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Abstract. Biomathematics is one of the most important interdisciplinary research area which has recently
attracted the attention of many researchers and scientists. In this area, population dynamics, biochemical
reactions and infectious diseases are modeled with mathematical tools such as differential equations. After
modeling, applying nonlinear analysis methods, the dynamical behavior of the model is checked. In this
paper, by the theory of dynamical systems, the local and global stability of an HIV viral infection model
will be studied. These results will be given using Lyapunov’s second method and LaSalle’s invariance
principle. We will find the equilibrium points of the system and prove the local and global stability of these
points based on the values of the basic reproduction number (R0). It will be proven that if R0 ≤ 1, then the
virus-free equilibrium E0 is globally stable and the viruses are cleared. If R0 > 1, then there exists a chronic
equilibrium E∗ which is globally stable and the infection becomes chronic. Some numerical examples will
be presented to review the theoretical results. Finally, by including the effects of drug therapy on the model,
we will introduce a new threshold parameter.

1. Introduction

To understand viral infection dynamics in biology, mathematical modeling has a great important role.
These models play a significant role in developing a better understanding of the disease and the various
drug therapy strategies. Nowak et al. [11], Nowak and May [12], Perelson and Nelson [13], and Perelson
et al. [14] proposed and studied basic models of viral infection. Recently, the authors in [5] have pre-
sented the global stability analysis of the viral infection model with logistic growth rate, general incidence
function and cellular immunity. They also investigated the stability, Hopf bifurcation and drug therapy
control of an HIV viral infection model with a logistic growth rate and two modes of transmission [15]
(To see some other works in this area refer to [8], [16] and [17]). In [13], the viral infection model has the form:
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

dT
dt
= s − dT − βTV,

dI
dt
= βTV − δI,

dV
dt
= pI − cV,

(1)

with the initial conditions T(0) = T0, I(0) = I0 and V(0) = V0.
Here, T(t), I(t) and V(t) denote the number of target cells or uninfected target cells, infected cells that

produce virus and HIV particles at time t. This model has been widely used for studying the mathematical
analysis of viral infections such as hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunod-
eficiency virus (HIV). In system (1), target cells (T) or CD4+ T helper cells produced at rate s, die at rate dT
and are infected by the virus at a rate βTV. Infected cells (I) are generated by a rate βTV and die at rate
δI. Free virus (V) is produced by infected cells at a rate pI and die at a rate cV. In system (1), the incidence
rate of infection βTV is bilinear. However, the actual incidence rate is probably not linear over the entire
range of T. Thus, it is reasonable to assume that the incidence rate is given by some nonlinear functional
response.

In this paper, it is assumed that the incidence rate of HIV is given by Crowley-Martin functional response,
βTV

1 + aT + bV + abTV
, where a, b > 0, which was introduced by Crowley and Martin ([1]). If a > 0 and b = 0,

then the Crowley-Martin functional response is reduced to Holling type II functional response ([9]). On
the other hand, when a = 0, b > 0, we have the functional response in Song and Neumann ([18]). The
Crowley-Martin functional response is reduced to Holing type I if a = 0 and b = 0. Also, we assume that
the population dynamics of CD4+ cells is as follows:

dT
dt
= s + rT(1 −

T
Tmax

) − dT −
βTV

1 + aT + bV + abTV
,

where r is the maximum proliferation rate and Tmax is the T cell population density at which proliferation
shuts off or is the maximum level of CD4+ cells in the human body.

In this paper the system



dT
dt
= s + rT(1 −

T
Tmax

) − dT −
βTV

1 + aT + bV + abTV
,

dI
dt
=

βTV
1 + aT + bV + abTV

− δI,

dV
dt
= pI − cV,

(2)

will be studied and some sufficient conditions will be stated about the local and global stability of the rest
points. All constants in the system are assumed to be non-negative.

The authors in [21] gave the following theorem for the global stability of positive equilibrium of system
(2) with r = 0.
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Theorem 1.1. ([21]) Suppose that

(i) R0 > 1,

(ii) cδ
( βV∗ + bβV2

∗

(1 + aT∗ + bV∗ + abT∗V∗)2 + d
)
>

dp(βT∗ + bβT2
∗ )

(1 + aT∗ + bV∗ + abT∗V∗)2 ,

(iii)
(
c + d + δ +

βV∗ + bβV2
∗

(1 + aT∗ + bV∗ + abT∗V∗)2

)
×

[
cd + dδ + (c + δ)

βV∗ + bβV2
∗

(1 + aT∗ + bV∗ + abT∗V∗)2

]
+ (c + δ)cδ

> p
(
c + δ + 2dp +

βV∗ + bβV2
∗

(1 + aT∗ + bV∗ + abT∗V∗)2

)
×

βT∗ + bβT2
∗

(1 + aT∗ + bV∗ + abT∗V∗)2 ,

(iv) d >
acδ
b
.

