a is called the group invertible element if there exists a* € R such that

a =aata, a* = a*ad®, ad® = d*a.

We usually write R* to denote the set of all group invertible elements in R.
It is well known that a € R* if and only if a € a?R N Ra?.

Let R be a *—ring and a € R. Then a is called the Moore-Penrose invertible element if there exists a* € R
such that

a=aa*a, a* =a*aa*, (aa*) = aa*, (@*a)' = a*a.
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We always use R* to denote the set of all Moore-Penrose invertible elements in R.

Noting that if a* and a* exist, then they are all unique.

Leta € R* N R*, if a* = a*, then a is called an EP element.

We denote the set of all EP elements in R by RE.

Ifa € R and a = aa*a, then a is said to be the PI element and we use R to denote the set of all PI elements
inR.

If a € REP N RY, then a is said to be the strong EP element. We used to write R%:” to represent the set of
all strong EP elements in R.

Let R be aring and a € R. Then a is called projection, if a*> = a = a*. We always use PE(R) to denote the
set of all projections in R.

Clearly, aa*,a*a € PE(R).

Leta, b, c € R. If there exists y € R, such that

Yy €bRyNyRe, b=yab, c=cay,

then a is called a (b, c)—invertible, y is unique when it exists and y is called the (b, c)—inverse of a and write
it by al®), that is y = all®9).

Let a € R* N R*, we take x, = {a,a%,a",a*, (@), (a")"}, 7, = {a,a",(a*)*} and y, = {a*,a*,(a")"}. Cleraly,
Xa = Ta UV,

An element a € R is regular if there exists some b € R satisfying aba = a. In this case b is called an inner
inverse of a.

2. Characterizing SEP elements by projections

It is well known that a € R ? if and only if a* = a* and a = (a*)*. This implies a*(a*)* = a*a € PE(R).
Hence, we have the following theorem.

Theorem 2.1. Leta € R* N R*. Then a € RSEY if and only if a*(a*)* € PE(R).
Proof. We only need to show the sufficiency: From the hypothesis, we have
a'(a*) = (" (a*))? = @@*))".

This induces

(@) = at (@ = a*(@*yaat = a* (@) aa”,
and

(@) = ad®(a*) = aa*(a*)'aa* = (@) 'aa*.

Applying the involution on the equality, one gets a* = aa*a*. Hence, a € RE? by [11, Theorem 1.2.1]. Now
we have

(@*) = aa*(@*)" = a@*(@*)’)? = (@*)'a*@*),
and

a=@)aa=@)ad(@a)aa=@)aaata = @) a'a = @),

one obtains 2 € R”’. Thusa € R°*". O

RSEP if and only if a* € RSEP. Hence, Theorem 2.1 implies the following corollary.

Itis well known thata €
Corollary 2.2. Leta € R* N R*. Then a € RSP if and only if (a*)a* € PE(R).

It is easy to show that a € PE(R) if and only if a* € PE(R). Hence, Theorem 2.1 induces the following
corollary.

Corollary 2.3. Leta € R* N R*. Then a € R°EP if and only if a* (a*)* € PE(R).
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Lemma 2.4. Leta € R*. Ifa € PE(R), then a* € PE(R).
Proof. Since a € PE(R), a> = a = a". This gives
(ﬂ#)2 — ﬂ(ﬂ#)3 — a2(a#)3 — ﬂ#,
and
@ = @) =a".

Hence, a* € PE(R). O
Lemma 2.5. Let a € R* " R*. Then

(1) (a*(a*))* = aa*a’a;

(2) (@*(a*))* = a*a’a*.
Proof. (1) Since (a*(a*)*)(aa*a*a) = a*(a*)'a*a = a*aa*a = a%a,

(@*(@*))aa*a’a)(a*(a*)") = a*a(a*(a*)") = a(@*)".

Noting that

(ad*a*a)@*(a™)") = aa*a*(a*)* = aa"a*a = aa®.

