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Abstract. In this paper, based on the viscosity approximation method, hybrid steepest-descent method
and Korpelevich extragradient method, we suggest and analyze two modified inertial-like subgradient
extragradient algorithms with adaptive step sizes for solving a hierarchical variational inequality (HVI) with
a variational inequality problem for pseudomonotone and Lipschitz continuous mapping (VIP), a general
system of variational inequalities for two inverse-strongly monotone mappings (GSVI) and a common fixed-
point problem of finitely many nonexpansive mappings and an asymptotically nonexpansive mapping
(CFPP) constraints. Under mild restrictions, we demonstrate the strong convergence of the proposed
algorithms to a common solution of the VIP, GSVI and CFPP, which is also the unique solution of this HVI.

1. Introduction

In a real Hilbert space (H, (:, -)) with the norm || - ||, we denote by P¢ the metric projection from H onto
a convex and closed set C # @ in H. Let S : C — H be a nonlinear operator on C. Let the Fix(S), R, —
and — indicate the fixed point set of S, the set of all real numbers, the strong convergence and the weak
convergence, respectively. An operator S : C — C is referred to as being asymptotically nonexpansive
if {0} C [0, +00) s.t. limp_e O = 0 and ||S*u — So|| < (1 + O)llu — o, Yu,v € Ck > 1. In particular, if
Or = 0,Vk > 1, then S is referred to as nonexpansive.

Given an operator A : H — H. The classical variational inequality problem (VIP) is to find u* € C s.t.
(Au*,v —u*) > 0,Yv € C. The solution set of the VIP is denoted by VI(C, A). Currently, one of the most
effective methods for solving the VIP is the extragradient method invented by Korpelevich [20] in 1976.
However, it was proven in [20] that this method enjoys only the weak convergence if VI(C,A) # 0. The
Korpelevich extragradient approach has received great attention given by many authors, who ameliorated
it in various manners; see e.g., [1-9, 11-15, 17-26, 28-41]. Besides, let B, B, : H — H be two operators. The
general system of variational inequalities (GSVI) is to find (u*,v*) € C X C such that

(nB1v" +u* —v,x—u) >0, YxeC, 1)
(UoBow* +v* —u,y—v) >0, Vy € C,
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with constants uj, p2 € (0,00). In particular, if B = B, = A and x* = y*, then the GSVI (1) reduces to the
classical VIP. Note that, problem (1) can be transformed into a fixed point problem (FPP) in the following
manner.

Lemma 1.1 ([8]). For given u*,v* € C, (u*,v") is a solution of GSVI (1) if and only if u* € Fix(G), where Fix(G) is
the fixed point set of the mapping G := Pc(I — p1B1)Pc(I = u2Bs), and v* = Pc(I — uaBo)u’™.

Assume that Q = Fix(5) N Fix(G) # 0, where S : C — C is an asymptotically nonexpansive mapping
with {0k} and Fix(G) is the same set as in Lemma 1.1. In 2018, using a modified extragradient method, Cai
et al. [2] introduced a viscosity implicit rule for finding a solution of a hierarchical variational inequality
(HVI) with the GSVI and FPP constraints, i.e., for any initial x; € C, the sequence {x;} is constructed below

g = spxx + (1 = sp)pk,
Ok = Pc(ukx — paBouy),
Pr = Pc(vx — p1Bioy),
X1 = Pelanf (i) + (I = axpF)S*pi],

()

where f : C — C is a 0-contraction with 6 € [0,1), and the following hold for {ax}, {sx} < (0,1]: (i)
My ak = 0, Yopoq ak = 00, Yoy latksr —al < 00; (i) limy—e0 % =0;(1ii))0 < & < s <1, Y124 Isks1—skl < o0;and
(iv) Ypoq IS5 1 px— S*pil| < o0. Tt was proved in [2] that xx — x* € Q, which solves the HVI: ((pF— f)x*, x—x*) >
0,Vx e Q.

Assume that Q = ﬂfil Fix(S;) N VI(C,A) # 0, where ﬂf\il Fix(5;) is the common fixed-point set of
finitely many nonexpansive self-mappings {S;}}}; on C and VI(C,A) is the solution set of the VIP for
pseudomonotone and Lipschitz continuous mapping A. In 2020, Ceng et al. [4] put forward an inertial-
like subgradient extragradient method with adaptive step sizes for solving a HVI with the VIP and CFPP
constraints. Given a contraction f : H — H with constant 6 € [0,1), and an 7n-strongly monotone and
x-Lipschitzian mapping F : H —» H with § < € := 1 — /1 — p(21 — px2) for p € (0,2n/x>). Let {Bi}, {y«}, lex}
be the sequences in (0,1) s.t. fx + yx <1Vk > 1, fr — 0 and €/fx — 0. In addition, one writes S := Simodn
for each k > 1 with the mod function taking values in the set {1,2, ..., N}, i.e., if k = jN + g for some integers
j20and0<q<N,then S =Syifg=0and Sy = 5;if 0 <g < N.

Algorithm 1.2 ([4]). Initialization: Give t1 > 0, a >0, p € (0,1). Let ug, u1 € H be arbitrary.
Step 1. Given the iterates uy_y and uy (k > 1), choose ay s.t. 0 < ay < ay, where

ag = .
a, otherwise.

— {min{a, ”ukfm}, if up # -1,
Step 2. Calculate wy = Sguy + ax(Skux — Sittk-1) and vy = Pe(wy — teAwy).
Step 3. Construct the half-space Cy := {u € H : (wy—txAwi — v, u—vx) < 0}, and calculate ty = Pc, (wy—txAvg).
Step 4. Compute w1 = Bif (ux) + viux + (1 — yi)I — BrpE)ty, and update
e min{p S0Pl 0y £ Ay — Ay, b — vi) > 0,
. Tk, otherwise.

Put k := k + 1 and return to Step 1.

Under suitable assumptions, it was provenin [4] that uy — u* € (2, which solves the HVI: ((pF—f)u*, v—u*) >
0, Vv € Q. Subsequently, Thong et al. [25] suggested a new inertial subgradient extragradient method with
adaptive step sizes for solving the VIP for pseudomonotone and Lipschitz continuous mapping A. Let
VI(C,A) # 0. Suppose that {A¢} € (4,1) € (0,1) and {ex}, {B} € (0,1) are such that fy — 0 and €¢/fr — 0 as

k — .
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Algorithm 1.3 ([25]). Givet; >0, a >0, u € (0,1). Let ug, u; € H be arbitrary. Choose ay s.t.

. & .
min{a, —Iluk—uk-lll}’ if we # Ug_q,
a, otherwise,

OSakSakzz{

Compute

wi = (1 = B[k + o (g — 1),

vk = Pc(wy — trAwy),

Cr:={u € H :{(wy — 1 Aw; — vx, u — vy < 0},
U1 = (1 = Awp + AP, (Wi — T Avg).

Update

: e ;

S min{u Zéwk"_mk ik_;o ,Te),  if (Awg — Avg, te —vg) > 0,

k+1 = ’ .
Tk, otherwise,

where t := Pc (wy — 1 Avy).

Under appropriate assumptions, it was proven in [25] that ux — u* € VI(C, A), where u* = Pyy(c a)0.

Inspired by the above research works, we put forth two modified inertial-like subgradient extragra-
dient algorithms with adaptive step sizes for solving a HVI with the VIP, GSVI and CFPP constraints by
using the viscosity approximation method, hybrid steepest-descent method and Korpelevich extragradient
method. Here the VIP, GSVI and CFPP represent a variational inequality problem for pseudomonotone
and Lipschitz continuous mapping, a general system of variational inequalities for two inverse-strongly
monotone mappings and a common fixed-point problem of finitely many nonexpansive mappings and
an asymptotically nonexpansive mapping, respectively. Under suitable restrictions, we demonstrate the
strong convergence of the suggested algorithms to a common solution of the VIP, GSVI and CFPP, which
is also the unique solution of this HVI. In the end, our main results are applied to solve the VIP, GSVI and
CFPP in an illustrated example.

This article is arranged below: In Section 2, we present some concepts and basic tools for further use.
Section 3 treats the convergence analysis of the suggested algorithms. In the end, Section 4 applies our main
results to solve the VIP, GSVI and CFPP in an illustrated example. Our algorithms are more advantageous
and more flexible than the above Algorithms 1.2 and 1.3 because they involve solving the VIP, GSVI and
CFPP in H. Our results improve and extend the corresponding results announced by some others, e.g., Cai
et al. [2], Ceng et al. [4], Thong et al. [25], and Ceng and Shang [7].