Then, the positive equilibrium (T∗, I∗,V∗) of (2) with r = 0 is globally asymptotically stable.

In this paper, without any extra condition, we will prove that if the basic reproduction number is greater
than one, then positive equilibrium is always globally asymptotically stable (refer to Theorem 3.2). The
organization of this article is as follows. In the next section, we will give some basic properties of the
solutions, find the equilibria of (2) and study the local stability of these points. In Section 3, using Lyapunov’s
second method and LaSalle’s invariance principle, some sufficient conditions will be given about the global
stability of the equilibria. Numerical analysis will be presented in Section 4 to illustrate our analytical
findings. Drug efficacy will be discussed in Section 5. The paper ends with a discussion of the obtained
results in the previous sections.

2. Local stability of the model

In this section, the local behavior of system (2) will be studied. Model (2) represents the evolution of a
cell population. Hence, the population should remain non-negative and bounded. Therefore, the positivity
and boundedness of solutions of (2) will be first established. Next, we will find the equilibria of (2) and
finally, the local stability of the rest points of (2) will be proven.

Theorem 2.1. All solutions of (2) starting from non-negative initial points exist for all t > 0 and remain bounded
and non-negative.

Proof. By Picard-Lindelöf theorem, the existence and uniqueness of solutions of (2) can be given. First, the
positivity of solutions will be proven. Define

R3
+ = {(T, I,V) ∈ R3 : T ≥ 0, I ≥ 0,V ≥ 0}.

For any solution (T(t), I(t),V(t)) ∈ R3
+, we have

Ṫ |T=0= s ≥ 0, İ |I=0=
βTV

1 + aT + bV + abTV
≥ 0, V̇ |V=0= pI ≥ 0.

Hence, the positivity of all solutions initiated inR3
+ is guaranteed due to the well-known theorem given by

Nagumo in [10].
Now let L(t) = T(t) + I(t). By computing the derivative of L along the solutions of (2),

L̇ = s + rT(1 −
T

Tmax
) − dT − δI = −dT − δI + rT −

rT2

Tmax
+ s ≤ −hL +M0,
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where M0 =
Tmaxr2 + 4rs

4r
and h = min{d, δ}. Thus, there exists t1 > 0 and M1 > 0, depending only on the

parameters of (2), such that L ≤ M1 for t > t1. Hence, T(t) and I(t) have an ultimately above bound M1. It
follows from the third equation of (2) that V(t) has an ultimately above bound M2. Let M̂ = max{M1,M2}.
Obviously, T(t) ≤ M̂, I(t) ≤ M̂ and V(t) ≤ M̂ for all large t. Therefore, the solutions are bounded and the
proof is complete.

To state our main results, the following definition will be needed.

Definition 2.2. The basic reproduction number R0 is defined the expected number of secondary infections produced
by an index case in a completely susceptible population.

This number measures the potential for disease spread within a body. If R0 < 1, then a few infected cells
introduced into completely susceptible cells will, on average, fail to replace themselves and the disease
will not spread. If, on the other hand, R0 > 1, then the number of infected cells will increase with each
generation and the disease will spread. For system (2), according to the concept of the next-generation
matrix in Diekmann et al. ([2]) and the reproduction number presented in van den Driessche and Watmough
([3]), we can compute the basic reproduction number as

R0 =
pβT0

cδ(1 + aT0)
,

where T0 =
( r − d +

√
∆

2r

)
Tmax and ∆ = (r − d)2 +

4rs
Tmax

.

By the values of R0, the local and global stability of equilibrium points of (2) will be studied. In the
following, a theorem about the existence of equilibria of (2) will be presented.

Theorem 2.3. System (2) has a unique virus-free equilibrium of the form E0 = (T0, 0, 0) if R0 ≤ 1. Moreover, except
E0, it has a unique chronic equilibrium E∗ = (T∗, I∗,V∗) for T∗ ∈ (0,T0) if d ≥ r and R0 > 1.

Proof. For any equilibrium, the following equations hold.

s + rT(1 −
T

Tmax
) − dT −

βTV
1 + aT + bV + abTV

= 0,

βTV
1 + aT + bV + abTV

− δI = 0,

pI − cV = 0.

