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Abstract. We study the non-equal-neighbor model introduced by Broughan and Barnett (2009) to study
the distribution of the residue classes of factorials modulo p and obtain an estimate which shows that the
average analogue sequence has a Poisson distribution.

1. Introduction

The sequence of factorials {x!}x≥1, generated by the fundamental multiplicative rule, has contrasting
properties through its particular elements, and by itself as a whole through the general distribution that its
components follow. Thus, on the one hand, the elements x! := 1 × 2 × 3 × · · · × x of the sequence store an
ample number of arithmetic properties as x increases, and, on the other hand, the numbers x! grow rapidly,
becoming more and more distant from one another, and, according to the Stirling formula, their size is

x! ∼ xxe−x
√

2πx
∑
k≥0

ak

xk
,

where a0 = 1, a1 = 1/12, a2 = 139/51840, . . . , the general explicit formula of the coefficients ak being obtained
by Nemes [21, Corollary 2]. This unfolds convincingly by looking at the residue classes x! (mod p), where p
is a prime number. If p increases, the original order in the resulting finite sequence {x! (mod p)}1≤x≤p is
significantly altered, its outlook being taken on and showing the attributes of a random sequence. The fact
was formally stated in 1963 as an open problem by Stauduhar [22, Problem 7] (see also Guy [15, Problem
F11] and [5, 6]).

Conjecture 1 (R. Stauduhar). Let p be a prime number and let h(p) be the number of distinct residue classes of
1!, 2!, . . . , (p − 1)! (mod p). Then

lim
p→∞

h(p)
p
= 1 −

1
e
.
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Questions related to the main matter of the distribution of factorials modulo p have been often considered
(see [7–9, 13, 14, 16, 17, 19]). Some effective results on the problem have been obtained (see [1, 4, 5, 10, 12]),
the most recent showing that the number of distinct residue classes modulo p achieved by the sequence
1!, 2!, . . . , (p − 1)! is at least

(√
2 − o(1)

)√
p (Grebennikov et al. [14]). Note the square root of p in the lower

bound is still quite far from (1 − 1/e)p, or to at least a positive proportion of the residue classes mod p that
are expected to be covered by the factorials as p gets large.

As the problem is hereditary, in the sense that the distribution of the factorials being fairly uniform
along the residue classes mod p is likely the same over short intervals, the matter also attracted attention.
Thus, on short intervals, various nontrivial results have been obtained by adapting techniques ranging
from the evaluation of the associated sums of characters, exponential estimates or the moments counting
the number of representations of a residue class as factorials or analyzing the distribution of the products
of several factorials in residue classes mod p (see [8–11, 14, 16, 18, 20]).

As several numerical experiments show the random character of the sequence of residue classes x!
(mod p), one should reckon its distribution to resemble that of a Poisson process, and the following
conjecture formally states this expectation.

Conjecture 2 (CZ [6]). For any integer k ≥ 0, the proportion of residue classes y ∈ Zp for which there are exactly k
positive integers 1 ≤ x ≤ p − 1 for which x! ≡ y (mod p) tends to the limit 1/(ek!), as p→∞.

Notice that when k = 0 Conjecture 2 reduces to Stauduhar’s Conjecture and the general statement
says that if p is sufficiently large, then the elements of the sequence of factorials {x! (mod p)}1≤x≤p have
appearances as the events in a Poisson process with mean λ = 1.

Numerical evidence and a statistical model adapted to measure with precise estimates the distribution
of sequences analogue to that of the factorials modulo p are presented in [6]. In this paper we take a step
further. While the order is broken and many arithmetical properties of the factorials are lost with it, a
feature that is still preserved is the fact that modulo p the adjacent elements of the sequence, that is, x!
(mod p) and (x + 1)! (mod p), always remain distinct if 1 ≤ x ≤ p − 2. The statistical model associated with
this ‘non-equal-neighbor’ property is investigated by Broughan and Barnett [3], who showed that the average
sequence analogue to that of the factorials should satisfy Conjecture 2 if k = 0. Our aim is to show that
an average sequence of numbers satisfying the ‘non-equal-neighbor’ property does indeed behave like a
Poisson process.

To state things precisely, let us suppose that M is a set of M > 0 positive integers. If n is a positive
integer, consider the subset of n-tuplesU ∈Mn that have no equal adjacent components. Also, letN ⊂M
be a subset with n elements.

In the particular case of the problem with the factorials (mod p),Mwould consist of all residue classes
(mod p), andN ⊂Mwould contain the actual values taken by the residue classes x! (mod p) for 1 ≤ x ≤ p,
classes that can be repeated a number of k ≥ 0 times.

The following k-counter function labels the tuples x ∈ U by the number of repetitions their components
would have as elements ofN :

mk(x) =
∣∣∣{y ∈ N : y is represented exactly k times in x}

∣∣∣ . (1)

Our main object is to estimate the proportion of sequences of n elements fromM, whose neighboring
terms are always distinct, and are reached exactly k times by the elements of N . The next theorem shows
that almost all sequences with non-equal adjacent terms can be described as ‘random’ since, in the limit,
they follow a Poisson distribution.

