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Abstract. We present some new collectively fixed point theory for general classes of maps of compact,
condensing or coercive type defined on topological vector spaces. As an application we present some new
equilibrium results for generalized games.

1. Introduction

In this paper we use results of the author [7] to establish some new collectively fixed point results for
very general classes of maps, namely the maps in [1, 2, 3, 4]. The maps considered will be of compact,
condensing or coercive type defined on Hausdorff topological vector spaces. These new collectively fixed
point theorems will then be rephrased as maximal element type results and will generate existence results
for majorized type maps. As an application we present some equilibrium results for generalized games (or
abstract economies) and our theory generalizes and complements the theory in the literature; see [4, 5, 6, 7,
8, 9, 10] and the references therein.

First, we define the classes of maps considered in this paper. Let Z and W be subsets of Hausdorff
topological vector spaces Y1 and Y2 and let F be a multifunction. We say F ∈ HLPY(Z,W) [3, 4] if W is
convex and there exists a map S : Z → W with co (S(x)) ⊆ F(x) for x ∈ Z, S(x) , ∅ for each x ∈ Z and
Z =
⋃
{ int S−1(w) : w ∈ W}; here S−1(w) = {z ∈ Z : w ∈ S(z)} and note S(x) , ∅ for each x ∈ Z is redundant

since if z ∈ Z then there exists a w ∈ W with z ∈ int S−1(w) ⊆ S−1(w) so w ∈ S(z) i.e. S(z) , ∅. These maps
are related to the DKT maps in the literature and F ∈ DKT(Z,W) [2] if W is convex and there exists a map
S : Z→ W with co (S(x)) ⊆ F(x) for x ∈ Z, S(x) , ∅ for each x ∈ Z and the fibre S−1(w) is open (in Z) for each
w ∈W.

Now we present the results of the author [7] used in this paper. Throughout this paper I will denote an
index set.

Theorem 1.1. Let {Xi}i∈I be a family of convex compact sets each lying in a Hausdorff topological vector space. For
each i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Si : X → Xi with Si(x) ⊆ Fi(x) for x ∈ X, Si(x) has

convex values for x ∈ X and S−1
i (w) is open (in X) for each w ∈ Xi. Also for each x ∈ X suppose there exists a j ∈ I

with S j(x) , ∅. Then there exists a x ∈ X and a i ∈ I with xi ∈ Fi(x) (here xi is the projection of x on Xi).
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Theorem 1.1 will generate results for compact, condensing or coercive type maps.

Theorem 1.2. Let {Xi}i∈I be a family of convex sets each in a Hausdorff topological vector space. For each i ∈ I
suppose Fi : X ≡

∏
i∈I Xi → Xi and in addition there exists a map Si : X→ Xi with Si(x) ⊆ Fi(x) for x ∈ X, Si(x) has

convex values for x ∈ X and S−1
i (w) is open (in X) for each w ∈ Xi. Also for each x ∈ X suppose there exists a j ∈ I

with S j(x) , ∅. Next assume for each i ∈ I that there exists a convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi. Then there
exists a x ∈ X and a i ∈ I with xi ∈ Fi(x) (in fact x ∈ K ≡

∏
i∈ Ki).

Theorem 1.3. Let {Xi}i∈I be a family of convex sets each in a Hausdorff topological vector space. For each i ∈ I
suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Si : X → Xi with Si(x) ⊆ Fi(x) for x ∈ X, Si(x) has convex

values for x ∈ X and S−1
i (w) is open (in X) for each w ∈ Xi. Also suppose for each x ∈ X there exists a j ∈ I with

S j(x) , ∅. Next assume there exists a convex compact set K of X with F(K) ⊆ K where F(x) =
∏

i∈I Fi(x) for x ∈ X.
Then there exists a x ∈ X and a i ∈ I with xi ∈ Fi(x).