(3)

Let f (T,V) =
βT

1 + aT + bV + abTV
. By (3), it can be obtained that:

f
(
T,

p
cδ

(s + rT(1 −
T

Tmax
) − dT)

)
=
δc
p
. (4)

Since V ≥ 0, it can be concluded that s+ rT(1−
T

Tmax
)− dT ≥ 0 which implies T ≤ T0. Hence, if T > T0, then

there is no equilibrium point. To find the equilibrium points of (2), we have the following steps:
1) If V = 0, then by (3), it can be concluded that I = 0. In this situation, there always exist virus-free
equilibrium E0 = (T0, 0, 0) with

T0 =
Tmax

2r

[
r − d +

√
(r − d)2 +

4rs
Tmax

]
.
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The rest point E0, shows the state that viruses are absent.
2) Suppose that V , 0. Consider the following function defined on [0,T0].

1(T) = f
(
T,

p
cδ

[
s + rT

(
1 −

T
Tmax

)
− dT

])
−
δc
p
.

We have 1(0) = −
δc
p
< 0 and 1(T0) = f (T0, 0) −

δc
p
=
δc
p

(R0 − 1) > 0 and

1′(T) =
∂ f
∂T
+

p
cδ

(r − d)
∂ f
∂V
−

p
cδ

( 2rT
Tmax

) ∂ f
∂V
.

Since
∂ f
∂T
> 0 and

∂ f
∂V
< 0, if r − d ≤ 0, then 1′(T) > 0. Hence, there exists a unique positive or chronic

equilibrium point E∗ = (T∗, I∗,V∗) with T∗ ∈ (0,T0), I∗ =
1
δ

[
s + rT∗

(
1 −

T∗
TM

)
− dT∗

]
and V∗ =

p
c

I∗.

Remark 2.4. By attention to the proof of Theorem 2.3, it can be concluded that if R0 < 1, then 1(T0) < 0. Hence,
there is no positive equilibrium with 0 < T < T0. If R0 = 1, then 1(T0) = 0 and E∗ = E0

In the following, the local asymptotic stability of these two equilibria will be given.

Theorem 2.5. If R0 < 1, then the disease-free equilibrium E0 is locally asymptotically stable and it is unstable if
R0 > 1.

Proof. The Jacobian matrix of (2) for any rest point Ê = (T̂, Î, V̂) has the form:

J(Ê) =



r − d −
2rT̂
Tmax

−
βV̂ + bβV̂2

(1 + aT̂ + bV̂ + abT̂V̂)2
0 −

βT̂ + aβT̂2

(1 + aT̂ + bV̂ + abT̂V̂)2

βV̂ + bβV̂2

(1 + aT̂ + bV̂ + abT̂V̂)2
−δ

βT̂ + aβT̂2

(1 + aT̂ + bV̂ + abT̂V̂)2

0 p −c


. (5)

For E0 matrix (5) reduces to

J(E0) =



r − d −
2rT0

Tmax
0 −

βT0

1 + aT0

0 −δ
βT0

1 + aT0

0 p −c


. (6)

The characteristic polynomial of (6) is(
λ + d − r +

2rT0

Tmax

)[
λ2 + (c + δ)λ + cδ −

pβT0

1 + aT0

]
= 0. (7)

The roots of (7) are:

λ1 = r − d −
2rT0

Tmax
,

λ2 =
−(c + δ) −

√
(c + δ)2 − 4cδ(1 − R0)

2
,

λ3 =
−(c + δ) +

√
(c + δ)2 − 4cδ(1 − R0)

2
.
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Hence, E0 is locally asymptotically stable for R0 < 1 and unstable for R0 > 1. If R0 > 1, then E0 is saddle with
dimWs(E0) = 2 and dimWu(E0) = 1 where Ws(E0) and Wu(E0) represent the stable and unstable subspaces
of E0, respectively.

In the following, we state a theorem about the local stability of the chronic equilibrium of (2), which
extends and improves Theorem 1.1 (Theorem 5.1 in [21]) and it is proven with fewer assumptions.

Theorem 2.6. If R0 > 1 and d ≥ r, then the chronic equilibrium E∗ is locally asymptotically stable.

Proof. For equilibrium E∗ = (T∗, I∗,V∗), the characteristic polynomial has the following form:

λ3 + a1λ
2 + a2λ + a3 = 0, (8)

where

a1 = c + δ + d − r +
2rT∗
Tmax

+
1

1 + aT∗

( s
T∗
+

rT∗
Tmax

+ r − d −
2rT∗
Tmax

)
> 0,

a2 =
bcδV∗

1 + bV∗
+ (c + δ)

(
d − r +

2rT∗
Tmax

)
+

c + δ
1 + aT∗

( s
T∗
+

rT∗
Tmax

+ r − d −
2rT∗
Tmax

)
> 0,

a3 =
bcδV∗

1 + bV∗

(
d − r +

2rT∗
Tmax

)
+

cδ
1 + aT∗

( s
T∗
+

rT∗
Tmax

+ r − d −
2rT∗
Tmax

)
> 0.