Theorem 1. Let λ ∈ (0, 1], γ ∈ [0, 1), δ ∈ (0, (1 − γ)/2) and let k ≥ 0 be integer. Suppose the integers n and M
satisfy the inequalities k ≤ n ≤M and M = n/λ+O(nγ), uniformly on λ and k as n tends to infinity while γ is fixed.
Then

1
|U|
·

∣∣∣∣{x ∈ U :
∣∣∣∣mk(x)

n
−
λk

k!
e−λ

∣∣∣∣ < n−δ
}∣∣∣∣ = 1 −Ok,λ

(
nγ+2δ−1

)
.
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(The notation Ok,λ

(
nγ+2δ−1

)
as n tends to infinity represents a function that is asymptotically bounded above

by a constant multiple of nγ+2δ−1, but the constant may change with k and λ. In other words, it means that
the function grows no faster than nγ+2δ−1 as n becomes very large, while k and λ are kept fixed.)
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Figure 1. For each prime p in the interval [p300, p600) = [1987, 4397) are represented the residue classes x! (mod p) with x ∈ [1000, 1300)
(left) and 300 randomly selected residue classes (mod p) with non-equal neighbors (right). Two slightly different color-maps are used
for the two representations, as the textures would otherwise be almost indistinguishable to the naked eye.

While the ‘non-equal-neighbor‘ model proves successful covering a large class of subsequences of n
elements chosen fromM, one needs to impose supplementary conditions on the subsequences on which
the averages are calculated. Further studies are needed in order to obtain results on the distribution of
thinner sets of sequences that resemble the factorials and get closer to the precise statements such as that in
Conjecture 2.

Various numerical experiments fully support the type of distribution summarized in Conjecture 2. A
few of them are discussed in [6]. A different test is shown in Figure 1. There, the modular values of
factorials taken from a fixed interval of length 300 are shown for comparison with those of a set of 300
residue classes (mod p) randomly chosen so that they satisfy the non-equal-neighbor condition. The
square representations have three hundred lines each, corresponding to the prime numbers starting with
the 300th prime p300 = 1987. Notice how the average brightness and color hues of the two color-maps used
gradually change with increasing p due to the larger and larger number of residue classes that have to be
represented.

In Figure 2 one can see the values of two other types of ‘factorial-alike’ sequences (mod p), for 300
consecutive primes from two different intervals. For each p ∈ [p2000, p2300), in the image on the left, on
the line corresponding to p are shown in different colors the values of the products 2 × 3 × 5 × · · · × px
(mod p) for 1000 ≤ x < 1300. In the representation on the right-side of Figure 2, the ‘factorials’ of the so
called ‘square-prime’ numbers are shown analogously. The recently introduced square-prime numbers [2]
are defined as the elements of the union of sets

SP =
⋃
k≥2

{k2p : p prime} (2)

ordered increasingly. The first 26 square-prime numbers are: 8, 12, 18, 20, 27, 28, 32, 44, 45,48, 50, 52, 63, 68, 72,
75, 76, 80, 92, 98, 99, 108, 112, 116, 117, 124. Let sk denote the kth square-prime number. The sequence {sk}k≥1
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Figure 2. ‘Factorials’ of primes (left) and ‘factorials’ of SP numbers belonging to the set (2) (right). In the representation on the left,
the primes p belong to the interval [p2000, p2300) = [17389, 20357) and, on the representation on the right, the primes are chosen from
[p1500, p1800) = [12553, 15401). Then, for each x ∈ [1000, 1300), the point of coordinates (p, x) represents the residue class modulo p of
the product of primes

∏
1≤k≤x pk (left), and the product of square-primes

∏
1≤k≤x sk (right).

is interesting because it has mixed properties, some of which are similar or closely related to the se-
quence of prime numbers. In the square on the right of Figure 2 the point of coordinates (p, x) ∈
[p1500, p1800) × [1000, 1300) has the color associated to the residue class of s1 × s2 × · · · × sx (mod p). Note
that both these ‘factorial-alike’ sequences satisfy the non-equal-neighbor property and their distributions
appear to be no different than those of the sequences shown in Figure 1.

The paper is organized as follows: in Section 2 we introduce a few combinatorial results that are needed
in the subsequent arguments of the proof of Theorem 1. In Section 3 we obtain an estimate for the average of
proportions mk(x)/n over all sequences x of n elements inM that satisfy the non-equal-neighbor condition.
Then, in Section 4, we show that the associated second moment about this average is by comparison much
smaller. This allows us to complete the proof of the main Theorem 1 in the final Section 5.

2. Notations and preliminary results

Suppose n ≥ 2, M ≥ 3 and letU =U(M,n) be the set of all n-tuples with components inM and no two
neighbor components equal, that is,

U(M,n) = {x = (x1, . . . , xn) ∈ Mn : x j , x j+1, 1 ≤ j ≤ n − 1}.

Note that the cardinality of U is equal to M(M − 1)n−1, because there are M possible ways to choose x1 as
the first component of an n-tuple, and for each choice of x1 there are M − 1 ways to choose x2 different
from x1. And so on, there are (M − 1) ways to choose xn different from xn−1. Similarly, for any fixed y ∈ N ,
the number of x ∈ U with no component equal to y is equal to (M − 1)(M − 2)n−1. We state the remark in
summary in next lemma.

Lemma 1. Let n ≥ 2 and M ≥ 3. Then

|U(M,n)| =M(M − 1)n−1 , (3)
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and, for any y ∈ N , we have∣∣∣{x ∈ U : x = (x1, . . . , xn) and x j , y for 1 ≤ j ≤ n }
∣∣∣ = (M − 1)(M − 2)n−1 . (4)

The following lemma is elementary, but being applied several times in slightly modified forms, for the
clarity of the presentation, we state it here as a reference result.

Lemma 2. Let h, z ≥ 0 be integers and let

R(z, h) =
∣∣∣{(s1, . . . , sh) ∈Nh : s1, . . . , sh ≥ 1; s1 + · · · + sh = z}

∣∣∣ . (5)

If z = 0 or h = 0 then R(z, h) = 0 is set to 0. Then

R(z, h) =
(
z − 1
h − 1

)
.