2. Preliminaries

Suppose that C is a nonempty closed convex subset of a real Hilbert space H. Given u € H and {u;} C H,
we use the uy — u (resp., ux — u) to indicate the strong (resp., weak) convergence of {14} to u. An operator
I' : C — H is refereed to as being

(i) L-Lipschitz continuous or L-Lipschitzian iff AL > 0 s.t. |[['u — I'v|| < L|ju — v||, Yu,v € C;

(i1) monotone iff (I'u —I'v,u —v) > 0,Yu,v € C;

(iii) pseudomonotone iff (I'u,v —u) > 0 = (Iv,v —u) 2 0,Yu,v € C;

(iv) 1-strongly monotone iff 37 > 0s.t. (I'u — I'v,u — v) > nllu — oll>, Yu,v € C;

(v) a-inverse-strongly monotone iff 3o > 0 s.t. (T'u — I'v,u — v) > alllu — I'v||*,Yu,v € C;

(vi) sequentially weakly continuous iff Y{uy} C C, the relation holds: u; — u = I'uy — T'u.

Clearly, every inverse-strongly monotone operator is monotone and Lipschitz continuous but the con-
verse is not true, and every monotone operator is pseudomonotone but the converse is not true. For every
u € H, one knows that there is only a nearest point in C, denoted by Pcu, s.t. |[u — Pcu|| < ||lu —1vl||, Vv € C. P¢c
is refereed to as a metric projection of H onto C.
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Lemma 2.1 ([16]). The following hold:
(i) {u — v, Pcu — Pcv) > ||Pcu — Pcol?, Yu,v € H;
(ii) {u — Pcu,v — Pcu) <0, Yu e Hyv e C;
(iii) ||ju = v|*> > |lu = Pcol|*> + |lv = Pcull?, Yu € H,v € C;
(iv) lu — ol = [[ul* - llol* - 2{u — v,v), Yu,v € H;
(@) I + (1 = Aol = Al + (1 = Aol = AL = MYl = 0|, Va0 € H, A € [0,1].

Lemma 2.2 ([12]). Foranyu € Hand A > 1 > 0 the inequalities hold: 1=Pet=240l < ””7PC(27UA”)H and ||u—Pc(u—
nAu)|| < |lu = Pc(u — AAu)||.

Lemma 2.3 ([11]). Suppose that A : C — H is pseudomonotone and continuous. Then u* € C is a solution to the
VIP (Au*,v —u*) 2 0,Yv € C, if and only if (Av,v —u*) > 0,Vv € C.

Lemma 2.4 ([27]). Suppose that {ay} is a sequence of nonnegative reals s.t. ar1 < (1 — Ap)ax + Ay, Yk 2 1,
where (A} and {yi} are sequences of reals s.t. (a) {Ay} C [0,1] and Y22 Ak = oo, and (b) limsup,_, vk < 0 or
2121 |Ak7/k| < o0, Then hmk—)oo ar = 0.

Lemma 2.5 ([10]). Assume that X is a Banach space which admits a weakly continuous duality mapping, C is a
nonempty, convex and closed set in X, and T : C — C is an asymptotically nonexpansive mapping with Fix(T) # 0.
Then I-T is demiclosed at zero, i.e., for any {uy} C Cwithur — u € C, therelation holds: (I-T)u, — 0 = u € Fix(T),
where 1 is the identity mapping of X.

Lemma 2.6 ([31]). Let the mapping B : H — H be a-inverse-strongly monotone. Then, for a given u > 0,
I(I = uB)x — (I — uB)yI* < llx =yl — pa — w)lIBx — Byll>. In particular, if 0 < u < 2a, then [ — uB is nonexpansive.

Using Lemma 2.6, we immediately obtain the following lemma.

Lemma 2.7 ([31]). Let the mappings B1,B, : H — H be a-inverse-strongly monotone and B-inverse-strongly
monotone, respectively. Let the mapping G : H — C be defined as G := Pc(I — p1B1)Pc(I — p2B2). If 0 < pq < 2a
and 0 < pp < 2B, then G : H — C is nonexpansive.

The following lemma is very useful to analyze the convergence of the suggested algorithms in this paper.

Lemma 2.8 ([25]). Let {I'k} be a sequence of real numbers that does not decrease at infinity in the sense that there
exists a subsequence {I'y;} of {I'c} which satisfies Iy, < I'y+1 for each integer j > 1. Define the sequence {fi(k)}k=k, of
integers as follows:

hi(k) = max{j < k:T;<Tj},

where integer ko > 1 such that {j < ko : I'; < I'j,1} # 0. Then, the following hold:
(i) hitko) < (ko + 1) < --- and fi(k) — oo;
(ii) Thgy < Ty and I'y < g, Yk = ko.

Lemma 2.9 ([27]). Given A € (0,1]. Suppose that the mapping S : C — H is nonexpansive, and the operator
S* : C — H is formulated by S*u := Su — ApF(Su),Yu € C, where F : H — H is «-Lipschitzian and n-strongly
monotone. Then S* is a contraction provided 0 < p < i—?, ie., [|[S*u — SM|| < (1 — Ab)|ju — v||,Yu,v € C, with

t=1-/1-p@2n-px?) € (0,1].

3. Main Results

Let the feasible set C be nonempty, convex and closed in a real Hilbert space H. In what follows, we
assume always that the following hold:

(0o1) S : H — H is an asymptotically nonexpansive operator with {6,} C [0,+o) and S; : H — H is
nonexpansive for =1,..., N s.t. {5,}77 | is formulated as in Algorithm 1.2.
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(02) Bi,B; : H— H are a-inverse-strongly monotone and $-inverse-strongly monotone, respectively, and
G:H — Cis defined as G := Pc(I — u1B1)Pc(I — u2B,) where pq € (0,2a) and p» € (0, 26).

(03) A: H — H is L-Lipschitz continuous, pseudomonotone on H, s.t. ||Au|| < liminf, e [|[Augl| Y{ux} € C
with ux — 1, and Q = N, Fix(S;) N Fix(G) N VI(C, A) # 0 with Sy := S.

(04) f : H — H is a contraction with coefficient 6 € [0,1), and F : H — H is n-strongly monotone and
x-Lipschitzian s.t. 6 < € := 1 — /1 - p(2n - px?) for p € (0, %)
Suppose that the sequences {A }ABA) ya) € (0,1) satisty
(i) limy—e By =0and Y7 ﬁ” = o0;
(ii) lim; e ;9_:1 =0and lim,_,» /(Z =0;
(iii) 0 < hm inf, ey <limsup, | yn <1
(iv) {Aq) € [A,A] € (0,1).

Algorithm 3.1. Initialization: Given 71 >0, @ > 0, p € (0,1). Let xo, x1 € H be arbitrary and choose a, s.t.

0<a,<a,:= min{a, o] b if ¢' ¥n-1s 3
a, otherwise.
Step 1. Set u, = Spxy + an(SpXy — Suxn—1), and compute
On = Pc(uy — p2Bauy),
qn = PC(Un - HlBlvn)-
Step 2. Compute
Wy = Buf (xn) + YnXn + (1 = yu) = BupF)qn,
Yn = Pc(w, — 1,Awy,).
Step 3. Compute
Xue1 = (1= Ay)w, + AnSnPCn (wy, — TnAyn)
where
Cy = {x € H : (W, — Ty AWy — Y, X — Y) < O}.
Step 4. Update
[lew,— yn” +|zp— yrz” . _ _
Tn+1 = mln{lu 2<Awn—Ayn Zn— yn> ,Tn} lf <Awn Ay”’zn yn> g O’ (4)
Ty, otherwise,

where z, = Pc, (w, — 1,Ay,). Again set n :=n + 1 and go to Step 1.

It is remarkable that, putting y, =0Vn >1, f=0and G =5 =S = pF = Iforl = 1,..,N, we transform
Algorithm 3.1 into Algorithm 1.3, where G = Pc(I — u1B1)Pc(I — p2Bs). 1t is clear that, from (3) one has
%len,l — x|l = 0as n — oo. In fact, from a,,||x,_1 — x,|| < €., VYn > 1, it follows that %len 1= x4l < 6” -0
(due to condition (ii)).