These coefficients are all positive since d ≥ r. According to the equilibrium point conditions, it can be
obtained that

βT∗V∗
1 + aT∗ + bV∗ + abT∗V∗

= s + rT∗(1 −
T∗

Tmax
) − dT∗,

or

βV∗
1 + aT∗ + bV∗ + abT∗V∗

=
s

T∗
+ r −

rT∗
Tmax

− d =
s

T∗
+

rT∗
Tmax

+ r − d −
2rT∗
Tmax
.

It is easy to conclude that

s
T∗
+

rT∗
Tmax

+ r − d −
2rT∗
Tmax

> 0.

In addition,

a1a2 − a3 =(c + δ)
bcδV∗

1 + bV∗
+ (c + δ)2

(
d − r +

2rT∗
Tmax

)
+

(c2 + cδ + δ2)
1 + aT∗

( s
T∗
+

rT∗
Tmax

+ r − d −
2rT∗
Tmax

)
+ (c + δ)

(
d − r +

2rT∗
Tmax

)2
+

c + δ
1 + aT∗

(
d − r +

2rT∗
Tmax

)( s
T∗
+

rT∗
Tmax

+ r − d −
2rT∗
Tmax

)
+

bcδV∗
(1 + aT∗)(1 + aV∗)

( s
T∗
+

rT∗
Tmax

+ r − d −
2rT∗
Tmax

)
+ (c + δ)

(
d − r +

2rT∗
Tmax

) 1
1 + aT∗

( s
T∗
+

rT∗
Tmax

+ r − d −
2rT∗
Tmax

)
+

c + δ
(1 + aT∗)2

( s
T∗
+

rT∗
Tmax

+ r − d −
2rT∗
Tmax

)2
> 0.

Hence, from Routh-Hurwitz Theorem ([6]), all roots of (8) have negative real parts. Therefore, E∗ is locally
asymptotically stable.



T. K. Gharahasanlou et al. / Filomat 38:13 (2024), 4663–4678 4669

3. Global stability of the model

In the previous section, the local stability of the rest points of (2) was obtained. Now, we study the
global behavior of the solutions of (2). In the following, the global stability of E0 will be proven.

Theorem 3.1. If R0 ≤ 1, then E0 is globally asymptotically stable.

Proof. Define the Lyapunov function as

L0(I,V) = I +
δ
p

V.

Computing the derivative of L0 along the solutions of (2), it can be obtained that

dL0

dt
|(1.2)= İ +

δ
p

V̇ =
βTV

1 + aT + bV + abTV
−
δc
p

V =
( βT

1 + aT + bV + abTV
−
δc
p

)
V =
(

f (T,V) −
δc
p

)
V.

Since
∂ f
∂T
> 0 and

∂ f
∂V
< 0, it can be concluded that

dL0

dt
|(1.2) =

(
f (T,V) −

δc
p

)
V ≤
(

f (T0, 0) −
δc
p

)
V =
( βT0

1 + aT0
−
δc
p

)
V =

δc
p

(R0 − 1)V.

Therefore,
dL0

dt
≤ 0 for all I,V > 0 if R0 ≤ 1. On the other hand,

dL0

dt
= 0 if and only if V = 0. Let Γ be the

largest invariant set in

D = {(T, I,V) | L̇0(T, I,V) = 0} = {E0}.

We have that Γ = {E0}. The global stability of E0 follows from LaSalle’s invariance principle ([7]).

In the sequel, the global stability of chronic equilibrium will be presented. We will prove the following
theorem with conditions of Theorem 2.6.

Theorem 3.2. If R0 > 1 and d ≥ r, then the chronic equilibrium E∗ is globally asymptotically stable.

Proof. Define the Lyapunov function as

L∗(T, I,V) = T − T∗ −
∫ T

T∗

δI∗
βηV∗

1+aη+bV∗+abηV∗

dη + I − I∗ − I∗ ln
I
I∗
+
δ
p

(
V − V∗ − V∗ ln

V
V∗

)
.

Function L∗(T, I,V) is positive definite with respect to (T−T∗, I− I∗,V−V∗). The time derivative of L∗(T, I,V)
along the positive solutions of (2) can be written as follows.

dL∗
dt
|(1.2)= Ṫ − δI∗

1 + aT + bV∗ + abTV∗
βTV∗

Ṫ + İ −
I∗
I

İ +
δ
p

(
V̇ −

V∗
V

V̇
)

= s + rT(1 −
T

Tmax
) − dT − δI∗

1 + aT + bV∗ + abTV∗
βTV∗

×

(
s + rT(1 −

T
Tmax

) − dT −
βTV

1 + aT + bV + abTV

)
−

I∗
I

( βTV
1 + aT + bV + abTV

− δI
)
−
δcV

p
−
δV∗
pV

(pI − cV).