(By convention, if h = 0, the set whose cardinality is counted by R(z, h) is empty, and the binomial coefficient is equal
to 0 if either of its two parameters is negative.)

Proof. The initial values of R(z, h) are shown in the next table:

h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 · · ·

z = 0 0 0
z = 1 0 1
z = 2 0 1 1
z = 3 0 1 2 1
z = 4 0 1 3 3 1
z = 5 0 1 4 6 4 1
...

...
...

...
...

...
...

. . .

The values located in the triangle on the upper right side that are missing from the table are all equal
to 0.

Any tuple counted in the definition of R(z, h) can be put into a one-to-one correspondence with either a
tuple that is counted in R(z− 1, h) or with a tuple that is counted in R(z − 1, h − 1). Precisely, the association
is given by

(α, β, . . . , ω)⇝ (α − 1, β, . . . , ω) if α > 1 or
(α, β, . . . , ω)⇝ (β, . . . , ω) if α = 1,

so that, R(z, h) = R(z − 1, h) + R(z − 1, h − 1) and the lemma follows.

For integers h, z ≥ 0 and K ≥ 1 define

RK(z, h) =
∣∣∣{(s1, . . . , sh) ∈Nh : s1, . . . , sh ≥ K; s1 + · · · + sh = z}

∣∣∣ . (6)

If z = 0 or h = 0 then, by definition, RK(z, h) = 0. Notice that R1(z, h) = R(z, h). The next lemma gives a
closed formula for RK(z, h).

Lemma 3. Let h, z ≥ 0 and K ≥ 1 be integers. Then

RK(z, h) = R(z − h(K − 1), h) =
(
z − h(K − 1) − 1

h − 1

)
. (7)

(By convention, the binomial coefficient is equal to 0 if either of its two parameters is negative.)
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Proof. Let us first note that according to the definition, the table analogous to the one for K = 1 in the proof
of Lemma 2 has only zeros on the first column, and also on the first K rows. Then, on the 2nd column,
starting with the line z = K, all values are equal to 1. These entries are enough to build the entire table with
the recursive formula

RK(z, h) = RK(z − 1, h) + RK(z − K, h − 1),

which follows from the one-to-one correspondence

(α, β, . . . , ω)⇝ (α − 1, β, . . . , ω) if α > K or
(α, β, . . . , ω)⇝ (β, . . . , ω) if α = K,

holding between the sets of tuples that are counted in (6).
As a result, we obtain an infinite matrix whose lower left triangle is similar to the Pascal triangle for

K = 1, with the exception that the columns are shifted down so that column h has above the first nonzero
entry hK zeros for all h ≥ 0. Consequently it follows that RK(z, h) = R(z − h(K − 1), h) and (7) follows from
Lemma 2. This completes the proof of the lemma.

Lemma 4. Let h ≥ 1 and z ≥ 0 be integers and let

U(z, h) =
∣∣∣{(s0, . . . , sh) ∈Nh : s0 ≥ 0, s1, . . . , sh−1 ≥ 1; sh ≥ 0; s0 + · · · + sh = z}

∣∣∣ . (8)

Then

U(z, h) =
(
z + 1

h

)
=

zh

h!
+Oh

(
zh−1

)
.

The estimate holds as z tends to infinity while h is kept fixed, and the constant in the big-O term depends on h.

Proof. The set whose cardinality is counted in relation (8) is split in four disjoint subsets in which all s j’s are
positive, only one of s0 or sh is 0, or both s0 and sh are zero, respectively. The cardinalities of these subsets
are calculated by using Lemma 2. Thus, we obtain:

U(z, h) = R(z, h + 1) + R(z, h) + R(z, h) + R(z, h − 1)

=

(
z − 1

h

)
+

(
z − 1
h − 1

)
+

(
z − 1
h − 1

)
+

(
z − 1
h − 2

)
.

The lemma follows after we group the binomial coefficients by two and use their recurrent generating
formula:

U(z, h) =
(
z
h

)
+

(
z

h − 1

)
=

(
z + 1

h

)
=

(z + 1)z(z − 1) · · · (z − h + 2)
h!

=
zh

h!
+Oh

(
zh−1

)
.

Lemma 5. Let h ≥ 1 and K ≥ 1 be integers. Then

RK(z, h) = zh−1

(h − 1)!
+Oh,K

(
zh−2

)
. (9)

The estimate holds as z tends to infinity while h and K are kept fixed, and the constant in the big-O term depends on h
and K.

Proof. The lemma follows from formula (7).
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For any integer k ≥ 0, let P(k) denote the set of partitions of k in exactly k+ 1 non-negative integer parts,
that is,

P(k) :=
{
L = (l0, . . . , lk) ∈ Zk+1 : l0, . . . , lk ≥ 0; l0 + · · · + lk = k

}
. (10)

Lemma 6. The elements of P(k) are the tuples formed by the exponents of the monomials zl0
0 · · · z

lk
k in the expansion

of (z0 + · · · + zk)k. The coefficient of zl0
0 · · · z

lk
k in the expansion of (z0 + · · · + zk)k is the multinomial coefficient( k

l0,...,kk

)
= k!

l0!···lk! .

Proof. The first part of the lemma follows by the combinatorial interpretation of the definition (10) and the
formula by induction build on the binomial theorem.