Lemma 3.2. Suppose {1,} is constructed by (4). Then {t,} is nonincreasing s.t. T, > T := min{1y, %},Vn > 1, and
lim, e Tp = T := min{tq, %}.

Proof. From (4), it can be easily seen that {t,} is nonincreasing. Note that Lilw, — yullllz, — yall = (Aw, —
AYn,zn = Yu) and 3wy, — Yal® + llzn = Yull?) = llwy = Yullllzn — yull. So it follows that 7,41 > min{z,, £}. This
arrives at lim;, o, 7, > T := min{ty, %}. O
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It is remarkable that, by Lemmas 2.2 and 3.2, we know that if w, = y, or Ay, = 0, then y, lies in VI(C, A).
In fact, if w, = y, or Ay, = 0, one has 0 = |ly, — Pc(yn — ThAyn)ll = llyn — Pc(yn — TAy,)ll. Hence we get
Y € VI(C, A).

he following lemmas are very useful for the convergence analysis of our algorithm.

Lemma 3.3. Let {z,}, {x,,}, {w,} be the sequences constructed in Algorithm 3.1. Then there exists an integer nq > 1

such that for eachn 2 n1, 0 <1 - p=" and

1 T
042 + Op)llzn — ull* - 5(1 U "1)/\n(llwn = Yall + llzn = yul)* + llwy — ul* > llxps1 —ull?, Yue Q. (5)
n+
Proof. We first claim that
iz = yalP + =l — Yl > 2Aw, — Ay, 2, — y), Yn = 1. (6)
n+1 Tn+1

In fact, in the case when 0 > (Aw,, — Ayn, z, — Yn), it is clear that (6) holds. Otherwise, from (4) one gets (6).
Note that forallue Q c Cc C,,

Iz = ul® = |IPc, (wn = TuAyn) = ull® < (24 — 1, wy = Ty Ay, — 1)
= Sllew = ull + Sk~ ulP = Sz = wll = (20 = 1, Ty,
which hence yields
~2(20 = t, TuAYn) = llzn = Wull* + w0, — ul® 2 ||z, — ul®. (7)

Thanks to u € VI(C, A), one gets (Au,p — u) > 0,Vp € C. Using the pseudomonotonicity of A on C one gets
(Ap,p —u) > 0,V¥p € C. Setting p := y, € C one gets (Ay,, u — y,) < 0. Thus,

CAYn, Yn = 2n) 2 (AYn, Yn — Zn) + (AYn, U — Yp) = (AYp, U — 24). (8)
From (7) and (8), one has
2(Wn = TuAYn = Y, Zn = Yn) = 1Y — Wall? = lzn = Yl + llwwy — ull® > llz, — ull®. 9)

Since z, = Pc,(w, — 1,Ay,) and C,, := {z € H : (W, — T4AWy — Yu, 2 — Yu) < 0}, one gets
2t,{Aw, — Ayn/ Zy — ]/n) > 27,{Aw, — Aynz Zn — yn> + 2wy, — t1,Aw, — Yn,Zn — yn>
= 2<wn - TnAyn — YnsZn — yn>r
which together with (6), leads to

T T
u - Iz, — yn”2 +u - ||z, — ynuz > 2w, — TnA]/n — Yn,Zn — yn>
Tn+l Tn+1
This together with (9), yields
T
—(1-p- "1 )1z = Yull* + lyn = wall?) + llwy — ulP® > llzy — ull. (10)
n+

Besides, from Algorithm 3.1 one obtains
ltner — ull® < (1= Ap)llwy — ul® + Au(1 + 0,)?l|z4 — ull®
< (1= Ap)llwy — ull® + Aullzy — ull® + 6,2 + 6,)llzn — ull®,
which together with (10), attains

Tn

1 — ull? < lfw, — ull? = (1 = =) Au(llwy = yull® + 124 = Yull®) + 0u(2 + Oz — ull.

Tn+1

Since lim;,,00o(1 — p==~) =1 — p > 0, we know that In; > 1s.t. ¥n >n;,0< 1 - yT—"l and (5) holds. O

Tn+l Tn+
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Lemma 3.4. Suppose that {u,}, {x,}, {z,} are bounded sequences constructed in Algorithm 3.1 such that x, — x,41 —
0, xy —u, =0, x, —2, > 0, u, — Gu, = 0and x, — S"x, — 0. If S"x, — Sy, — 0and Ay, } C {x) st
Xy, — z € H, thenz € Q.

Proof. From Algorithm 3.1 and the conditions x, — x,+1 — 0 and x, — 1, — 0, we obtain that

1Snxn — xull =ty — X0 — an(Snxn = Suxp-1)ll
< lup = xall + anllxy, = xp-all = 0 (1 — 00).
Note that
ey, — x4l = (1 — Yn)(Gun - Xy) + ﬁn(f(xn) - PFG”n)H
= H(l - yn)[Gun — Uy + Uy — xn] + ﬁn(f(xn) - PFGun)”
< (1 - Vn)”Gun — Uy + Uy — xn” + ﬁn”f(xn) - PFGMn”
< NGuy — unll + My = xull + Bu(ll f )l + (|oFGuy)).

Since 8, — 0, |[u, — x4l = 0 and ||, — Guy,|| — 0, by the boundedness of {x,,} and {Gu,} we deduce that
lim ||w, — x,|| = 0. (11)

It is clear that {w,} is bounded. From (10) it follows that

Tn

(1 = u=—)lzn = Yull* + llyn = wal?) < M0y, — ull* = ||z, — ul®
Tn+1
< lwy = zull(llwy, — ull + ||z — ull)
< (lwn = xull + 11xn = zul)({lewn = ull + 1z — ull).
Since 1 — IuT:j] — 1—p>0and |lx, — z,]| = 0 (due to the condition), from (11) one gets

lim [ly, =2, =0 and lim [, - y,l| = 0.
Itis clear that {1, } isbounded. Also, owing to the conditions x,~z, — 0, x,—5"x, — 0and S'x,—S"1x, — 0,
one has that
1zn = S"zull < |z = xull + X0 = S"xull + 1S" x5 — S" 24|
< @24 0)lzn = xull + Xy = S"x4ll = 0 (n — o0),
and hence
llzw = Szull < llzw = S"xull + 118" % — S xyll + 15" %, — Sz
<2+ 01)llzn — S"xull + 118" 2 — S|
< 2+ 01z — S"zull + 115”20 — S™xull) + 11S"x = S+ x|

< @+ 0)l1z0 = S"2all + (1 + 6,)llzw = xall} + 1S"x, = ™l = 0 (1 — o).

(12)

We claim that lim,,_,e [[x; — Sixu]| = 0 for I = 1, ...,N. In fact, observe that for/ = 1, ..., N,

”xn - Sn+lxn|| < ”xn - Sn+lxn+l” + ||Sn+lxn+l - Sn+lxn||
< ”xn - Sn+lxn+1” + ||xn+l - xn”
SIS paixnar = Xnaill + 2|14 — x4l

So, from x, — S;x, — 0 and x, — x,41 — 0, one gets lim, .« ||X; — Sysxull = 0 for I = 1,...,N. This hence
ensures that

lim [lx, — Sixall = 0, V1€ {1,2, ..., N}. (13)
n—oo
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Noticing y, = Pc(w, — 1,Aw,), one has (wy,, — Ty AWy, — Yn,, ¥ — Yn,) < 0,Vy € C, and hence

1
T—<wnk = Yn, Y = Yn) + (AWn, Y, — W) < (AW, ¥ — wy,), Yy € C. (14)

Nk
Using the boundedness of {wy, } and Lipschitz continuity of A, one gets the boundedness of {Aw,, }. Thanks
to T, = 7 := min{ty, %} and w, — y, — 0, from (14) one gets

liin inf(Aw,,, y —w,,) >0, Yy € C.