Theorem 1.4. Let {Xi}i∈I be a family of convex sets each in a Hausdorff topological vector space. For each i ∈ I
suppose Fi : X ≡

∏
i∈I Xi → Xi and in addition there exists a map Si : X→ Xi with Si(x) ⊆ Fi(x) for x ∈ X, Si(x) has

convex values for x ∈ X and S−1
i (w) is open (in X) for each w ∈ Xi. Also for each x ∈ X suppose there exists a j ∈ I

with S j(x) , ∅. Next assume there is a compact subset K of X and for each i ∈ I a convex compact subset Yi of Xi such
that for each x ∈ X\K there exists a j ∈ I with S j(x) ∩ Y j , ∅. Then there exists a x ∈ X and a i ∈ I with xi ∈ Fi(x).

2. Collectively fixed point results

Using the results in Section 1 we establish some collectively fixed point theorems for new classes of
maps. We begin with a simple result motivated from the DKT maps [2] in the literature. Our first result
improves Theorem 1.1.

Theorem 2.1. Let {Xi}i∈I be a family of convex compact sets each lying in a Hausdorff topological vector space. For
each i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X → Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and

T−1
i (w) is open (in X) for each w ∈ Xi. Also for each x ∈ X suppose there exists a j ∈ I with T j(x) , ∅. Then there

exists a x ∈ X and a i ∈ I with xi ∈ Fi(x).

Proof. For i ∈ I let Si(x) = co (Ti(x)) for x ∈ X. For i ∈ I, first note Si(x) has convex values for each x ∈ X and
note Si(y) ⊆ Fi(y) for y ∈ X. In addition for i ∈ I from [8, Lemma 5.1] we have that S−1

i (w) is open (in X) for
each w ∈ Xi. Finally note if x ∈ X then there exists a i0 ∈ I with Ti0 (x) , ∅ and so ∅ , Ti0 (x) ⊆ co (Ti0 (x)) = Si0 (x).
Now Theorem 1.1 guarantees that there exists a x ∈ X and a i ∈ I with xi ∈ Fi(x).

Our next result is motivated from the HLPY maps [1, 3, 4] in the literature and our result improves
Theorem 1.1 and Theorem 2.1.

Theorem 2.2. Let {Xi}i∈I be a family of convex compact sets each lying in a Hausdorff topological vector space. For
each i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X → Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and

X =
⋃

i∈I
⋃
{ int T−1

i (w) : w ∈ Xi}. Then there exists a x ∈ X and a i ∈ I with xi ∈ Fi(x).

Proof. For i ∈ I let Ri : X→ Xi be given by

Ri(y) = {zi : y ∈ int T−1
i (zi)}, y ∈ X

and let Si : X→ Xi be given by
Si(x) = co (Ri(x)) for x ∈ X.

For i ∈ I first note that Si(x) has convex values for each x ∈ X. Next note for i ∈ I that Ri(x) ⊆ Ti(x) for x ∈ X
since if zi ∈ Ri(x) then x ∈ int T−1

i (zi) ⊆ T−1
i (zi) = {w ∈ X : zi ∈ Ti(w)} so zi ∈ Ti(x) and putting this together

yields Ri(x) ⊆ Ti(x). Thus for i ∈ I we have Si(y) = co (Ri(y)) ⊆ co (Ti(y)) ⊆ Fi(y) for y ∈ X.
Now for i ∈ I notice for yi ∈ Xi that R−1

i (yi) = {z : yi ∈ Ri(z)} = int T−1
i (yi) so R−1

i (yi) is open (in X) and so
from [8, Lemma 5.1] we have that S−1

i (yi) is open (in X).
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Now let x ∈ X. Since X =
⋃

i∈I
⋃
{ int T−1

i (w) : w ∈ Xi} there exists a i0 ∈ I with x ∈ int T−1
i0

(w) for some
w ∈ Xi0 and so w ∈ Ri0 (x) i.e. Ri0 (x) , ∅ and as a result ∅ , Ri0 (x) ⊆ co (Ri0 (x)) = Si0 (x). Now Theorem 1.1
guarantees that there exists a x ∈ X and a i ∈ I with xi ∈ Fi(x).