Then
(ad*a*a)@* (@) )(aa*a*a) = aa® (aa*a*a) = aa*a"a.
Thus a*(a*)* € R* and (a*(a*)")* = aa®a"a.
(2) Since (a*(a*)")(a*a’a*) = a*aa*a’a* = aa*,

(a*(@"))@'a*a*)(a*(@*)") = aa*(a*(a*)) = a*(a")".

Also
(@ a*a")a* (@) )a'aat) = (@'aPa)aa” = a*a’a”,
and
(@'a*a")a*(a")) = a'aad®(a*) = a*(a*) = ata.
Hence, a*(a*)* € R* and (a*(a*)*)* = a’a®a*. O

Lemma 2.4, Lemma 2.5 and Theorem 2.1 lead to the following theorem.
Theorem 2.6. Let a € R* N R*. Then a € RS” if and only if aa*a*a € PE(R).
Lemma 2.7. Leta € R* N R*. Ifa € PE(R), then a € REP.
Proof. It is an immediate result of [11, Theorem 1.4.1], because a is Hermitian. O
Theorem 2.8. Let a € R* N R*. Then a € RS if and only if a*a*a™ € PE(R).
Proof. => Assume that a € R°E?, then a*(a*™)* € PE(R) by Theorem 2.1. And we can get (a*(a*)*)* € PE(R)
by Lemma 2.4. Noting that a*(a*)* € PE(R), then a*(a™)* € REP by Lemma 2.7. Thus (a*(a*))* = (a*(a*)")* €
PE(R). By Lemma 2.5, a*a*a™ € PE(R).
&= From the hypothesis, we have a*a*a* € PE(R). By Lemma 2.7, a*a’a* € RE?, then we have (a'a?a*)* =

(a*a?a*)*. Noting that a*a’a™ € PE(R), then (a*a*a™)* € PE(R) by Lemma 2.4. By Lemma 2.5, we have
a*(a*y = (a*a?a*)* = (a*a’a*)* € PE(R). Hence, a € Rt by Theorem 2.1. O



P. Zhai et al. / Filomat 38:13 (2024), 4649-4662 4652
3. Generalized SEP elements
Theorem 3.1. Let a € R* N R*. Then a*(a*)* € R°EY if and only if (a*)* = aa*a.

Proof. = Assume that a*(a*)* € RE’. Then (a*(a*)")* = (a*(a*))*. By Lemma 2.5, aa*a'a = a*(a*)".
Multiplying the equality on the left by aa*, one gets

at(a")" = aa*a*t (a")".
This gives
at =at (@) = ad*at (@0’ = aaat.
Multiplying the equality on the right by a, one gets
ata =aa*ata = a*aa*a = a*a.

Hence, a € REP by [12, Theorem 1.2].

It follows that aa*a = a(aa*a*a) = aa* (a*)* = aa* (a*)* = (a*)* = (a*)".

& From the hypothesis, we have (a*)* = aa*a. Multiplying the equality on the left by a*, one gets

at(@") = ataa’a = a*a.
Applying the involution on the equality, one gets a*(a*)* = a*a. By Lemma 2.5,
@ @) =a'a’a* = a(aa*a)aat = at (@) aat = at (@) = a'a.
@ @) =a"(a") =a'a.
And
@' (@*))a'a) = a*aa*a = (a*a)(a"(a™)").
One gets (a*(a*)")* = a*a. Hence
@@yt = @@y = @@y

Thus, a(a*)' € REP. O

Leta € R* N R*. If (a*)* = aa*a, then a is called a generalized SEP element.

Noting that if a € R°E?, then (a*)* = a = aa*a. So SEP elements are generalized SEP.