Next, we claim that z € VI(C, A). In fact, since w, — x, — 0, w, — y, — 0 and x,, — z, we obtain that
Xy — Yn — 0 and y, — z. Since C is convex and closed, from {y,} € C one has z € C. In what follows,
we consider two cases. If Az = 0, then it is clear that z € VI(C, A) (due to (Az,y —z) > 0,Vy € C). Assume
that Az # 0. Then, by the hypothesis on A, instead of the sequentially weak continuity of A, we get
0 < [|Az]| < liminfx_,c [|AYy,|l. Because combining w, — y, — 0 and L-Lipschitz continuity of A guarantees
Aw, — Ay, — 0, it follows that

lim inf | Awy, | 2 Gm inf(lAys, [l |4y, — Aw ) = liminf Ay, || 2 [|Az]] > 0.

So, we might assume that [|Aw,, || # 0 Vk > 1.
We now choose a sequence {rn} € (0,1) s.t. ¢ | 0 as k — oco. For each k > 1, let the my; indicate the

smallest positive integer s.t.

<Awn,/ y - wn,) + T]k Z 0, Vl Z mk. (15)
Since {1} is decreasing, one knows that {m;} is increasing. Noticing {wy,,} C {w,,} and [|Aw,,|| # 0,Vk > 1, we
set P, = ”:;%, and get (Awy,, pm,) = 1, ¥k > 1. So, from (15) one has (Awy,, y + NxPm, — W) = 0,Vk > 1.

Hlk

Also, using the pseudomonotonicity of A one has (A(y+nkpm,), Y+ MkPm, —Wm,) = 0, Yk = 1. This immediately
leads to

(AY, Yy = W) 2 (AY = AY + kPme), Y + kP = W) = MCAY, P ), Yk 2 1. (16)

We claim that limy_,co Nkpm, = 0. In fact, noticing 0 < [|Az|| < lim infy_,e AWy ||, {Wp,} C {wy} and nx | 0,
Tk limsup, _, ., 1k
AWl =~ Tminhow [Awy ]

we obtain that 0 < limsup,_, . l7xpm ]l = limsup,_, = 0. So, one has np,, — 0 as
k — oo.

In the end, we claim that z € Q. In fact, using (13) one has x,, — Six,, — 0 for/ = 1,...,N. Since
Lemma 2.5 ensures the demiclosedness of I — S; at zero, from x,, — z one has z € Fix(5;), VI € {1, ..., N}. So,
zZ € ﬂfil Fix(5;). Also, from x, — z, — 0 and x,, — z, one gets z,, — z. Using (12) one has z,, — 5z,, — 0.
From Lemma 2.5 one knows the demiclosedness of I — S at zero, and hence gets z € Fix(S). Moreover,
from x, — u, — 0 and x,, — z, one gets u,, — z. According to Lemma 2.7, one knows that the mapping
G = Pc(I — w1B1)Pc( — uzBy) is nonexpansive for u; € (0,2a) and py € (0,26). Using the hypothesis
u, — Gu, — 0 one has u,, — Gu,, — 0. From Lemma 2.5 one knows the demiclosedness of I — G at zero, and
hence gets z € Fix(G). In addition, letting k — oo, we infer that the right-hand side of (16) tends to zero by
the uniform continuity of A, the boundedness of {w,,}, {pn,} and the limit limy_,. 7xp, = 0. Consequently,
(Ay,y — z) = liminfy,(Ay, y — wy,) = 0,¥Yy € C. Using Lemma 2.3 one has z € VI(C,A). All in all,
z € MY, Fix(Sy) N Fix(G) N VI(C,A) = Q. [

Theorem 3.5. Suppose that {x,} is the constructed sequence in Algorithm 3.1, such that S"x, — Sy, — 0. Then
X, — x* € Q, which is the unique solution to the HVI: {(pF — f)x",p—x*) 20, Vp € Q.
Proof. Since lim,,c % = 0 and 0 < liminf, oy, < limsup, vy, < 1, we might assume that 0, <

w, Vn > 1and {y,} C [a,b] C (0,1). Let us show that Po(f — pF +1) is a contraction. In fact, using Lemma
2.9 one has

IPa(f = pF + Dx = Po(f — pF + Dyl < (I = pF)x = (I = pF)yll + [l f(x) = f()ll
<A-Dlx=yll+ollx =yl =[1 = (£ =)llx-yll, Yx,y € H,
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which guarantees that Po(f — pF + I) is a contraction. By Banach’s Contraction Mapping Principle we

obtain that Po(f — pF + I) has the unique fixed point. Say x* € H, i.e., x* = Po(f — pF + Dx".
dx e Q= ﬂﬁo Fix(5;) N Fix(G) N VI(C, A) solving the HVI

((pF - f)x',p—x") =0, ¥p € Q.

In what follows, we divide the remainder of the proof into several steps.

Therefore,

(17)

Step 1. We show that {x,} is bounded. In fact, for x* € Q = ﬂﬁo Fix(S;) N Fix(G) N VI(C, A), we obtain

that x* = Gx*, x* = Sx* and x* = Snx* Vn > 1, and (10) holds, i.e.,

%112 *112 2 2
llzn = X117 < llwy, = x7|I° = (1 - = Wall” + 1z = yall").

Since limy,_,(1 ‘uTm) =1-u>0we mlght assume that 1 — e — >0 V¥n > 1. Hence, one gets
llzn — 27|l < [lwn — X7, ¥n = 1.

By the definition of u,, we get

24
[ = 2N < My = 271+ il = Xpeall = Ml = XN+ B - =l = Xl

B

||x,1 Xn-1]l = 0 as n — oo, one knows that 3K; > 0 s.t.

Since “"

_”xn —xall <Ky Vn2>1,

B
which together (19), yields

llun = x| < [lxn = XN + BuKi1, Y 2 1.

So, from B, + y, < 1, Lemma 2.9 and (18) it follows that

Iz, = x*[| < ,Bn”f(xn) - f(X*)H + Vullxn
,Bn

-(I- pF)x

< ﬁnéllxn —-x II + Vullxn = x*II + (1= yu = BuOllun — x| + Bull(f — pF)x"||
< BrO(llxn — X + BnK1) + yulllxn — X7 + K1)
+ (1 =yu = Bul)(llxn = X°|| + K1) + ull(f — pF)x7|l
< lxw = XN + Bu(Ky + I(f = pE)X"|).
Noticing xy41 = (1 = Ap)w, + A,5"z,, we infer from (21) that
a1 = X < (1 = Ap)llw, — x| + Au(1 + Op)llzn — X7

n( =0
<[1-pBu(l— (5)]|Ixn — X'+ Bu(Ky + [I(f — pF)X"I) + Pkl = 9)

2
" W(€—=0) 3(K — oF)x*
<= By s |+ﬁ(2 ). (1+||€(J16P )
< max{lix, - ¥, SRt ”{ff 6PF)x b,
3(K1+I(

By induction, we obtain ||x, — x*|| < max{llx - x|, v
the sequences {u,}, {4}, {w,}, {y LA ASuxat, 1Sz, ).

Step 2. We show that
- n”z

(Bn + On)Ka = %1 = 217 + [y = 21 2 A1~ +lyn =zl

(18)

(19)

(20)

(21)

“Mlen = XN+ Bu(Ky + I(f = pF)xID]

_pF)x*”)}, Vn > 1. Thus, {x,} is bounded, and so are
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for some Ky > 0.
In fact, one has

P pF)Gu, — (I - P

Wy =¥ = Bl f) = F) + 7l =3+ =yl = 75 -y,

Using Lemma 2.9 and the convexity of the function h(s) = s> Vs € R, one gets

ﬁn ﬁn
1_yon)Gun (I -

l[e0n = 2P < 1Ba(f(xn) = FX)) + Y = x7) + (1= yu)[(T =

+ 2B8.{(f — pF)x*, wy, — x*)
< [,Bnéuxn - x|l + Vaullxn — 'l + (1 - ﬁnf = Yl — x*H]z + 2ﬁn<(f - PF)x*r W, —Xx°)

< Bubllxy = X°IP + yulln = 1P + (1 = Bul = yu)llitn = X'|P + 2Bu{(f = pF)x", w, — X7)

< Budllxn = XIP + vallew = X1 + (1 = Bul = yu)llun — x| + oKz

pE)xNII?

4736

pF)x*] + Bu(f — pF)x".