Remark 2.3. If in Theorem 2.2 we had X =
⋃
{ int T−1

i (w) : w ∈ Xi} for each i ∈ I, then we have the following in
the proof of Theorem 2.2. Let x ∈ X. Then for each i ∈ I there exists a wi ∈ Xi with x ∈ int T−1

i (wi) so Ri(x) , ∅ and
as a result Si(x) , ∅ for all i ∈ I. Thus Si ∈ HLPY(X,Xi) for all i ∈ I. We refer the reader to [4, 5] for this situation.

Next we obtain the analogue of Theorem 2.1 and Theorem 2.2 if we use Theorem 1.2 instead of Theorem
1.1. In particular we replace compactness of the sets with compactness of the maps. Our next result
improves Theorem 1.2

Theorem 2.4. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each i ∈ I
suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X → Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and T−1

i (w)
is open (in X) for each w ∈ Xi. Also for each x ∈ X suppose there exists a j ∈ I with T j(x) , ∅. Next assume for
each i ∈ I that there exists a convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi. Then there exists a x ∈ X and a i ∈ I with
xi ∈ Fi(x).

Proof. For i ∈ I let Si be as in Theorem 2.1 and note Si has the same properies as in Theorem 2.1 so we apply
Theorem 1.2 to obtain the result.

Our next result improves Theorem 1.2 and Theorem 2.4.

Theorem 2.5. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each
i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X → Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and

X =
⋃

i∈I
⋃
{ int T−1

i (w) : w ∈ Xi}. Also assume for each i ∈ I that there exists a convex compact set Ki with
Fi(X) ⊆ Ki ⊆ Xi. Then there exists a x ∈ X and a i ∈ I with xi ∈ Fi(x).

Proof. For i ∈ I let Ri and Si be as in Theorem 2.2 and note Si has the same properies as in Theorem 2.2 so
we apply Theorem 1.2 to obtain the result.

Next note if we use Theorem 1.3 we have the following results. In particular we consider condensing
type maps.

Theorem 2.6. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each i ∈ I
suppose Fi : X ≡

∏
i∈I Xi → Xi and in addition there exists a map Ti : X→ Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and

T−1
i (w) is open (in X) for each w ∈ Xi. Also for each x ∈ X suppose there exists a j ∈ I with T j(x) , ∅. Finally assume

there exists a convex compact set K of X with F(K) ⊆ K where F(x) =
∏

i∈I Fi(x) for x ∈ X. Then there exists a x ∈ X
and a i ∈ I with xi ∈ Fi(x).

Theorem 2.7. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each
i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X → Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and

X =
⋃

i∈I
⋃
{ int T−1

i (w) : w ∈ Xi}. Next assume there exists a convex compact set K of X with F(K) ⊆ K where
F(x) =

∏
i∈I Fi(x) for x ∈ X. Then there exists a x ∈ X and a i ∈ I with xi ∈ Fi(x).

Now we present our two results for coercive type maps. Our first result improves Theorem 1.4.

Theorem 2.8. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each i ∈ I
suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X → Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and T−1

i (w) is
open (in X) for each w ∈ Xi. Also for each x ∈ X suppose there exists a j ∈ I with T j(x) , ∅. Next assume there is a
compact subset K of X and for each i ∈ I a convex compact subset Yi of Xi such that for each x ∈ X\K there exists a
j ∈ I with T j(x) ∩ Y j , ∅ (or, alternatively co (T j(x)) ∩ Y j , ∅). Then there exists a x ∈ X and a i ∈ I with xi ∈ Fi(x).

Proof. For i ∈ I let Si be as in Theorem 2.1 and note Si has the same properies as in Theorem 2.1. Let x ∈ X\K.
We need only consider the case when there exists a j ∈ I with T j(x) ∩ Y j , ∅, but here ∅ , T j(x) ∩ Y j ⊆

co (T j(x)) ∩ Y j = S j(x) ∩ Y j. Now apply Theorem 1.4.
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Our next result improves Theorem 1.5 and Theorem 2.8.