(9)

From the model, we have

s = dT∗ + δI∗ − rT∗(1 −
T∗

Tmax
),
δc
p
=
δI∗
V∗
,

δI∗ =
βT∗V∗

1 + aT∗ + bV∗ + abT∗V∗
.

(10)
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Thus,

s + rT(1 −
T

Tmax
) − dT −

δcV
p
= dT∗ + δI∗ − rT∗(1 −

T∗
Tmax

) + rT(1 −
T

Tmax
) − dT −

δI∗V
V∗
, (11)

and

−δI∗
1 + aT + bV∗ + abTV∗

βTV∗

(
s + rT(1 −

T
Tmax

) − dT −
βTV

1 + aT + bV + abTV

)
= −

T∗
T

1 + aT + bV∗ + abTV∗
1 + aT∗ + bV∗ + abT∗V∗

×

(
dT∗ + δI∗ − rT∗(1 −

T∗
Tmax

) + rT(1 −
T

Tmax
) − dT

)
+ δI∗

V
V∗

1 + aT + bV∗ + abTV∗
1 + aT + bV + abTV

.

(12)

Also,

−
I∗
I

( βTV
1 + aT + bV + abTV

− δI
)
= −δI∗

I∗TV
IT∗V∗

1 + aT∗ + bV∗ + abT∗V∗
1 + aT + bV + abTV

+ δI∗. (13)

From (10)-(13), it can be obtained that

dL∗
dt
|(1.2)= dT∗

(
1 −

T
T∗
−

T∗
T

1 + aT + bV∗ + abTV∗
1 + aT∗ + bV∗ + abT∗V∗

+
1 + aT + bV∗ + abTV∗

1 + aT∗ + bV∗ + abT∗V∗

)
+
(
rT(1 −

T
Tmax

) − rT∗(1 −
T∗

Tmax
)
)
×

(
1 −

T∗
T

1 + aT + bV∗ + abTV∗
1 + aT∗ + bV∗ + abT∗V∗

)
+ δI∗

(
1 −

T∗
T

1 + aT + bV∗ + abTV∗
1 + aT∗ + bV∗ + abT∗V∗

+
V
V∗

1 + aT + bV∗ + abTV∗
1 + aT + bV + abTV

)
+ δI∗

(
1 −

I∗TV
IT∗V∗

1 + aT∗ + bV∗ + abT∗V∗
1 + aT + bV + abTV

)
+ δI∗

(
1 −

V
V∗
−

V∗I
I∗V

)
= −
[
d − r + r

(T + T∗
Tmax

)] (T − T∗)2(1 + bV∗)
T(1 + aT∗ + bV∗ + abT∗V∗)

+ δI∗
(
− 1 −

V
V∗
+

V
V∗

1 + aT + bV∗ + abTV∗
1 + aT + bV + abTV

+
1 + aT + bV + abTV

1 + aT + bV∗ + abTV∗

)
+ δI∗

(
4 −

T∗
T

1 + aT + bV∗ + abTV∗
1 + aT∗ + bV∗ + abT∗V∗

−
I∗TV
IT∗V∗

1 + aT∗ + bV∗ + abT∗V∗
1 + aT + bV + abTV

−
V∗I
I∗V

−
1 + aT + bV + abTV

1 + aT + bV∗ + abTV∗

)
.

(14)

Since d ≥ r, we have

d − r + r
(T + T∗

Tmax

)
> 0.

Note that

δI∗
(
− 1 −

V
V∗
+

V
V∗

1 + aT + bV∗ + abTV∗
1 + aT + bV + abTV

+
1 + aT + bV + abTV

1 + aT + bV∗ + abTV∗

)
= −

b(1 + aT)2

V∗(1 + aT + bV + abTV)(1 + aT + bV∗ + abTV∗)
(V − V∗)2.

(15)

On the other hand, since the arithmetic mean is greater than or equal to the geometric mean, it is clear that

4 −
T∗
T

1 + aT + bV∗ + abTV∗
1 + aT∗ + bV∗ + abT∗V∗

−
I∗TV
IT∗V∗

1 + aT∗ + bV∗ + abT∗V∗
1 + aT + bV + abTV

−
V∗I
I∗V
−

1 + aT + bV + abTV
1 + aT + bV∗ + abTV∗

≤ 0. (16)
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By (15) and (16), it can be concluded that
dL∗
dt
≤ 0 for all T, I,V > 0. Hence, the chronic equilibrium E∗ is

stable. On the other hand,
dL∗
dt
= 0 if and only if T = T∗, I = I∗,V = V∗. Let Λ be the largest invariant set in

D = {(T, I,V) | L̇∗(T, I,V) = 0} = {E∗}.