(22)

where sup, ., 2||(f — pF)x"|ll[w, — x*|| < K3 for some K; > 0. Noticing x,+1 = (1 — A,)wy, + A,5"z,, from (10) we

have

112 *[12 *(12 *112
[IXpe1 = X°|I° < (1 = A)llwy — XF|I° + Apllzy — X°|I° + 0,(2 + Op)llzn — X7
Ty

< llwy = 2P = An(1 = p==)(llwy = Yl + 1y = 2l) + 642 + 6,)llzw = %I

Tn+1

Also, from (20) we have

[l = 1P <l = 21 + Ba(2Kllx, = %Il + BuK3)

< e = 1P + BuKs,
where sup, .., (2K [|x, — x| + ,B,,K%) < Kj for some K3 > 0. Combining (22)-(24), we obtain

1 = X | < Budllxn — X1 + ullxw = X + (1= Bul = Yl — X'1I* + BuKa

Ty *
—An(1 - b Ylwn = Yull® + 1y — zal?) + 642 + 6)llzn — X7
n+
* T1
<[1- ,Bn(f = 0)]llxn — x ”2 - Au(1 - ”T ’ ) )llew,, — yn”z +lyn — anlz)
n+
+ BuKs + BukKa + 6,2 + 0,)lIz, — x|

Tn

< lxp — x*Hz - An(1- u )(”wn - ]/n”2 + ”yn - Zn”z) + (ﬁn + Qn)K4/

Tn+1
where sup, . [Kz + K3 + (2 + O,)l1z — x*|*] < Ky. This immediately implies that

Tn

(O + Bu)Ka = X1 = 217 + lvw = 2IP 2 A1 = p==)(llwn = yull* + Iy = zall).

Tn+1

Step 3. We show that

3K ay, 0, 2{(f = pF)x", wy, — Xx*)

Bu(€ = 0)

for some K > 0. In fact, note that

[l = 1P < o = 2P + il = 20112016 = 71 + il = x-1]1]:

1+ 1= Bull = )l = X1 2 llxner —

(23)

(24)

(25)

I (26)
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Using (18) and (22), one has
Itne1 = X N7 < (1= Apllwy — XIP + An(1 + 0,)llzn — X7 < llwy — X°IP + 04(2 + Op)llzn — x|
< Budllxn — XN + ullxn — XN + (1 = Bul — Yl — X°I* + 2B,((f — pF)x", wy — x7)
+ 04(2 + Oy)llzs — x|
3K ay, 0, 2(f — pF)x*, wy, — x*)
5—6 ﬁn”xn xn_1”+3ﬁn)+ 5—6

<1 =Bl = O)lxn = X1 + Bu(C = O) I
where sup, . {llxy — x*||, anllxn — xu-1ll, (2 + On)llzn — x*|*} < K for some K > 0.

Step 4. We show that {x,} converges strongly to the unique solution x* € Q of the HVI (17). In fact,
putting T, = |lx,, — x*|[>, we demonstrate I, — 0 (1 — o) by considering the following cases.

Case 1. 1 (integer) ny > 1 s.t. {I';} is nonincreasing. Then the limit lim, oI, = C < +oc0 and

limy e’y =I'pt1) = 0. Since 6, - 0, B, = 0, I, =Ty —» 0, 1 = ‘uT:zl — 1-pand {A,} C [A,X] c(0,1),
from (25) one gets
. T . T
lim sup (1 — - ”1 Ylwn = Yull® + llyn — zal*) < limsupA,(1 - T "1 Ylwn = yall* + lyn — zal?)
n—o0 n+ n—oo n+

< lim sup[(B, + 6,)Ks + [0y = X°IP = llxe1 — x°I]

n—oo

= lim sup[(B + 0u)Ks + Ty = Tyia] = 0.

This hence implies that
lim [l =y, =0 and lim [ly, — 2,/ = 0.
Thus, one has
llwn = zull < llwn = Yl + [Iyn = zall > 0 (1 — o0).
Since wy, — X" = Vyu(xy — x*) + (1 = vu)(Guy, — x*) + Bu(f (xn) — pFGuy,), we obtain from (3.21) and (3.22) that
Xns1 = X1 < [y = X' + 6,2 + Op)llzn — X[
< Mlyn(en = x7) + (L= yu)(Gty = X + 2B (f (xn) = pFGity, wy — X°)
+ 042+ Op)llzn — x|
< Yulltw = X2 + (1 = y)lIGuty = XIP = yu(L = y)llxn = Guiy|?
+ 2Bl f (xn) = pPFGuullllw, — x|l + 0,42 + Op)l|z, — x| (27)
< Vulllen = €17 + BuKz) + (1 = yu)(llxn = X1 + BuK3) = yu(l = yu)llxy — Guiy|?
+ 2Bullf(xn) — pPFGunllilw, — x| + 0,4(2 + 0,z — x|
= |lxy = X°IP + BuKs = yu(1 = y)llxu = Gunll® + 2Bl f(x4) — pFGuiyllllw, — x|
+ 0,42 + O)llzy — X1,
which together with {y,} C [a,b] C (0,1), arrives at
a(1 = b)llxy = Gul* < yu(1 = yu)llxn = Gul?
< ln = 217 = lxns1 = X1 + BuKs + 2Bull f(x0) — pFGuyllllwy, — x°|| + 6,2 + )|z — X7
< Ty = T + ulKs + 2(1 el + 0FGuilDlfwn — x°[1] + 04(2 + Oz — x°I.

Since 6, = 0, B, = 0and I'; — I';41 — 0, by the boundedness of {w,}, {x,}, {z,}, {Gu,} one gets lim,, o |lx, —
Guy|| = 0 and hence

Iy, — xull = I(1 = Vn)(Gun - Xy) + ﬁn(f(xn) - pFGun)”
< NGuy = xull + Bu(ll fxa)ll + [[pFGupll) = 0 (n — o0).
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This immediately yields

Iy = zall < I — wyll + llwy = zull = 0 (1 — 00).

4738

(28)

We now claim that ||u, — Gu,|| — 0 as n — oo. In fact, we put y* = Pc(x* — p2Box*). Note that

vy = Pc(uy — u2Bouy) and g, = Pc(v, — p1B1v,). Then g, = Gu,. By Lemma 2.6 we have

[0 = ¥'IP < it = X1 = p2(2B — p2)lIBattn — BoxII,
and

9 = x'I? < llow = y'IP = p1(2a = u1)lIB1oy = Byl
Combining the last two inequalities, from (24) we get

19 = X1 < Mt = %'IP = p2(28 — p2)lIBatty = Box'IP = 1 (2 = p)|IBroy = Bry' I

< ey = XIP + BuKs — p2(28 — p2)lIBatty, = Box'I? = p1 (2 = p)lIB1vy = Bry'|IP.

This together with (27), leads to

eer = X1 < pullen = 1P + (1 = ylign = %I + 2Bull f(xa) = pFgallilco, — 7|

+04(2 + O)llzs — xIP
< Vulltw = X1 + (1 = yullllxn = 1 + BuKs — p2(2B — p2)||Battn, — Box'|I?

— 1 Qa = w)lB1o; = Biy'IP} + 2Bl f(x) = pFqullllco, = %"l + 6,2 + 0,)lIz, = xIP

< by = 1P = (1 = yu)[p2(2B = w2)lIBatty — Box*I* + p1(2a = p1)l1B1vy — Biy'|I]
+ BulKs + 2/l f (xn) = pEullllw, — x*[I] + 0,(2 + O,)llw, — |12,

which immediately yields

(1 = yu)[p2(2B = u2)lIBatty — Box*|* + p1(2a — w1)l1B1oy — Bry'|]
< Ty = Tusr + BulKs + 2l f(x) = pFqalllliw, — X1 + 0,2 + 0w, — x*|1*.