By Theorem 3.1, we have a is a generalized SEP element if and only if a*(a*)* € RSP,
We write RCEP to denote the set of all generalized SEP elements of R. Hence, R°P € ROSEP,

Let R = M»(Zs) with the transposition involution *. Choose a = ( tl ) Thena* = a* = ( 4 4

11 44)a“d

a* =a # a*. It follows that aa*a = a® = ( i i = a* = (a*)". Hence, a € R%°FP, but a ¢ RSP, Thus the

generalized SEP elements are proper generalization of SEP.
Following from the following Theorem 3.2, we have RGSEP € REP'We claim that RCSEP ¢ REP,

In fact, choose a = ( (1) ? ) € Mb(R). Then a* = a* = a7 = ( (1) _12 ), so a € REP. However,
L[5 12 T 0)_ s GSEP
aua—(z 5)#(_2 1)—(a).Hence,a¢R .

Therefore we have RSEP ¢ RGSEP ¢ REP,

Theorem 3.2. Leta € R* N R*. Then a € R%SE if and only if a € REP and a* = a*(a*)'a*.
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Proof. => Assume that a € R%°EP. Then (a*)* = aa*a = (aa’a)ata = (a*)'a*a, this implies a* = a*aa®.
Multiplying the equality on the right by a, one gets

a*a =a*aa*a = a*a.
Hence, a € REP by [12, Theorem 1.2]. Now a*(a*)*a* = a*(aa*a)a* = a*.

& Since a € R and a* = a*(a*)'a*, aa* = a*a and aa*a = aa*(a*)'a*a = a*a(a*)'aa*t = (a*)". Hence,
a€RCEP. O

Lemma 3.3. Let a € R* N R*. Then the followings are equivalent:
(1 ) ac RGSEP,.
(2) at = a#(a#)*a+,.
(3) a* = a*(a*ya®.

Proof. (1) = (2) It is an immediate result of Theorem 3.2 because a* = a*.
(2) = (1) Suppose that a* = a*(a*)*a*. Then

anta* = aa*a® (@*yat = a*(@*)at = a.

Hence, a € REP by [11, Theorem 1.2.1], this gives a* =a*. Soa* = a*(a*)a”’. By Theorem 3.2,a € RGSEP,
Similarly, we can show (1) & (3). O

Theorem 3.4. Leta € R* N R*. Then a € R%E if and only if a*(a*)'a*(a*)* € PE(R).

Proof. => Assume thata € R®EP. Then a* = a*(a*)*a* by Lemma 3.3. This leads to a*(a*)a*(a*)* = a*(a™)* =
a*a € PE(R).
&= Form the assumption, one has

a*(a*ya*(@*) = (@*(@"ya*(@*))? = @ @*)ya* @)
This gives
a*(a*yat (@) = a*(a*)a* (@) = a*a(a* (@*)'a*(@")) = a*a@@*(@*ya* @*)),
and
a*(@"yat = a*(a")at (a*)'a" = aTaa® (@) aT (@)t = ataa® (a*yat.
Multiplying the equality on the right by aa*a*a, one gives a* = a*aa®. Hence, a € RE’. Now we have
a'(a*ya*t = a*(a"yat(a*)at = (@*(a")at(a¥))a = at (@) at (@) at (") a”,

and
a*(a") = a*(a*)aat = a*(@*)'ata = a*(@*)at (@) a" (0" ata = a* (a")at (@) at (@)

Noting that a* = a* and a*(a*)'a* = a*. Then
& =t = at(@ya = dt @) = dt@yat @y @)a = dt@tyat (@),
a=aa'a = a(a®(@*)a*(a*)a"a = aa®(a*)a* (@) a"a = (a*)at ("),
a* =a*(@*)at = a+(a#)*a+.
By Theorem 3.2,a € RGSEP a

Theorem 3.5. Let a € R* N R*. Then a € R%SEP if and only if aa* = (a*)'a*.
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Proof. => Sincea € R°°P, g € REP and a* = a*(a*)*a* by Theorem 3.2. This gives
aa’* = aa* (a*)'a" = ata(@®)a" = (a*)a”.
< Suppose that aa* = (a*)*a*. Then
ata’a’ = ata(@*ya®) = @ at = aa’,

and
a* = a(@)? = aa*(a*)(a")? = aTaa* (a*) (@")? = aTa?(@")? = ata*a.