We have that Λ = {E∗}. The global stability of E∗ follows from LaSalle’s invariance principle ([7]).

4. Numerical Simulations

In the previous sections, the theoretical results of system (2) around the the equilibria E0 and E∗ were
presented. In this section, some light on the solutions around the equilibria of (2) will be shed. To observe
the dynamic behavior of system (2), some numerical simulations will be presented by using Python and
Runge-Kutta method, with hypothetical values in Table 1 and different values for β (Viral infectivity rate).

Table 1. Parameter Values used for simulation
Parameters Meaning Value (Unite) References
s Source rate of host cells 10 (cells ml−1day−1) [21]
r The Logistic growth rate of healthy cells 0.018 (day−1) [19]
d Decay rate of healthy cells 0.02 (day−1) [19]
Tmax Maximum level of host cells in the human body 1200 (Constant) [20]
a The positive parameter that describes the effects of capture

rate
0.00005 [20]

b The positive parameter that describes the effects of capture
rate

0.000001 [18]

δ Death rate of infected cells, not killing by CTL 0.8 (day−1) [20]
p Virion production rate 2.4 (virions cell−1day−1) [18]
c The clearance rate of virus 2 (day−1) [18]

By using these values and initial values (60, 10, 2), the following dynamic behavior of the system was
shown.

In the study of virus dynamics, the infection rate plays a vital role in describing the system’s behavior.
If we put β = 0.0008 (ml cell−1day−1), then the infective cells and the free virus will become extinct in the
system. By this argument, the virus-free equilibrium E0 = (T0, 0, 0) is asymptotically stable with values
T0 = 752.55 and R0 = 0.8703 < 1 (Fig. 1).

On the other hand, for β = 0.003, the chronic equilibrium E∗ is asymptotically stable with values
T∗ = 224.7, I∗ = 10.99 and V∗ = 13.19. In this case, R0 = 3.2637 > 1 and the roots of the characteristic
equation are −0.02+0.147i,−0.02−0.147i and −2.801 (Fig. 2). For a range of infection rate, β ≤ 0.003367, the
chronic equilibrium E∗ is asymptotically stable with a value T∗ ≥ 200 (Fig. 3). From biology, we know that
if T < 200 in a microliter of blood, then HIV becomes AIDS ([4]). Thus, we have a pretty level if β ≤ 0.00336.
Also, for a range of β ≥ 0.00337, the chronic equilibrium E∗ is asymptotically stable with a value T∗ < 200
(Fig. 4 and Fig. 5).

5. Drug efficacy

To investigate the effects of the drug on the disease model, consider two parameters η1 and η2, that
the efficacy of drug treatment in the prevention of new infections and viruses, respectively. Naturally, the
effect of the drug varies over time depending on the conditions of the disease. However, like the most
mathematical models for ease of calculation, this effect is assumed to be constant. Therefore, system (2)
with drug effectiveness becomes
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Figure 1: Solution trajectories as functions of time, tending to stable equilibrium E0 = (752.55, 0, 0) (β = 0.0008, R0 = 0.8703 < 1).
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Figure 2: Solution trajectories as functions of time, tending to stable equilibrium E∗ = (224.7, 10.99, 13.19) (β = 0.003, R0 = 3.2637 > 1).



dT
dt
= s + rT(1 −

T
Tmax

) − dT − (1 − η1)
βTV

1 + aT + bV + abTV
,

dI
dt
= (1 − η1)

βTV
1 + aT + bV + abTV

− δI,

dV
dt
= (1 − η2)pI − cV.

(17)
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Figure 3: Solution trajectories as functions of time, tending to stable equilibrium E∗ = (200.4, 11.25, 13.48) (β = 0.00336,R0 = 3.6553 > 1).
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Figure 4: Solution trajectories as functions of time, tending to stable equilibrium E∗ = (199.8, 11.25, 13.5) (β = 0.00337, R0 = 3.65 > 1).