Since 1 € (0,2a), u2 €(0,26), 6, - 0, B =0, I, =41 —» 0and 1 -y, > 1 - b, by the boundedness of

{xn}, {qn}, {wn}, we get
lim [|Byu, —Box'[| =0 and  lim ||B1o, = Biy’ll = 0.
Furthermore, observe that
lgn = X7 < 0w = Y, Gn = X°) + p1(B1y" — B10y, Gy — X°)
< %[an =V IP +llgn — X1 = llon = gu + X" = Y] + pallBry” = B1oglllign — x.
This ensures that
lgn = I < Mlow = ¥ I = llon = g + X" = y'IP + 2p111B1y” — B1oulllign — 7|1
Similarly, we get
llon = 1P < lltw = X NP = 11t — v + ¥ = XIP + 2p2]1Box” = Bautyllllon — y'|l-
Combining the last two inequalities, from (24) we get
g = I < Moty = x°1P = llitw = 0 + ¥ = X1 + 2u2[1Box” = Boutylll[v — vl
— o = gu + x* = y'IP + 2p1lIB1y” — B1oallllgn — x°ll
<l = X1 + BuKs = [ty — 0y + y* = XIP = 0w — g + %" = y'IP
+ 2u2||Box” = Boutllllon — yll + 2plIBry” — Broallllgn — x7|I-

(29)
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This together with (27), arrives at

st = X2 < Yl = X1 + (1= y)lign = X1 + 2Bull f () — pFqullllwn — X7l + 642 + Op)l|z, — x|
< yulw = XN + @ = yulllxn = X1 + PuKs = ity — 04 + y* = X717
— 0w = gn + % = y'I* + 2u2llBox” = Boutyllllow — v'll + 2p1l|B1y” — Baollllgn — 11}
+ 2Bl f (xn) = pEqullllwo, — X7l + 642 + On)llzy — X'
<l = XN = (L= y)llln — 00 + ¥ = X1 + o = gn + X" = y'IP]
+ 2u2||B2x™ = Bouyllllon — y'll + 2pual1Bry” — Broallllg, — Xl
+ BulKs + 21l f (xn) = pEqullllwn = x*I1 + 0,2 + O,)lwy, — x|,

which immediately leads to

(L= y)llln — v+ y* = X1 + l[on — gn + x* = Y IP] < Ty — Tt + BulKs + 211 f(x1) — pFqallllwn, — x°|I]
+ 2us||Box™ — Bouyllllon — y¥Il + 2p11I1B1y” — Broallllgn — x|l
+ 0,2+ Oy)llw, — x|

Since 0, - 0, p - 0, [, =441 = 0and 1 -y, > 1 - b, by the boundedness of {x,}, {gu}, {vs}, {wy}),
from (29) we deduce that lim,_, [ty — vy + y* — x*|| = 0 and lim, e [0, — g + X* — y*|| = 0. Thus, we get
[ty = gnll < Nty — o0 + y* = x| + [0y — g + x* — y*|l = 0 (n —> o0). So it follows that

lim luy = Guyl| = lim [lxy — | = 0. (30)
On the other hand, from (18), (22) and (24) it follows that
Xns1 = X1 = (1= Allwy = X1 + AullS" 2y — X7 = Au(1 = Ap)llwy — S"z4l?
< (1= Ay = X1 + Au(L + 0,)l1z0 — X1 = An(1 = Ap)l[wy — S" 2zl
< Ny = 1P + 0,2 + Op)llzn — X'1P = An(1 = Ap)llwy, — S"z, I
< Budllxy = X1 + yulltn = 1P + (1= Bul = yu)llit = X1 + BuKz
+ 042+ O)llzy — X1 = Au(1 = Ap)l[wy, — "z
< Bud(llxn = I + BuKs) + yu(llxy = XIP + BuKz) + (1 = Bul — yu)(lxn — x|
+ PuKs) + BuKa + 0,2 + Op)llzy — X'IP = An(1 = Ap)llwy — S"z,I*
= [1= Bull = Iy = X1 + BuK3) + uKa + 0,2 + Op)llzs — X1
= A1 = Ap)llwy = Sz,
< ey = X1 + BuKs + BuKa + 0,42 + 0)l1z0 = X'I* = Au(1 = Ap)l[wy, — "z
< lxw = X1 + (Bn + 0)Ka = Au(1 = Allwy — Szl P,

which together with {A,} C [A, Al c (0,1), arrives at
A = Vllw, = S"24l* < An(1 = Al = "2,

< by = X1 = [xnsr = XIP + (Bu + On)Ka
= Fn - l”n+1 + (,Bn + 9,,)K4.

SinceI';, —=I'y4s1 — 0, B — 0 and 6, — 0, one obtains lim,,,« [[w, — 5"z,|| = 0. Accordingly, one has
||xn+1 - xn” = ”(1 - /\n)(wn - xn) + /\n(Snzn - xn)”

= I(1 = Ap)(wy — xn) + Au(S" 2z — Wy + Wy — X))

31
= |lwy, — x4 + Au(S" 2y — wi)ll 1)

< lwy = xull + 18"z —wyll > 0 (1 — ),
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and
Iy, = S"xull < |l — wall + llwy, — S"zull + 115"z, — S" x| (32)
< lxw = wpll + llw, = S"zull + (1 + Op)llzn — x4l = 0 (n — o).

Also, by the boundedness of {x,}, we deduce that I{x,,} C {x,} s.t.
lim sup((f — pF)x", x,, —x") = hm((f pF)x*, xp, — x™).

n—o0
According to the reflexivity of H and boundedness of {x,}, we might assume that x,, — &. So it follows that

lim sup{(f — pF)x", x, —x*) = I}l_)r?o((f — pF)x*, xy, = x*) = {(f — pF)x", X = X*). (33)

n—oo

Note that x, — x,11 = 0, x, —u, >0, x, —z, = 0, u, — Gu, » 0 and x, — S"x, — 0 (due to (28), (30)-(32)).
Since S"x, — §"1x,, — 0 and Xy, — X, by Lemma 3.4 we get & € (. Thus, using (17) and (33) one has

lim sup{(f — pF)x", x, —x") = {(f — pF)x", ¥ —x") <0, (34)

n—oo

which immediately leads to

lim sup{(f — pF)x*, w, — x*) < limsupl||(f — pEF)x"|lllw, — xull + {(f — pF)x*, x,, —x")] < 0. (35)
It is not hard to check that {8,(¢ — 6)} € [0,1], Y.y Bu(€ — O) = o0, and

. 3K O 2<(f_pF)x/wn_x )

hr,?_?::p[m B e = xall + %) + -5 ]<0.

Therefore, applying Lemma 2.4 to (26), we have lim,_ [lx, — x*|*> = 0

Case 2. d{I',,} c {I'y} sit. Ty, < Tpp41 Ym € N, where N is the set of all positive integers. Define the
mapping i : N — N by fi(n) := max{m < n : I, <T11}. In the light of Lemma 2.8, we obtain I',y < Tigiy+1
and I';, < I'jy4+1. Hence, from (25) we have

Yuel* + 1Yy — Zaen )

n—o00
<lim Sup/\h(n)(l M—)(”wh(n) = Y|P + 1Yty — Znen |1
n—o0
< lim sup (T — rh(n)+1 + (Brn) + Onn))Ka) =
n—oo

This hence arrives at limy, e [y — Yamll = 0 and limy, e V) — zae)ll = 0. Using the same inferences as
in the proof of Case 1, we deduce that lim, e |[X1) — Zn)ll = 0,

1}1_{1(}0 [ttnny — Gupgll = 1}1_{1;10 Iy — Unyll = 1}1_{{}0 IXrgny+1 = Xryll = 0,

Lim [fxper) — S "Dl =0 and  limsup{(f — pF)x", Wy — x*) < 0.

n—oo

On the other hand, from (26) we obtain
Onmy . 2((f = pF)X", Wy(ny — x°)

nf 5r1n<r1n_rn 1n€ 0 fi(n)—
Brny) (€ = )y < Ty — Tgmy1 + Pragy( )[5 5 ﬁ = Xn(n) 1”+3,Bh(n))+ =35 ]
Qpn) Onmy . 2((f — pF)X", wn(ny — x°)
< (€-06 b _ ’
Brin)( )[5 5B ||xr(n) Xn(my-1ll + 3ﬁh(n)) + =35 ]
which hence yields
3K Qi Oneny 2 = pP)x", Wy — X7
li Thmy <1 " )= <0.
im sup [ lmsup[g 6(51,, i) = Xngmy-1 1l + 3ﬁh(n))+ —5 |
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Thus, limy,,e [Ixsm) — x*|> = 0. Also, note that
xngny+1 — X1 = Ixngny — X* 1P = 20041 — Xy, Xy — X°) + Xngaye1 — Xy |I*
< 20xngy+1 = oo lxXny — XN + X1 — Xael> = 0 (n — o0).
Thanks to I', < I'jmy41, we get
lloes = X1 < ngmyan = X712 < gy = X717 + 200001 = Xnon ey = XN+ [rny+1 — Xnel> = 0 (n — o).