Hence, a € REP by [13, Theorem 2.1] and a* = a*aa* = a*(a*)*a*. Thus a € R°5EP by Theorem 3.2. O

Similarly, we have the following theorem.

Theorem 3.6. Let a € R* N\ R*. Then a € REP if and only if a*a = a* (a*)".

4. Using (b, c)-inverse to characterize GSEP elements

Theorem 4.1. Leta € R*NR*. Thena € REEP ifand only if (a*)'a* (a*)* is (a*, a*)-invertible with ((a*)*a* (a*))I@*) =

at.

Proof. => Assume that a € RSP, Then a* = a*(a*)'a*™ = a*(a*)*a* by Lemma 3.3 and a € REF by Theorem
3.2. Hence
a* = atad® = a*(@*)a* € a'Ra*,

and
a* =a'aat = a*(a*)'a* € a'Ra’.

Noting that
a*((@*yat (@) )a' = a*@yat =a',
a'((@*ya* (@) = (@ @) a*)(@")ad®) = a*(@*ya’ = a".

Hence, ((a*)‘a* (a*))I@) = g¥.
&= From the assumption, we have

a' =a"(@)at @) =a* @) at.
By Lemma 3.3,a € R®5FP. O

Theorem 4.2. Leta € R*NR*. Thena € REE ifand only if (a*)'a* (a™)" is (a*, x)-invertible with ((a*)*a* (a*)*)I@») =
a* for some x € x,.

Proof. = It is an immediate result in instead of by choosing x = a* by Theorem 4.1.
&= From the proof of the sufficiency of Theorem 4.1, we easy know thata € R®EP. o

Theorem 4.3. Let a € R* N R*. Then a € R%EP if and only if (a* (a™)" )@ 70 exists and (a*(a*)")@ 79 = g#(a*)".

Proof. => Assume thata € RCFP. Then a* = a*(a*)'a* = (a*(a*)")(a*(a*)")a* by Lemma 3.3. Noting that
(@a)@a* @) )@ (@*)) = a'(@*)a*(@*) = a*aa*(@"y.

By Theorem 3.2, a € RE?, this gives

(@a)a* (@)@ @")) = a* (")
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By Theorem 3.6, a*a = a*(a*)*. Hence, (a*a)(a*(a*)*)(a*(a")") = a*a. Since a € RE?,
a*(@®) = a*(a*)a*(@") € a*Ra’ (0",
a*(a") = a*(@")'a* (@) a'a € a*(a") Ra*a.
Hence, (a*(a*)" )20 = g#(a*)*.
&= From the assumption, we have
a* = (@ (@)@ @) = a*@@*)a".

By Lemma 3.3,a € RFP. O

5. Characterizing GSEP elements by inner invertible elements

#
Theorem 5.1. Let a € R* N R*. Then a € R if and only if (Z+) is a reqular vector with an inner inverse

(a —aa*a, (a*)").

# # # _ # * # # o B\ o+
Proof. Clearly, (Z+)(zz —aa‘a, (a#)*)(2+):(a aadad +a @)a )

a*taa® — a*aa® + a*(a*)a*
= Since a € R°E?, g € REP by Theorem 3.2 and a*(a*)*a* = a* by Lemma 3.3. This gives

# #

a* —a*aa*aad® + a*(a")at = a® #

—atad‘aat +a* =a",

atad® —aad® +a*(@*)'a* = ataat —a'aa” +a* (@) et =at —a" +a =a*.
#

Hence, (;)(g —aa'a, (a#)*)(Zi):(Zi).

&= From the assumption, one gets

a* =a" —dtaatad® + a*(@*yat (1)

at = ataa® — a'ad® + at (@) at (2)
From (1), we have

a*aaaa® = a*(@*yat = a*(a*)ataat = a'an*aatant = atan’,

and

# # # #

a" =ataa* =a%aa"aa* = a*an"aa’aa” = a*aa”.