Assume that parameters ηi, i = {1, 2} belong to interval [0, 1]. The beginning of the interval is related to
the lack of treatment and the end of the interval belongs to the time when drug treatment is one hundred
percent successful. For example, if η2 = 1, then the drug has been completely effective against viruses.
In figures 6, 7 and 8, for the different values of control parameter η2, the trajectory of susceptible cells,
infected cells and viruses are shown. Consequently, with the start of treatment, the ηi, i = {1, 2}, changes
between 0 and 1. Clinically, the number of healthy cells and viral load can be measured and displayed
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Figure 5: Solution trajectories as functions of time, tending to stable equilibrium E∗ = (153.7, 14.01, 11.67) (β = 0.00437,R0 = 4.7541 > 1).

statistically, while the number of infected cells is generally not reported. Follow the attitude of Perelson
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Figure 6: Trajectory of the susceptible cells with different values of control parameter η2.

and Nelson [13] and suppose
dV
dt
= 0. On the other hand, before therapy virus load changes are almost

constant. Consequently,
dI
dt
= 0 at the same time. Therefore, if (T0, I0,V0) corresponds to the pretreatment
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Figure 7: Trajectory of the Infected cells with different values of control parameter η2.
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Figure 8: Trajectory of the viruses with different values of control parameter η2.

mode initial condition for (17), then

(1 − η2)pI0 = cV0. (18)
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and

(1 − η1)
βT0V0

1 + aT0 + bV0 + abT0V0 = δI
0. (19)

From (17), (18) and (19), for η1 = η2 = 0, it can be concluded that

I0 =
cV0

(1 − η2)p
, T0 =

cδ + cδbV0

(1 − η2)p(1 − η1)β − δac − δabV0c
. (20)

With the placement T0 and I0 in the first equation of (17), V0 is also obtained. According to the progress of
HIV, suppose that at some point in time, T-cell changes are negligible compared to the changes in infected
cells and viruses. Shortly after starting treatment, let T = T0 be constant, one or both of ηi are positive and
I and V change according to the last two equations of (17) as follows


dI
dt
= (1 − η1)

βT0V
1 + aT0 + bV + abT0V

− δI,

dV
dt
= (1 − η2)pI − cV.

(21)

System (21) has two possible equilibria U0(0, 0) and U1(I1,V1) where

V1 =
(1 − η2)pI1

c
, I1 =

(1 − η2)p(1 − η1)βT0
− cδ − acδT0

bδ(1 − η2)p(1 + aT0)
.

The Jacobian matrix of (21) at an arbitrary point J∗ is given by

J∗ =

 −δ
(1 − η1)βT0

(1 + aT0)(1 + bV)2

p(1 − η2) −c

 . (22)

The characteristic equations associated with U0(0, 0) and U1(I1,V1) are respectively given by

λ2 + (c + δ)λ +
cδ(1 + aT0) − (1 − η2)p(1 − η1)βT0

(1 + aT0)
= 0, (23)

and

λ2 + (c + δ)λ + cδ
(1 − η2)p(1 − η1)βT0

− cδ − acδT0

(1 − η2)p(1 − η1)βT0 = 0. (24)

Let

F = c + δ,
E = cδ(1 + aT0) − (1 − η2)p(1 − η1)βT0,

E
′

= (1 − η2)p(1 − η1)βT0
− cδ − acδT0.

Suppose E , 0. If E < 0, then U0(0, 0) is a saddle point and if E > 0, then U0(0, 0) is a stable fixed point.
For the existence of equilibrium U1(I1,V1), E′ must be positive; in this case, E′ is a stable fixed point and
all eigenvalues of (23) have negative real parts and the corresponding equilibrium is asymptotically stable.
Otherwise for E′ < 0, U1(I1,V1) does not exist.
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If E > 0, then U0(0, 0) is asymptotically stable. With T constant and for t > t0, it can be concluded that

V(t) = V0[Qe−λ1(t−t0) + (1 −Q)e−λ2(t−t0)],

is the solution of the approximation equation of (21), where

λ1, λ2 =
−F ±

√

F2 − 4E
2

=

(c − δ) ±

√
(c + δ)2 + 4

(1 − η1)(1 − η2)pβT0

(1 + aT0)

2
.

On the other hand, we have

V(t = t0) = V0
dV
dt
|t=t0 = −η2cV0,

and if T0 =
cδ

(1 − η2)pβ
<

cδ
(1 − η2)p(1 − η1)β

, then it can be obtained that

λ1, λ2 =

(c − δ) ±
√

(c + δ)2 + 4
cδ

(1 + aT0)
2

, Q =
η2c − λ2

λ1 − λ2
.

According to the above calculations, we introduce the new threshold parameter

R01 =
(1 − η2)p(1 − η1)βT0

cδ
,

which the status of the disease progression depends on. If R01 is more than one, then the disease will
worsen and with R01 less than one disease will be removed.