3. An average on tuples with no-equal-neighbor components

In this section we calculate the average of the probabilities that an element inN is represented exactly k
times by tuples x ∈ Mn with no equal neighbor components. For any integers M ≥ 1 and 0 ≤ k ≤ n, this is
defined by

A(k; M,n) :=
1

|U(M,n)|

∑
x∈U(M,n)

mk(x)
n
. (11)

3.1. The limit of A(k; M,n) as n/M tends to λ
In order to evaluate the sum of mk(x)’s in (11), according to the definition (1), in a generic tuple x ∈ U,

we mark the positions whose components are equal to a certain value y ∈ N and then make the counting
on each of the demarcated clusters.

Suppose k ≥ 1. Let y ∈ N and let x = (x1, . . . , xn) ∈ U and write x = (∗, y, ∗, y, ∗, · · · , y, ∗), indicating
by ∗’s the clusters of components that are not equal to y. Let s0, s1, . . . , sk be the number of components that
separate the y’s from the margins or between two consecutive of them. (Occasionally, by s j and not only
by j, we refer to the jth cluster.) The non-equal-neighbors requirement is expressed by the following set of
conditions{

s0 ≥ 0, s1 ≥ 1, . . . , sk−1 ≥ 1, sk ≥ 0
s0 + s1 + · · · + sk = n − k.

(12)

There are two cases: at the margins, before the first or after the last y and in the interior, between
consecutive y’s. In the interior, there is always at least one different component between two consecutive y’s.
Therefore, for any j, 1 ≤ j ≤ k− 1, there are (M− 1)(M− 2)s j−1 ways to fill the s j components different from y
and satisfying the non-equal-neighbor requirement. At the margins, the same formula applies, except if s0
or sk = 0 and there is nothing to be filled.

Let ε0 = 1 if s0 ≥ 1 and ε0 = 0 if s0 = 0 and similarly, let εk = 1 if sk ≥ 1 and εk = 0 if sk = 0. Then, the
above description summarizes as the following formula∑

x∈U

mk(x) = n
∑

s0,sk≥0
s1,...,sk−1≥1

s0+···+sk=n−k

(
(M − 1)(M − 2)s0−1

)ε0
(
(M − 1)(M − 2)sk−1

)εk

×

k−1∏
j=1

(M − 1)(M − 2)s j−1

= n
∑

s0,sk≥0
s1,...,sk−1≥1

s0+···+sk=n−k

(M − 1)k−1+ε0+εk (M − 2)n−k−(k−1)−ε0−εk .
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Regrouping the factors, this can be rewritten as∑
x∈U

mk(x) = n(M − 1)k−1(M − 2)n−2k+1
∑

s0,sk≥0
s1,...,sk−1≥1

s0+···+sk=n−k

(
1 +

1
M − 2

)ε0+εk

= n(M − 1)k−1(M − 2)n−2k+1
(
Σ1 + Σ2 + Σ3 + Σ4

)
,

(13)

where, the summation in Σ1 is taken only over tuples with all components positive; the summations in
Σ2 are taken over tuples with s0 = 0 and sk > 0; the summations in Σ3 are taken over tuples with s0 > 0
and sk = 0; and in Σ4 the summation is taken over all tuples with both s0 = sk = 0. These sums can be
evaluated using Lemma 2. We have:

Σ1 =R(n − k, k + 1)
(
1 +

1
M − 2

)2

=

(
n − k − 1

k

)
·

(
1 +

1
M − 2

)2

;

Σ2 = Σ3 =R(n − k, k)
(
1 +

1
M − 2

)
=

(
n − k − 1

k − 1

)
·

(
1 +

1
M − 2

)
;

Σ4 =R(n − k, k − 1) =
(
n − k − 1

k − 2

)
.

On inserting these sums in (13), the average in (11) becomes

A(k; M,n) =
(M − 1)k−1(M − 2)n−2k+1

M(M − 1)n−1 ·

(
n − k − 1

k − 2

)
×

×

(
(n − 2k + 1)(n − 2k)

k(k − 1)
·

(
1 +

1
M − 2

)2

+ 2
n − 2k + 1

k
·

(
1 +

1
M − 2

)
+ 1

)
.

(14)

We evaluate precisely this product in the following subsection, but first let us see the size of the main term,
assuming that k is fixed and M,n tend to infinity such that n/M tends to a constant λ ∈ (0, 1]. The first is the
largest of the three terms on the second line of (14) and together with the factors from the outside it can be
grouped conveniently, so that we find that A(k; M,n) converges asymptotically like(

1 −
1

M − 1

)n−k

·
M − 2

M
·

1
k!
·

(n − k − 1) · · · (n − k − k)
(M − 2)k

·

(
1 +

1
M − 2

)2

→ e−λ
1
k!
λk. (15)

3.2. The error term in the limit
To make things precise and control the rate of convergence as n,M get large while the ratio n/M is

ascertained around λ ∈ (0, 1], let γ ∈ [0, 1) be fixed. Also, we presume that k ≥ 0 is fixed, k ≤ n ≤ M and
M = n/λ + O(nγ) as n tends to infinity and the constant in the big-O does not depend on λ, γ or k. From
these assumptions it follows that n/M = 1/(λ−1 +O(nγ−1)), so that 1/M = λ(n−1 +O(λnγ−2)) and

n/M = λ(1 +O(λnγ−1)) . (16)

Then the asymptotic estimates of the exp-log functions involved are:( n
M

)k
= λk

(
1 +O

(
λnγ−1

))k
= λk

(
1 +O

(
λknγ−1

))
= λk

(
1 +Ok,λ

(
nγ−1

))
(17)

and, if a = 1 or 2, we have(
1 −

a
M

)n−k
= e(n−k) log(1−a/M) = e

−an
M +O( k

M ) = e−aλ
(
1 +Ok,λ

(
nγ−1

))
. (18)



C. Cobeli et al. / Filomat 38:13 (2024), 4711–4726 4719

Now, on using (17) and (18) in(15), which is the appropriate rewriting of the main term of (14), and noting
that the other two terms are not greater than the resulting error terms, we find that

A(k; M,n) =
1
k!
· λk

(
1 +Ok,λ

(
nγ−1

))
· e−λ

(
1 +Ok,λ

(
nγ−1

))
=
λk

k!
e−λ

(
1 +Ok,λ

(
nγ−1

))
.