Hence, a € REP by [11, Theorem 1.1.3]. Now we obtain
a* = ataa*aa® = a*(a*)a”.
By Lemma 3.3,a € R®FP. O

Similarly, we have the following theorem.

#
Theorem 5.2. Let a € R* N R*. Then a € R if and only if (Z+) is a reqular vector with an inner inverse

(a— (a*),a*a*a*a).

Theorem 5.3. Leta € R* N R*. Then a € R’ if and only if a € REP and a*(a*)" is a reqular with an inner inverse
a*(a®).
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Proof. => Assume thata € R°5EP. Then a* = a*(a*)*a* by Lemma 3.3, and a € RE” by Theorem 3.2. Now we
have
(a#(a#)*)(a+ (a#)*)(a#(a#)*) — (a#(a#)x-a+)(a#)x-a+(a#)x- =g (a#)*a-# (a#)* — El+ (a#)v{ — ll#(ll#)*,
Hence, a*(a*)* is an inner inverse of a*(a*)*.
&= From the assumption, we have

a*(@") = (a*(@"))@* (@"))(@"@")").
Multiplying the equality on the left by a*a?, one gets
@y = (@ya* @yd @)
Multiplying the equality on the right by a* and remind in heart that 2 € RE?, one obtains
aa® = (aa") = (@*)at(@*)a’ (@*yar = (@) at (") at(aad®) = @*)at(a*)at.

This gives
a = ax-uaJr — a*aa# — a*(a#)*a+(a#)*a+ — a+(a#)x-u+,

and
da=a"@)ata=a @) ata=a ") =a"(@@").

By Theorem 3.6,a € R®EP.

Let a € R, if there exists b € R such that a = ba?, then a is called a left strongly regular and b is called a
left strongly regular inverse of a.

Theorem 5.4. Let a € R* N R*. Then a € RCEP if and only if a*(a*)" is a left strongly regular with a left strongly
reqular inverse a*(a®)".

Proof. = Assume thata € R°EP. Then a* = a*(a*)'a*™ and a* = a*. This gives
@ @)@ @) = @ @ya) @y at @) = a@yat @) = at @y = at@y.
&= From the hypothesis, one gets
at@ty = a* (@) @ @)
Multiplying the equality on the right by a*a*a, one gives
a* = a*(a*ya*(a*)a".
This leads to
aat = ataa* = at @yt @ty atalat = at @) at (@) = ata(@t @) at @) = atala®,

and

2 2

a=aata=a"a"ata=a"a"

Hence, a € RE?, it follows that
a’ =aata" = a*(a")a" (a")a" = at(a") 0 (") a" = aT (") a”,
and
a'a=a (@) ata =a" (@) aa" = at(a").

By Theorem 3.6,4 € R%EF. O
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6. Constructing invertible elements to characterize GSEP elements

Theorem 6.1. Leta € R*NR*. Thena € RCEP ifand only if there exists invertible element u such that a* = a*(a*)*u
and ua*a = a*.

Proof. = Suppose that a € R°5EP. Then a* = a*(a*)*a* and a* = a*. Choose u = a* + 1 —aa*. Then u € U(R)

withu™' =a+1-ad" and ua*a = ua®a = (a* + 1 — aa®a*a = a*aa = a*.

Also, a*(a*)'u = a*(a*)*(a* + 1 — aa®) = a*(@*)a* + a*(a*)" — a*(a*)'aa™ = a*.
<= From the assumption, we have a* = a*(a*)*u and ua*a = a* for some u € U(R). This gives
a* = (ua*a)ata = a*a*a.
Hence, a € REP. Tt follows that
a' =a'ata = a*(a")uata = a*(a*)a*.

Hence, a € R°EP by Lemma 3.3. O
Theorem 6.2. Let a € R* N R*. Then a € R%°EP ifand only if a* = a*ua® and uaa® = (a*)* for some u € U(R).