6. Discussion and conclusion

In this work, we analyzed, analytically and numerically, a virus dynamics model with an incidence rate
of Crowly-Martin type. By Lyapunov’s second method and using LaSalle’s invariance principle, we have
presented that if one virus produces one or less than one virus during its lifetime (R0 ≤ 1), the virus cannot
attack and will soon be cleared or equivalently, the virus-free steady state E0 is globally asymptotically
stable. Also, if one virus produces greater than one virus during its lifespan (R0 > 1) and d ≥ r, the virus can
invade and will soon be able to spread in the T cells population or equivalently, the chronic equilibrium E∗ is
globally asymptotically stable. It is observed that, when the infection rate β ≤ 0.1269, then the disease does
not become to AIDS level. To investigate the effect of the drug on the treatment process of HIV, we defined
controls and applied them to system (2). The stability of the equilibria of the new system was investigated.
According to the calculations related to drug therapy, we obtained a new threshold parameter R01 such
that if R01 is less than one, the disease will improve; otherwise, the disease has not responded well to drug
therapy.

We hope that our analytical and numerical results may give a new idea to the experimental biologists
and physicians to find a suitable way to control the infection.

Declarations of interest

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.



T. K. Gharahasanlou et al. / Filomat 38:13 (2024), 4663–4678 4678

Acknowledgment

The authors would like to thank anonymous referees for their carefully reading the manuscript and
such valuable comments, which has improved the manuscript significantly.

References

[1] P. H. Crowley, E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J.
N. Am. Benthol. Soc. 8. (1989) 211-221.

[2] O. Diekmann, J. A. P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models
for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990) 365–382.

[3] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of
disease transmission, Math. Biosci. 180 (2002) 29–48.

[4] J. E. Gallant, 100 Questions & Answers about HIV and AIDS, Jones and Bartlett Publishers, Canada (2008).
[5] T. K. Gharahasanlou, V. Roomi and Z. Hemmatzadeh, Global stability analysis of viral infection model with logistic growth rate,

general incidence function and cellular immunity, Mathematics and Computers in Simulation 194 (2022) 64–79.
[6] I. S. Gradshteyn, I. M. Ryzhik, Routh–Hurwitz theorem, in: Tables of Integrals, Series, and Products, Academic Press, San Diego,

(2000).
[7] J. K. Hale, S. Verduyn Lunel, Introduction to Functional Differential Equation, Springer, New York (1993).
[8] Z. Hemmatzadeh, V. Roomi and T. K. Gharahasanlou Stability, Hopf Bifurcation and Numerical Simulation of an HIV Model

with Two Modes of Transmission and with Cellular and Humoral Immunity, International Journal of Bifurcation and Chaos
33(14) (2023) 2350162, DOI: 10.1142/S0218127423501626

[9] D. Li, W. Ma, Asymptotic properties of an HIV-1 infection model with time delay, J. Math. Anal. Appl. 335 (2007) 683-691.
[10] M. Nagumo, Uber die Lage der Integralkurven gewohnlicher Differential gleichungen, Proc. Phys. Math. Sot. Japan 24 (1942),

551-559.
[11] M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas, H. Mcdade, Viral dynamics in hepatitis B virus infection,

Proc. Natl. Acad. Sci. USA 93(9) (1996) 4398-4402.
[12] M. A. Nowak, R. M. May, Viral Dynamics, Oxford University Press, Oxford, 2000.
[13] A. Perelson, P. Nelson, Mathematical models of HIV dynamics in vivo, SIAM Rev. 41 (1999) 3-44.
[14] A. Perelson, A. Neumann, M. Markowitz, J. Leonard, D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span,

and viral generation time, Science 271 (1996) 1582-1586.
[15] V. Roomi, T. K. Gharahasanlou and Z. Hemmatzadeh, Stability analysis, Hopf bifurcation and drug therapy control of an HIV

viral infection model with logistic growth rate and cell-to-cell and cell-free transmissions, International Journal of Bifurcation
and Chaos 32(10) (2022) 2250147, DOI: 10.1142/S0218127422501474.

[16] V. Roomi, H. Afshari and T. K. Gharahasanlou, Global Stability of an HIV Dynamical Model with Crowley-Martin Functional
Response, Letters in Nonlinear Analysis and its Applications 1(1) (2022) 33-40.

[17] V. Roomi, T. Kasbi and Z. Hemmatzadeh, Stability and Hopf Bifurcation of a Mathematical Model of HIV-1 with Two Saturation
Responses, Letters in Nonlinear Analysis and its Applications 1(3) (2023) 127-138, https://doi.org/10.5281/zenodo.10423736.

[18] X. Song, A. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl. 329 (2007) 281-297.
[19] Y. Yang, L. Zou,and S. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell

transmissions. Mathematical Biosciences, 270 (2015) 183-191.
[20] X. Zhou, X. Shi, Z. Zhang and X. Song, Dynamical behavior of a virus dynamics model with CTL immune response, Applied

Mathematics and Computation, 213(2), (2009), 329-347.
[21] X. Zhou, J. Cui, Global stability of the viral dynamics with Crowley–Martin functional response, Bull. Korean Math. Soc. 48(3)

(2011) 555-574.