That is, x, — x* as n — oco. This completes the proof. [J
Theorem 3.6. Suppose that S : H — H is nonexpansive and {x,} is the sequence constructed by the modified version
of Algorithm 3.1, i.e., for any initial xo,x, € H,
Uy = Snxn + an(snxn - Snxn—l)r
vy = Pc(u, — HZBZMn)r
qn = Pc(vy — p1B1oy),
Wy = ﬁnf(xn) + VnXn + ((1 - Vn)I - ﬁnPF)qn/
Yn = PC(wn - TnAwn)/

Zp = PC,, (wn - TnAyn)l
Xpe1 = (1 = Ap)wy, + A, Sz, Vn > 1,

and ay,, T, and C, are chosen as in Algorithm 3.1. Then x, — x* € Q, which is the unique solution to the HVI:
{(pF - fix',p—x) =0, Vpe Q.

Proof. We divide the proof of the theorem into several steps.

Step 1. We show that {x,} is bounded. In fact, using the same arguments as in Step 1 of the proof of
Theorem 3.1, we obtain the desired assertion.

Step 2. We show that

* * T
BuKa + 1y = x°IP = Ixne1 = x°I7 = Ap(1 — p—
T

)(”wn - yn||2 + ”yn - Zn||2)

n+1

for some Ky > 0. In fact, using the same arguments as in Step 2 of the proof of Theorem 3.5, we obtain the
desired assertion.
Step 3. We show that
3Ka, 2((f = pF)x*, wy — x*)
=) —7lIxn — xuall +
ﬁn( )[(5_6)ﬁn“xn X1l s
for some K > 0. In fact, using the same arguments as in Step 3 of the proof of Theorem 3.5, we obtain the
desired assertion.
Step 4. We prove that {x,} converges strongly to the unique solution x* € Q2 of the HVI (17), with S = S
a nonexpansive mapping. In fact, from Step 3, one obtains

3Ka, 2A(f = pB)X" w0 — X7)
m”xn = Xpall + 75

Putting T, = ||x,, — x*||>, we demonstrate T, — 0 (n — o0) by considering the following cases.

Case 1. Assume that 3 (integer) ng > 1 s.t. {I';} is nonincreasing. Then the limit limy, e [, = C < +00
and lim,,(I'y = T41) = 0.

Utilizing Step 2, T, = T11 = 0, B = 0, 1 -y~ —> 1 —pand {A,} C [A, X] c (0,1), one has

Tn+1

1+ [1 = Bu(€ = )l = XIP = [xr = x°IP

Bu(£ = O) 1+ [1 = Bu(€ = )k = XIP 2 lxir = x'IP. (36)

T Ty

lim supA(1 — ”1 Yllwn = yull® + lyn = z4l?) < limsupA, (1 — u—)(llw, — yull® + llyn — zul*)

n—oo Tn+ n—oo Tn+1

<limsup(l'y = [y + BuKs) =0,

n—0o0
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which immediately yields
lim flw, —yull =0 and  lim [ly, — z,[| = 0. (37)
Thus, one has
llwn = zull < llwn = yull + lyn = 2zull = 0 (1 — o). (38)

Utilizing the same inferences as in Case 1 of the proof of Theorem 3.5, we conclude that lim,,_, ||, — 24|l = 0,

Hm i, = Gull = lm [lx, =yl = lim 21 = xall =0, (39)
and
lim [|x, = S"x,|l=0 and limsup{(f — pF)x", w, —x") < 0. (40)

As a result, applying Lemma 2.4 to (36), one derives lim,_,« |, — x*[|* = 0.

Case 2. Assume that (T, } € {T'y} s.t. Ty, < Ty, 41 Y € N, with N being the set of all natural numbers.
Let the mapping /i : N — N be defined as 7i(n) := max{m < n : I';, < I';11}. From Lemma 2.8, one has
Ty < Thny+1 and Ty, < Tgyp41. In the rest of the proof, utilizing the same inferences as in Case 2 of the proof
of Theorem 3.5, we obtain the desired result. This completes the proof. [

Next, we formulate another modified inertial-like subgradient extragradient algorithm below.
Algorithm 3.7. Initialization: Given 71 >0, a > 0, p € (0,1). Let xo, x1 € H be arbitrary and choose a, s.t.

. e .
mln{a’ ”xrz_xn—lll }, lfx” ;é -anl,
a, otherwise.

OSaHSan:z{

Iterative Steps: Calculate x,,.1 as follows:
Step 1. Set u, = Spxy + ny(SpXy — SuXn-1), and compute

vy = Pc(x, — [»12B2xn)/
qn = PC(Un - HlBlvn)-

Step 2. Compute

{wn = BufCen) + Ytha + (1= 7201 = BupP)n,
Yn = Pc(wy — 1nAwy).
Step 3. Compute
Xna1 = (L= Ap)wy + AuS"Pe, (Wn = TnAYn)
where

Cp = {x € H: (w, — T,Awy, — Y, X — y,) < O},
Step 4. Update

: "wn_}/nllz"'HZn_ynllz .

Tt = min{uspe e =S Tl 1f (AW = AYn, 2w = Yn) > 0,

n+l = :
T, otherwise,

where z, = Pc,(w, — 1,Ayy). Again set n := n + 1 and go to Step 1.

It is worth pointing out that Lemmas 3.2, 3.3 and 3.4 are still valid for Algorithm 3.7.
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Theorem 3.8. Suppose that {x,} is the constructed sequence in Algorithm 3.7, such that S"x, — S""'x,, — 0. Then
X, — x* € Q, which is the unique solution to the HVI: {(pF — f)x*,p—x*) 20, Vp € Q.

Proof. Noticing lim;,_,o ,Z_: = 0and 0 < liminf, . y» < limsup,_, ¥, < 1, we might assume that 0, <

w, Vn > 1and {y,} C [a,b] C (0, 1). Using the same arguments as in the proof of Theorem 3.5, we obtain
that there exists the unique solution x* € Q = ﬂﬁo Fix(5;) N Fix(G) N VI(C, A) to the VIP (17).

Next we show the conclusion of the theorem. To the aim, we divide the remainder of the proof into
several steps.

Step 1. We show that {x,} is bounded. In fact, utilizing the same arguments as in Step 1 of the proof of
Theorem 3.5, one obtains that inequalities (18)-(20) hold. So, from f, +y, < 1, Lemma 2.9 and (20) it follows
that

Iz = x| < Budllxn — X7l + Yullitn — X[ + (L =y = BuO)llxn — X7 + Bull(f — pF)x’||
< ﬁné(”xn - x*” + ﬁnKl) + yn(”xn - x*H + ﬁnKl) + (1 —Vn— ﬁnf)
X (Il = 21| + BuKa) + Bul(f = )
< [l = 1+ BulKs + 1ICF = PP

Owing to x,+1 = (1 — A,)w, + A,S"z,, from the last inequality one gets

141 = X°| < Nlwy — X7 + Onllw, — x|l

ﬁn( )]|| x4 Pu(€ —0) 3(Kyi +I(f — pB)X’Il)
n 2 £-6
3(Ky +I(f — pF)x* II)}

£-0
3Ki+I(f=pP)x"ll)
-0

<[1-

< max{[lx, — x|,
By induction, we obtain ||x, — x*II < max{ |1 — x|, },¥n > 1. Thus, {x,} is bounded, and so are
the sequences {g,.}, {un}, {wa}, {y bAS Cen)}, {572}
Step 2. We show that

112 %112 2 2
(0, + ﬁn)K4 + |lxy = X7 = llxpr = X717 > - yn” + ”yn —wyll%)

for some K4 > 0. Utilizing the similar arguments to those of (22), one gets
ﬁnKZ +(1- ‘Bng - Vn)”xn - x*Hz + Valluy — x*HZ + ‘3,1(3”96,1 - x*”2 > |lw, - x*”2/ (41)

where sup, ., 2/|(f — pF)x"[lllw, — x°|| < K3 for some K, > 0. Using the same arguments as those of (23) and
(24), we have

0,2 + 0)l|zy — x| ~ Yl + 1y = 2alP) + llwy = 1P = llun = 21, (42)