Proof. = Since a € R, g € REP and a* = a*(a*)'a*, one has aa* = (aa")’. Choose u = (a*)* + 1 — aa®.
Then u™ = a* + 1 — aa®, this implies u € U(R) and uaa® = u(aa*)* = (a*)* and a*ua® = a*((a"*)* + 1 — aa")a* =
a*(a*yat = a.

&= From the hypothesis, one yields

a* = a'ua® = aa*(a"ua®) = aa*a".
Hence, a € REP by [11, Theorem 1.2.1]. It follows that

# #

a* =a'uat = a'u(aa®yat = a*uad®at = a®(@*)a".

Thus a € R%SEP by Lemma 3.3. O
Theorem 6.3. Let a € R* N R*. Then a € R%EP if and only if a* = u(a*)*a* and aa*u = a* for some u € U(R).

Proof. => Choose u = a* + 1 — aa®. Then we are done.
& Since a* = aa*u = aa*(aa*u) = aa*a*. Multiplying the equality on the right by a4, one gets a*a = aa".
Hence, a € REP by [12, Theorem 1.2]. This gives
a' =aata" = aatu(@®yat = at(@yat.
Hence, a € R by Theorem 32. O

Theorem 6.4. Let a € R* N R*. Then a € RSEY if and only if a* = u(a*)*a* and aa*u = a* for some u € U(R).

Proof. => Assume thata € R°EP. Then a € R%SEP and a* = a*. By Theorem 6.3, we are done.
& Since a* = aa*u = aa"(aa*u) = aa*a*, then a € REP by [11, Theorem 1.1.3]. This gives
+

a =aaa" = aatu(@®)at = a* (@ at = at.

Hence,a € RSEP. @
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7. Using the consistency of certain equation to characterize GSEP elements
Now we construct the following equation

a*xat =a". (7.1)
Lemma 7.1. Let a € R* N R*. Then Eq.(7.1) is consistent if and only if a € REP. In this case, the general solution to
Eq.(7.1) is given by

x=ad'a+u—a‘auata,u € R. (7.2)
Proof. = If Eq.(7.1) is consistent, then there exists xy € R such that a*xpa* = a*, this gives a* = aa*a*. Hence,
a € REP by [11, Theorem 1.1.3].

& Ifa € RE?, then a* = a*aa*aa™, it follows that x = aa*a is a solution. Hence, Eq.(7.1) is consistent.
Now, if a € REP, then x = aa*a is a solution. Hence

a*(aa*a + u — ataua*a)at = a’aataat = o,

it follows that the formula (7.2) is the solution to Eq.(7.1).
Let x = xq be any solution to Eq.(7.1). Then a*xoa* = a*.

Choose u = xg. Then

atauata = a*a?(@*xoa)a = ata’a’a = aa’a.

It follows that xy = aa*a + u — a*aua*a has the form of the formula (7.2).
Thus the general solution to Eq.(7.1) is given by (7.2). O

Theorem 7.2. Let a € R* N R*. Then a € REEY if and only if Eq.(7.1) is consistent and the general solution to
Eq.(7.1) is given by

x= (") +u—atauata,u € R. (7.3)
Proof. It is an immediate result of Theorem 3.2 and Lemma 7.1. m|
Lemma 7.3. Let a € R* N R*. Then the general solution to the following equation is given by (7.3).

ataxa’a® = a’. (7.4)

Proof. First, we have

* % %

ata(@®y +u —atauata)a’a* = ata(@*yaa = a".

Hence, the formula (7.3) is the solution to Eq.(7.4).
Now, let x = xj be any solution to Eq.(7.4). Then

ataxga‘a* = a*.

This gives
ataxoata = ataxea’ (at) = @ axea’a?) (@) (@t = a' @) @) = @*)ata.

Choose u = xy — (a*)*. Then
atauata = ataxoaTa — a*a(@*)'ata = (@*)ata - (@*)aTa =0,

and
xo = (@) +x0 — @) = (@) +u=@" +u—-atauata.