Consequently, we arrived at the following conclusion.

Theorem 2. Let λ ∈ (0, 1], γ ∈ [0, 1) and let k ≥ 0 be integer. Suppose the integers M and n satisfy the inequalities
k ≤ n ≤M and M = n/λ +O(nγ), uniformly on λ and k as n tends to infinity while γ is fixed. Then

A(k; M,n) =
λk

k!
e−λ

(
1 +Ok,λ

(
nγ−1

))
. (19)

4. The second moment

In this section we evaluate the variance of the k-counter probabilities mk(x)/n about the main term of
their limit mean A(k; M,n).

4.1. Definition and first transformation
For any integers 0 ≤ n ≤M, let

M2(k; M,n) :=
1
|U|

∑
x∈U

(
mk(x)

n
−
λk

k!
e−λ

)2

(20)

be the second moment about the mean. Note that this is not exactly the formula for the second moment
about the mean, since in the binomials of the summation the average is replaced by the main term in its
estimate in Theorem 2, but this form suffices for our needs.

Expanding the binomial, we find that

M2(k; M,n) =
λ2k

k!2
e−2λ
−

2λk

k!
e−λA(k; M,n) + S2(k; M,n) , (21)

where, using (3),

S2(k; M,n) =
1
|U|

∑
x∈U

(
mk(x)

n

)2

=
1

M(M − 1)n−1n2

∑
x∈U

m2
k(x). (22)

4.2. Ground state notations
Let x = (x1, . . . , xn) ∈ U and write x = (∗, y, ∗, y, ∗, . . . , y, ∗), where the components equal to y are separated

by other components different from y. These components are grouped in clusters of lengths s0, s1, . . . , sk,
which satisfy conditions (12). In the following, let S be the shorthand notation for such a generic cluster.

Let l(0), . . . , l(k) be the number of components equal to y′ that are in these clusters of lengths s0, . . . , sk,
respectively. These numbers satisfy conditions:

0 ≤ l(0), . . . , l(k) ≤ k and l(0) + · · · + l(k) = k, (23)

so that, L = (l0, . . . , kk) belongs to the set P(k) defined by (10).
Given an integer k and a cluster of integers S = (s0, . . . , sk) that satisfy conditions (12), let P(k,S) denote

by the subset of P(k) formed by those partitions of k whose components are bounded above by s j’s, that is

P(k,S) :=
{
(l(0), . . . , l(k)) ∈ P(k) : l(0) ≤ s0, . . . , l(k) ≤ sk

}
. (24)
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Further, let ti, j be the number of consecutive components in the groups of components that separate
the y2’s in the jth cluster, for 0 ≤ i ≤ l( j) and 0 ≤ j ≤ k. So that, they satisfy conditions:{

t0, j ≥ 0, t1, j ≥ 1, . . . , tl( j)−1, j ≥ 1, tl( j), j ≥ 0
t0, j + · · · + tl( j), j = s j − l( j).

(25)

In order to indicate the presence or the absence at the margins of some components different from the
selected ones, say y and y′, we denote

ε0( j) =

0, if t0, j = 0
1, if t0, j > 0

and εl( j)( j) =

0, if tl( j), j = 0
1, if tl( j), j > 0

.

The cluster s j, which may be any of the ∗’s from x = (∗, y, . . . ) or x = (. . . , y, ∗, y, . . . ) or x = (. . . , y, ∗), has in
turn the form ∗, y′, ∗, y′, ∗, . . . , y′, ∗, where the sequences of components indicated also by ∗’s have lengths t0, j,
t1, j, . . . , tl( j), j and contain no y’s and no y′’s. Then, because of the non-equal-neighbor condition, there are
M − 2 ways to choose the first component on the left (2 less than M because y and y′ are not allowed) and
M − 3 ways to choose the following components (since y, y′ and also, the value chosen for its left neighbor
are not allowed).

4.3. Disjunction, amalgamation and partial estimation

With the above notations, the sum on the right side of relation (22) is expressed as

∑
x∈U

m2
k(x) =n2

∑
s0,sk≥0

s1,...,sk−1≥1
s0+···+sk=n−k

∑
L∈P(k,S)

k∏
j=0

∑
t0, j,tl( j), j≥0

t1, j,...,tl( j)−1, j≥1
t0, j+···+tl( j), j=s j−l( j)

(
(M − 2)(M − 3)t0, j−1

)ε0( j)

×

(
(M − 2)(M − 3)tl( j), j−1

)εl( j)( j)
l( j)−1∏

i=1

(M − 2)(M − 3)ti, j−1.