(Ilwn
and

1 = %I < [l = x| + B.Ks, (43)
where sup, .., (2Ki[|x, — x| + ﬁnK%) < Kj for some K3 > 0. From (41)-(43), we get

xs1 = 2P < Budlln = I + pullln = X1 + BaKs) + (1 = Bul = yu)llxy — X°IP + BuKa
— yull® + Ny — anlz) + 0,2 + 6,)lIz, — x|

<[1- ,Bn(f - 6)]”xn - x*Hz - ]/n”z + ||yn - anlz)

+m&+m&+ma+mwwww

< oy = XN = An(1 — = Yl + 11y = zull) + (0n + Bu)Ke,
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where sup, ., [Kz + K3 + (2 + 0,1z, — x*|’] < Ky. This immediately implies that

— Yl + 11y — zall®) < I3y = X1 = X1 — X% + (O + Br)Ka. (44)
Step 3. We show that
3K an, On 2(f — pE)x", wy — x7) ) )
n(€— Xy — X1l + + +[1 - B - n = X7 > [l — X
Bn(l = O)— —s ﬁ 1l 3ﬁn) =5 [+ 1= Bu(€ = 0)llxn — X" = |1 — X7l
for some K > 0. In fact, one has
Iy — 2 IP < llxn — 1P + aullxn — Xu—1l201%0 — 71 + aallxn — x-all]- (45)

Combining (18), (41) and (45), we have

cis1 = X112 < Budllxn = x| + ullun — NP + (1 = Bul = y)llxn — X1 + 2B,((f — pF)x", wy — x°)
+ 0,2+ Oz — x| (46)
3K ay,

n 2<(f - PF)x*/ W, — x*)
-5 ﬁ “xn - xn—l” + _) +

< [1 ,Bn(f 6) ”xn - X ”2 +,Bn(f 6) 3ﬁ -0

]I

where sup, . {llx; — x*||, anllxn — xu-1ll, (2 + On)llzn — x*|I*} < K for some K > 0.
Step 4. We show that {x,} converges strongly to the unique solution x* € Q of the HVI (17). In fact,
utilizing the same arguments as in Step 4 of the proof of Theorem 3.5, we obtain the desired assertion. [

Theorem 3.9. Suppose that S : H — H is nonexpansive and {x,} is the sequence constructed by the modified version
of Algorithm 3.7, i.e., for any initial x9,x, € H,

Uy = SpX, + an(snxn - Sn-xn—l)/

vy = Pc(x, — .UZBZXn)/

n = Pc(v, - u1B1vy),

Wy = ﬂ”f(xn) + Vuly + ((1 - Vn)I - ,Bnpp)q;w
Yn = PC(wn - TnAwn)/

Zp = PC,, (wy, — TnAyn)/

Xpe1 = (1= Ap)wy + A5z, ¥ 2 1,

and oy, T, and C, are chosen as in Algorithm 3.7. Then x, — x* € Q, which is the unique solution to the HVI:
{(pF = f)x',p—x") > 0,¥p € Q.

Proof. We divide the proof of the theorem into several steps.

Step 1. We show that {x,} is bounded. In fact, utilizing the same arguments as in Step 1 of the proof of
Theorem 3.6, we obtain the desired assertion.

Step 2. We show that

Orks = a1 = X1 + I, = X1 2 A, (1 = p = YulP + 1y = zal?)

for some K4 > 0. In fact, utilizing the same arguments as in Step 2 of the proof of Theorem 3.6, we obtain
the desired assertion.
Step 3. We show that

F)x*, w, - x
Bull = O 8, — g4 XL PO 0 )

TR A2
it o1+ [L= Bu(€ = )by = X1 > [ ']

for some K > 0. In fact, utilizing the same arguments as in Step 3 of the proof of Theorem 3.6, we obtain the
desired assertion.
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Step 4. We show that {x,} converges strongly to the unique solution x* € (2 of the HVI (17), with S = S
anonexpansive mapping. In fact, utilizing the same arguments as in Step 4 of the proof of Theorem 3.6, we
obtain the desired assertion. This completes the proof. []

4. Examples

In this section, our main results are exploited to solve the VIP, GSVI and CFPP in an illustrated example.

I | _ 1 _ 1 _ __1
Putti=a=u=35 Ay=3, Bu= S Vn = 3(nrir1) ande, = TSI

We next provide an example of Lipschitz continuous and pseudomonotone mapping A, two inverse-
strongly monotone mappings B;,i = 1,2, asymptotically nonexpansive mapping S, and nonexpansive
mapping S; satisfying Q = (., Fix(S;) N Fix(G) N VI(C, A) # @ with Sy := S.

Let C = [-1,1] and H = R with the inner product {a,b) = ab and induced norm || - || = | - |. The initial
points xo, x; are randomly chosen in H. Take p = 2 and f(x) = F(x) = ix,¥x € H. Then6 = x =17 = 3,
p=2€0,2)=04andd=1<t=1-T-p2n-px?) =1.

Fori=1,2,1etA,B;: H— H,and S,S1 : H — H be defined as, for all x € H,

Ax = 1+|slinx| - %le’
Bix := x — § sinx,

Sx := 3sinx,

S1x := sinx.
Let us show that A is pseudomonotone and Lipschitz continuous. In fact, for all x, y € H we have

lllyll = Ml lIl sin yl| — [ sin x]l|
L+ DA +1yl) Q@+ [Isinx)(1 + [[sin yl])
ly — xl| . || siny — sin x||

T @A DA Iyl - A+ [ sin)(T + [ sin yl)
< |lx = yll + |l sinx — sin y|| < 2[]x — vl

lAx - Ayll <

This ensures that A is of Lipschitz continuity on H. Also, we claim that A is pseudomonotone. Actually, it
is easy to check that forall x, y € H,
1 1 1 1
- -x)>0=(Ay,y—x) = -
Trisiny T+~ 0202 Any =0 = (T am = 14y

(Ax,y —x) = ( )y —x) > 0.

In the meantime, for i = 1,2, B; is %—inverse—strongly monotone with a = § = %, since for all x,y € H we
deduce that ||B;x — B;y|| < %le - ylland
» 1, . 1 2
(Bix=Biy,x—y) = |lx—yll* - §<smx —siny,x —y) = s|lx - yll*.

It is clear that G(0) = Pc(I — %Bl)PC(I - %BZ)O = Pc(I - %Bl)O = 0, and hence 0 € Fix(G). Moreover, it is easy
to verify that S is asymptotically nonexpansive with 0, = (%)",Vn > 1, such that ||S"*1x, — S"x,|| — 0 as
n — oo. In fact, note that

3o o 3.,
15" = S"yll < Z11S" x = Syl < - < ()" =yl < (1 + On)llx = yll,
and
3., 3,143 . 3 . 3.,
15" 1, — S, || < (Z)" N1S%x, — Sx,ll = (Z) 1||Z sin(Sx,) — 1 sinx,|| < 2(1) — 0.
It is clear that Fix(S) = {0} and
0 (3/4)"

L LS Ve PR Vi
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In addition, it is clear that S; is nonexpansive and Fix(51) = {0}. Therefore, Q = ﬂ%:o Fix(S;) N Fix(G) N
VI(C, A) = {0} # 0. In this case, Algorithm 3.1 can be rewritten below:

Uy = S12y + @n(S1X0 — S1Xn-1),

On = Pc(un — p2Baity),

n = Pc(v, - #131011),

wy, = ﬁ © 3%+ 3payXn + 5ns (47)
Yn = Pc(wy, — 1,Aw,),

Zy = PC,, (wy, — TnAyn);

Xni1 = 20, + 35"z, Y > 1

and a,, 7, and C, are chosen as in Algorithm 3.1. Then, by Theorem 3.5, we know that {x,} converges to
0 € Q = N, Fix(S;) N Fix(G) N VI(C, A).

In particular, since Sx := 2 sinx is also nonexpansive, we consider the modified version of Algorithm
3.1, that is,

Un = X+ an(Xy — Xn-1),

On = Pc(un — p2Baity),

In = Pc(v, - “1Blvn);

wy, = ﬁ © 3%+ 3peyXn + 5ns (48)
Yn = Pc(wy, — 1,Aw,),

Zy = PCn (w, — TnAyn);

X1 = 3, + 35z, Y 2 1

and «a,, 7, and C, are chosen as above. Then, by Theorem 3.6, we know that {x,} converges to 0 € Q =
N, Fix(S;) N Fix(G) N VI(C, A).
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