Thus the general solution to Eq.(7.4) is given by (7.3). O

Theorem 7.2 and Lemma 7.3 induce the following theorem.
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Theorem 7.4. Leta € R* N R*. Then a € R%SEP if and only if Eq.(7.1) has the same solution as Eq.(7.4).
Now we establish the following euqation
ataxa'a* (a") = a'a. (7.5)

Theorem 7.5. Let a € R* N R*. Then a € ROE if and only if Eq.(7.5) is consistent and the general solution to
Eq.(7.5) is given by (7.3).

Proof. => Since a € R°°t?, a*a = a*(a*)* by Theorem 3.6. This gives x = (a*)* + u — a*aua*a is the solution to

Eq.(7.5).
Now let x = xg be any solution to Eq.(7.5), one has

ataxoa'at (@*) = a'a.

This induces
ataxoata = ataxoa*ata(@®)ata = (ataxea) (@t (@) a*)(a(a*) ata)

= (ataxoa'a® (@) )a‘a(a®) aa = a*aa*a(@®)ata = a*aa*a(a®)*
— a* @)y a'a@) = ata@y = @
Choose u = x3. Then
xo = (@) +x0 — @) = (@) +u—ataxpata = (@*) + u —atauata.

Hence, the general solution to Eq.(7.5) is given by (7.3).
&= It follows from the assumption that

ata(@®y +u —atauata)aiat (@) = a'a.
One gets a*(a*)* = a*a. Hence,a € R®F. O

The following corollary follows from Theorem 7.2 and Theorem 7.5.

Corollary 7.6. Leta € R* N\ R*. Then a € RSEP if and only if Eq.(7.5) has the same solution as Eq.(7.1).

8. Characterizing GSEP elements by the form of solution to related equations
Now, we know that if a € R®EP, then (a*)* = aa*a and a € REP by Theorem 3.2, so we get
a'a =a' @) =a*@")ata.
This inspires us to give the following equation
a'x = a'(a*)a*x. (8.1)

Theorem 8.1. Let a € R* N R*. Then a € R%EP if and only if Eq.(8.1) has at least one solution in x, =
{a,a", (@*)",a*,a", (a")}.

Proof. => Assume thata € R°°FP. Then a* = a*(a*)*a*. Hence, every element in x, is a solution to Eq.(8.1).
&= From the hypothesis, there exists xq € x, such that

a'xy = a' (@) atx.
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If xo € T, = {a,a", (a*)*}, then xox{ = aa* by [26, Theorem 4.2], this induces

A =a‘aat = a'xpx) = a'(@"axox} = a'(a*)ataat = a*(a")a’.

+

o =a*a, this leads to

If x € y, = {a*,a*, (a")*}, then xox

a'ata = a‘xox) = a'(a")a xox} = a'(a*)atata.

Multiplying the equality on the right by (a*)*a*, one gets
a' =a'@*yat.

In any case, we havea € RS,

Now we revise Eq.(8.1) as follows
a‘x = a*(a")ya*.

Theorem 8.2. Let a € R* N R*. Then the general solution to Eq.(8.2) is given by

, p, u, v € Rwithap = a*a’p.

x = (@")a*a*pat +u—aatu
y=aata’p+v—aitvata

Proof. First, we claim that the formula (8.3) is the solution to Eq.(8.2). In fact
a'x = a*((@")'ata’pa* + u —aa*u) = a*(a*ya*a’pat = ata’pat = apa*
=a*@*ya‘a*alpat = a*(@*) (@ata’p + v — aatvata)at = a*(@*) ya®.
X =

X
B * be any solution to Eq.(8.2). Then

Next, let {
¥Yy=Yo

*

a‘xg = a*(a*) yoa.
Choose p = a*a*(a*)yoata, u = xo — (a*)'a*a*pa*, v = yo — a*a*a’p. Then
— ot (AN T — ANt — A — ata(q* — 4t — 4t,2
ap=aa*a’ (@) yoata=a"(a")yoa a=axpa=a"alaxoa) =a’alap) =a’a’p,
aa*u = aa*(xo — (a")'ata’pa®) = aa*xo — aa* (a")'ata’pa* = aatxo — (a*)apa*
=aa*xg — (a*) (a*xoa)a™ = aa*xg — aa*xoaa* = (a*)'a’xg — aatxpaa*
= (a") (@ (@")'yoa®) — aa*xpaa* = (a*)*(@" (") yoa*)aat — aa* xoaa*
= (a*) (@ xo)aa* — aa* xoaa® = 0.