(26)

Using the fact that tk, jϵk( j) = tk, j, for k = 0, . . . , l( j), we have

∑
x∈U

m2
k(x) =n2

∑
s0,sk≥0

s1,...,sk−1≥1
s0+···+sk=n−k

∑
L∈P(k,S)

k∏
j=0

∑
t0, j,tl( j), j≥0

t1, j,...,tl( j)−1, j≥1
t0, j+···+tl( j), j=s j−l( j)

(M − 2)l( j)−1+ϵ0( j)+ϵl( j)( j)

× (M − 3)s j−2l( j)+1−ϵ0( j)−ϵl( j)( j)

=n2
∑

s0,sk≥0
s1,...,sk−1≥1

s0+···+sk=n−k

∑
L∈P(k,S)

k∏
j=0

(T1 + T2 + T3 + T4) ,

(27)

where the four terms, which depend on the cluster j, Th = Th( j), for h = 1, 2, 3, 4, represent the sums that are
split according to the values taken by the pairs (ϵ0( j), ϵl( j)( j)) in the set {(0, 0); (0, 1); (1, 0); (1, 1)}, respectively.
The sums T1,T2,T3,T4 can be expressed in closed form using the notation (5) as follows:

T1 = R
(
s j − l( j), l( j) − 1

)
(M − 2)l( j)−1(M − 3)s j−2l( j)+1

T2 = T3 = R
(
s j − l( j), l( j)

)
(M − 2)l( j)(M − 3)s j−2l( j)

T4 = R
(
s j − l( j), l( j) + 1

)
(M − 2)l( j)+1(M − 3)s j−2l( j)−1.

(28)
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Then, factoring out the main terms and employing Lemma 2, the expressions from relation (28) become

T1 =Ms j−l( j)
(
s j − l( j) − 1

l( j) − 2

)(
1 −

2
M

)l( j)−1(
1 −

3
M

)s j−2l( j)+1
,

T2 = T3 =Ms j−l( j)
(
s j − l( j) − 1

l( j) − 1

)(
1 −

2
M

)l( j)(
1 −

3
M

)s j−2l( j)
,

T4 =Ms j−l( j)
(
s j − l( j) − 1

l( j)

)(
1 −

2
M

)l( j)+1(
1 −

3
M

)s j−2l( j)−1
.

(29)

(Recall that, by the convention in Lemma 2, the binomial coefficients are equal to 0 if either of their two
parameters is negative.)

Next, we express the small factors on the right side of the products of relation (29) using the estimate(
1 − a

M

)s
= es log(1−a/M) = exp

{
−s

(
a/M + (a/M)2

2
+

(a/M)3

3
+ · · ·

)}
= e−s a

M (1+O(a/M)), (30)

where M→∞ and a is constant. Then

T1 + T2 =Ms j−l( j)
[(s j − l( j) − 1

l( j) − 2

)
e
−3sj+4l( j)−1

M +

(
s j − l( j) − 1

l( j) − 1

)
e
−3sj+4l( j)

M

]
eO(1/M)

=Ms j−l( j)e
−3sj+4l( j)

M

[(s j − l( j) − 1
l( j) − 2

)
+

(
s j − l( j) − 1

l( j) − 1

)] (
1 +O

( 1
M

))
,

(31)

and

T3 + T4 =Ms j−l( j)
[(s j − l( j) − 1

l( j) − 1

)
e
−3sj+4l( j)

M +

(
s j − l( j) − 1

l( j)

)
e
−3sj+4l( j)+1

M

]
eO(1/M)

=Ms j−l( j)e
−3sj+4l( j)

M

[(s j − l( j) − 1
l( j) − 1

)
+

(
s j − l( j) − 1

l( j)

)] (
1 +O

( 1
M

))
.

(32)

The binomial coefficients in (31) and (32) add together into a binomial coefficient on the next line of Pascal’s
triangle. Therefore

T1 + T2 =Ms j−l( j)e
−3sj+4l( j)

M

(
s j − l( j)
l( j) − 1

) (
1 +O

( 1
M

))
T3 + T4 =Ms j−l( j)e

−3sj+4l( j)

M

(
s j − l( j)

l( j)

) (
1 +O

( 1
M

))
.

(33)

And once again, the binomial coefficients in(33) add together into a binomial coefficient on the next line of
Pascal’s triangle, so that we get the following simple concise form of the total sums

T1 + T2 + T3 + T4 =Ms j−l( j)e
−3sj+4l( j)

M

(
s j − l( j) + 1

l( j)

) (
1 +O

( 1
M

))
. (34)

Inserting the expression (34) into (27), we find that

∑
x∈U

m2
k(x) =n2

∑
s0,sk≥0

s1,...,sk−1≥1
s0+···+sk=n−k

∑
L∈P(k,S)

k∏
j=0

[
Ms j−l( j)e

−3sj+4l( j)

M

(
s j − l( j)

l( j)

) (
1 +O

( 1
M

))]
,
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whence, by employing condition l(0) + · · · + l(k) = k (of the presence of the components y′ in the clusters
separated by y’s, formula (23)) yields

∑
x∈U

m2
k(x) =n2Mn−2ke

−3n+7k
M

∑
s0,sk≥0

s1,...,sk−1≥1
s0+···+sk=n−k

∑
L∈P(k,S)

 k∏
j=0

(
s j − l( j)

l( j)

) (1 +O
( k

M

))
.

(35)

Notice that in all the above factorization of the factors
(
1 + O(1/M)

)
the estimates are correct because only

positive numbers are added, otherwise cancellations might occur and the main term might be smaller,
making the equalities false.

4.4. The combinatorial sum
We check the size of the sum over L ∈ P(k,S) of the product on the right side of relation (35) starting

with a few cases with small k.
For any integers k,n, and cluster S = (s0, . . . , sk) satisfying the set of condition (12) imposed under the

multiple summation in (35), denote

SSP(k,n,S) :=
∑

L∈P(k,S)

 k∏
j=0

(
s j − l( j)

l( j)

) . (36)

According to the condition in Lemma 2 by which the binomial coefficients with any negative parameter is
equal to 0, the summation can be thought over all partitions of k, but only those with s j’s larger than the
corresponding l j’s being the ones that count.