Thus

xo = (a")'a*a’pa* +u —aatu,

aa*vata = aa*(yo — a'ata’p)ata = aatyoata — aata‘ataPpata
=aa*yoata — aata‘ata(ata’(a") yoata)ata
= aa*yoa*ta —aata‘a*a(a®) yoata

=aa*yoata —aa*yoata = 0.

Hence, yo = a*a*a’p + v — aa*va*a. Hence, every solution to Eq.(8.2) has the form of the formula (8.3).

4660

(8.2)

(8.3)
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Theorem 8.3. Let a € R* N R*. Then a € R%°EP if and only if the general solution to Eq.(8.2) is given by

.3 . s PuveER (8.4)

x =aa‘a*pat +u—aatu
y=aa‘a’p+v—aatvata

Proof. => Since a € R°°t?, ag* = (a*)*a* by Theorem 3.5. Hence, by Theorem 8.2, we are done.
&= The assumption implies

a*(aa*a’pa* + u — aa*u) = a*(@") (a'a*a’p + v — aatvata)a®,
a‘aa*a*pa* = a*(a*)'a*ata’pat = apa* forallp € R.

Especially, choose p = a*, one has
a‘aa* = aata”.
Multiplying the equality on the left by a*a, one obtains

adtat =a”.

Hence, a € REP. This gives a* = aa®a™ = a*aa*, that is, (a*)* = aa*a. Hence, a € ROSEP, O

Theorem 8.4. Leta € R* N R*. Then a € R%°EP if and only if the general solution to Eq.(8.2) is given by

x = (@")a*a*pat +u—aatu

+( Vot o+ 3 + +,p,u,veR. (8‘5)
y=a(@a)aa'a’p+v—aavaa

Proof. = Assume thata € RCEP. Then a € REP and a*a = a*(a*)*. It follows that

a‘a*a’p = a'aata*a’p = a* (a"y'atata’p.

By Theorem 8.2, we are done.
&= According to the assumption, we have

a((a"yata’pa® + u —aa*u) = a*(@") (a* (@*)atata®p + v — aatvata)a”,

this leads to
ata’pat = a*(@*y'a*(a")atata’pa* forallp € R.

Choose p = a*, we yield
at = a*(@*)at (a*)atatalat.

Multiplying the equality on the left by aa*, we get a®™ = aa*a*. Then multiplying the equality on the right by
a, one gives a*a = aa®. Hence, a € REP by [12, Theorem 1.2]. It follows that

at =a*(@*yat@*yat,
a=aata =ad"(@"Vat @) ata = ad® (@) aT (@) ata = (@) at @ty
a'a=a(a")at (@) =a"(a*) =a*(a").
Hence, a € RSP by Theorem 3.6. O

Theorem 8.5. Let a € R* N R*. Then a € RS if and only if the general solution to Eq.(8.2) is given by

.43 , p,u, vER. (8.6)

x = (aa")'a*pa* +u — aatu
y=da*a’p+v—aatvata
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Proof. => Assume thata € R°EP. Then a € R and a™ = a*. Hence, by Theorem 8.2, we are done.

&= From the assumption, we have

a*((aa®y'a®pa* + u — aa*u) = a*(a") (a'a*a®p + v — aa*vata)a*,

this leads to

a‘a’pat = a*(a")'a'a*a’pa® = apa* forallp € R.

Choose p = a*, one gets

a* = aa'a*.

Hence, a € RSEP by [11, Theorem 1.5.3]. O
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