We call admissible a cluster S = (s0, . . . , sk) for which s j ≥ l( j) for all 0 ≤ j ≤ k, so that all the binomial
coefficients in (36) are non-zero.

Next we evaluate the size of SSP(k,n,S) with S admissible.

1. k = 0. Then s0 = n and the only L in P(0) is L = (0). Therefore

SSP(n, 0,S) =
(
n
0

)
= 1.

2. k = 1. The only possible components of a partition of 1 are l(0), l(1) ∈ {0, 1}, so thatP(1) = {(0, 1); (1, 0)},
which implies

SSP(n, 1,S) =
(
s0

0

)(
s1 − 1

1

)
+

(
s0 − 1

1

)(
s1

0

)
= (s1 − 1) + (s0 − 1) = n +O(1).

3. k = 2. The set of partitions is P(2) = {(0, 0, 2); (0, 2, 0); (2, 0, 0); (0, 1, 1); (1, 0, 1); (1, 1, 0)}. Then

SSP(n, 2,S) =
(
s0

0

)(
s1

0

)(
s2 − 2

2

)
+

(
s0

0

)(
s1 − 2

2

)(
s2

0

)
+

(
s0 − 2

2

)(
s1

0

)(
s2

0

)
+

(
s0

0

)(
s1 − 1

1

)(
s2 − 1

1

)
+

(
s0 − 1

1

)(
s1

0

)(
s2 − 1

1

)
+

(
s0 − 1

1

)(
s1 − 1

1

)(
s2

0

)
=

(s2 − 2)(s2 − 3)
2

+
(s1 − 2)(s1 − 3)

2
+

(s0 − 2)(s0 − 3)
2

+ (s1 − 1)(s2 − 1) + (s0 − 1)(s2 − 1) + (s0 − 1)(s1 − 1)

=
(s0 + s1 + s2)2

2
+O(s0 + s1 + s2)

=n2/2 +O(n).
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Notice that here, the constant in the big-O term depends on k and it is not larger than Tk+1 · |P(k,S)|, where
Tk is the kth triangular number. (Here Tk+1 counts the coefficients of the terms of degree two in the first
sum, and |P(k,S)| is the number of all the terms in all sums. The reason for this bound is effective is that
the terms that appear after multiplying the factors of the sums are regrouped in expressions of the form
(s0 + s1 + s2 + s3)r with r = 0, 1, 2, and the total number of these expressions is ≤ |P(k,S)|.)

4. k = 3. Now the set of partitions contains 4 + 12 + 4 = 20 quadruples. Of these, there are four with a
non-zero component equal to 3 and four with only one component equal to 0 and the other 1’s. The other
twelve quadruples have two component equal to 0 and the others are a 1 and a 2. Then the terms of the
sum SSP(n, 3,S) are

SSP(n, 3,S) =
∑

h

(sh − 3)(sh − 4)(sh − 5)
3!

+
∑
h,i

(sh − 2)(sh − 3)
2!

·
si − 1

1!
+

∑
h,i, j

sh − 1
1!
·

si − 1
1!
·

s j − 1
1!
,

where h, i, j are distinct and run to cover all quadruples of P(3), as described above the relation. Here, the
terms of degree 3 (the highest, and equal to the value of k) are

1
6

∑
h

s3
h +

1
2

∑
h,i

s2
hsi +

∑
h,i, j

shsis j =
1
6

(s0 + s1 + s2 + s3)3 =
(n − 3)3

3!
.

The remaining terms are of degree 2, 1 and 0, and they combine, as seen in the cases with smaller k into
closed formulas (s0 + s1 + s2 + s3)r = (n − 3)r with r = 2, 1, 0, so that their total sum is O(n2). The constant in
the big-O term depends on k and it is not larger than Tk+1 · |P(k,S)|.

Similarly, for larger k, we have

SSP(n, k,S) =
∑

h

(sh − k)
(
sh − (k + 1)

)
· · ·

(
sh − (2k − 1)

)
k!

+
∑
h,i

(
sh − (k − 1)

)
(sh − k) · · ·

(
sh − (2k − 3)

)
(k − 1)!

·
si − 1

1!
+ · · ·

· · · +
∑

h,i, j,...

sh − 1
1!
·

si − 1
1!
·

s j − 1
1!
· · · .

Multiplying all the factors in the numerators of the fractions above and then sorting the resulted monomials
by their degrees, we see that the generic one of the highest degree has the form sl0

0 · · · s
lk
k , where l0+ · · ·+ lk = k,

and its coefficient in the total sum is 1
l0!···lk! . Then, factoring out 1/k! from the sum of all these highest degree

monomials, we obtain an expression which, according to Lemma 6, equals (s0 + · · · + sk)k/k!.
The sum of the lower degree terms also add up in similar expressions of degrees strictly lower than k,

and even if some necessary terms were missing, one could add them to complete the power of k-nomials
(s0 + · · · + sk)r, with r < k. Therefore, the total number of these lower degree terms depends only on k, and
hence, since s0 + · · · + sk = n − k, we conclude that

SSP(n, k,S) = nk

k!
+Ok(nk−1) , (37)

for any admissible cluster S.
We remark that the constant in the big-O term depends on k and, by the same reasoning above from the

cases with small k and Lemma 6, it is not larger than kk+2.
If the cluster S is not admissible, then some of the terms that could complete the expression (s0 + · · ·+ sk)

of the largest degree might be missing, so the resulting main term might be smaller. In any case, we have

SSP(n, k,S) = Ok(nk) , (38)

for any non-admissible cluster S.
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4.5. The estimate of
∑

x∈U m2
k(x)

We insert the results on the combinatorial sums from the previous subsection into the relation (35) by
separating the outer sum from the right side into two parts according to whether the cluster S is admissible
or not. On combining (37) and (38) we have∑

S

SSP(n, k,S) =
∑

S admissible

(
nk

k!
+Ok(nk−1)

)
+

∑
S non-admissible

Ok(nk) . (39)

Here the summands no longer depend on S, so that the result depends only on the cardinality of the set
of clusters S that are admissible or non-admissible. Also, without changing the final outcome, on the
right-hand side of (39) we can move some terms from the first sum to the second. Indeed, on the one

hand, from Lemma 4 we know that the number of all S’s that satisfy conditions (12) is
(n − k)k

k!
+Ok

(
nk−1

)
=

nk

k!
+Ok

(
nk−1

)
. On the other hand, all clusters S whose components are all sufficiently large, say larger than

2k, are admissible and, by Lemma 5 with h = k + 1, z = n − k and K = 2k, we know that their number is
nk

k!
+Ok

(
nk−1

)
, also. Therefore the number of clusters S that have some components smaller than 2k is of the

order Ok

(
nk−1

)
. It then follows that∑

S

SSP(n, k,S) =
∑

s0,...,sk≥2k
s0+···+sk=n−k

(
nk

k!
+Ok(nk−1)

)
+Ok(n2k−1) = n2k

(k!)2 +Ok(n2k−1) .

On inserting this estimate into the right side of (35), we find that∑
x∈U

m2
k(x) =n2Mn−2ke

−3n+7k
M

(
n2k

(k!)2 +Ok(n2k−1)
) (

1 +O
( k

M

))
=n2Mn−2ke

−3n
M

(
n2k

(k!)2 +Ok(n2k−1)
)
.

(40)

4.6. Completion of the estimate of the second moment
By inserting (40) into (22), we obtain

S2(k; M,n) = Mn−2k−1

(M − 1)n−1 e
−3n
M

(
n2k

(k!)2 +Ok(n2k−1)
)

=
1

(k!)2

(
n
M

)2k (
1 +

1
M − 1

)n−1

e−3 n
M

(
1 +Ok(n−1)

)
.

(41)

Now, in the hypothesis that the integer k ≥ 0 and λ ∈ (0, 1], γ ∈ [0, 1) are fixed, while n ≤ M both tend
to infinity keeping their rate of growth controlled by M = n/λ + O(nγ), uniformly on λ and k, using the
analogue of the estimates (17) and (18) in (41), yields

S2(k; M,n) =
(
λk

k!

)2

eλe−3λ
(
1 +Ok,λ(nγ−1)

)
=

(
λke−λ

k!

)2 (
1 +Ok,λ(nγ−1)

)
. (42)

Then, on inserting this estimate into (21) together with the one obtained for the average A(k; M,n) in
Theorem 2, we obtain

M2(k; M,n) =
λ2k

k!2
e−2λ
−

2λk

k!
e−λ ·

λk

k!
e−λ

(
1 +Ok,λ

(
nγ−1

))
+

(
λke−λ

k!

)2 (
1 +Ok,λ(nγ−1)

)
.

Notice that here the main term cancels out, which makes the second moment to become small as n,M tend
to infinity under the assumed condition. We state the result as the following theorem.

Theorem 3. Let λ ∈ (0, 1], γ ∈ [0, 1) and let k ≥ 0 be integer. Suppose the integers M and n satisfy the inequalities
k ≤ n ≤M and M = n/λ +O(nγ), uniformly on λ and k as n tends to infinity while γ is fixed. Then

M2(k; M,n) = Ok,λ

(
nγ−1

)
. (43)
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5. Proof of Theorem 1

Now we can prove the uniform result in Theorem 1. Let η > 0 be fixed and define the sets

UL(η) =
{
x ∈ U :

∣∣∣∣mk(x)
n
−
λk

k!
e−λ

∣∣∣∣ < η} and UR(η) =
{
x ∈ U :

∣∣∣∣mk(x)
n
−
λk

k!
e−λ

∣∣∣∣ ≥ η} .
Note that these two sets are disjoint and any x ∈ U belongs to either UL(η) or UR(η), that is, they form a
partition ofU. Then, by the definition of the second moment (20), it follows that

M2(k; M,n) =
1
|U|

∑
x∈UL(η)

(
mk(x)

n
−
λk

k!
e−λ

)2

+
1
|U|

∑
x∈UR(η)

(
mk(x)

n
−
λk

k!
e−λ

)2

.

From here, since the first sum is positive, using the definition ofUL(η) andUR(η), we deduce that

M2(k; M,n) ≥
1
|U|

∑
x∈UR(η)

η2 =
η2

|U|

(
|U| − |UL(η)|

)
,

which implies

|UL(η)|
|U|

≥ 1 − η−2M2(k; M,n) . (44)

Next, on choosing η = n−δ and using on the right side of (44) the estimate (43), which implies the existance
of a constant C > 0 such that Cnγ−1

≥ −M2(k; M,n) ≥ −Cnγ−1 for n sufficiently large, we find that

|UL(n−δ)|
|U|

≥ 1 −Ok,λ

(
nγ+2δ−1

)
,

where the implied constant in the big-O estimate may change if the a priori fixed k and λ change. This
concludes the proof of Theorem 1.
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