Theorem 2.9. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each
i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X → Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and

X =
⋃

i∈I
⋃
{ int T−1

i (w) : w ∈ Xi}. Next assume there is a compact subset K of X and for each i ∈ I a convex compact
subset Yi of Xi such that for each x ∈ X\K there exists a j ∈ I with R j(x)∩Y j , ∅ (or, alternatively co (R j(x))∩Y j , ∅)
where R j : X → X j is given by R j(y) = {z j : y ∈ int T−1

j (z j)} for y ∈ X. Then there exists a x ∈ X and a i ∈ I with
xi ∈ Fi(x).

Proof. For i ∈ I let Si be as in Theorem 2.2 and note Si has the same properies as in Theorem 2.2. Let x ∈ X\K.
We need only consider the case when there exists a j ∈ I with R j(x) ∩ Y j , ∅, but here ∅ , R j(x) ∩ Y j ⊆

co (R j(x)) ∩ Y j = S j(x) ∩ Y j. Now apply Theorem 1.4.

Next we rephrase Theorem 2.1 as a maximal element type result, and then we obtain an existence result
for generalized majorized type maps.

Theorem 2.10. Let {Xi}i∈I be a family of convex compact sets each lying in a Hausdorff topological vector space. For
each i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X → Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and

T−1
i (w) is open (in X) for each w ∈ Xi. Also suppose for all i ∈ I that xi < Fi(x) for each x ∈ X. Then there exists a

x ∈ X with Ti(x) = ∅ for all i ∈ I.

Proof. Suppose the conclusion is false. Then for each x ∈ X there exists a j ∈ I with T j(x) , ∅. Now Theorem
2.1 guarantees a x ∈ X and a i ∈ I with xi ∈ Fi(x), a contradiction.

Theorem 2.11. Let {Xi}i∈I be a family of convex compact sets each lying in a Hausdorff topological vector space. For
each i ∈ I suppose Hi : X ≡

∏
i∈I Xi → Xi and there exists a map Si : X → Xi with Hi(w) ⊆ Si(w) for w ∈ X, Si(x)

has convex values for each x ∈ X, S−1
i (z) is open (in X) for each z ∈ Xi and wi < Si(w) for each w ∈ X. Then there

exists a x ∈ X with Hi(x) = ∅ for all i ∈ I

Proof. Note since Si has convex values then Si(x) = co (Si(x)) for x ∈ X. Apply Theorem 2.10 with Fi = Ti = Si
(note co Ti = co Si = Si = Fi) so there exists a x ∈ X with Si(x) = ∅ for all i ∈ I. Now since H j(w) ⊆ S j(w) for
w ∈ X then H j(x) = ∅ for all j ∈ I.

Now we consider Theorem 2.2 and we will reprase it as a maximal element type result, and then we
obtain an existence result for generalized majorized type maps.

Theorem 2.12. Let {Xi}i∈I be a family of convex compact sets each lying in a Hausdorff topological vector space. For
each i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X→ Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and⋃
i∈I

{z ∈ X : Ti(z) , ∅} =
⋃
i∈I

⋃
{ int T−1

i (w) : w ∈ Xi}.

Now suppose for all i ∈ I that xi < Fi(x) for each x ∈ X. Then there exists a x ∈ X with Ti(x) = ∅ for all i ∈ I.

Proof. Suppose the conclusion is false. Then for each x ∈ X there exists a j ∈ I with T j(x) , ∅. Thus

X =
⋃
i∈I

{z ∈ X : Ti(z) , ∅} =
⋃
i∈I

⋃
{ int T−1

i (w) : w ∈ Xi}.

Now Theorem 2.2 guarantees a x ∈ X and a i ∈ I with xi ∈ Fi(x), a contradiction.

Theorem 2.13. Let {Xi}i∈I be a family of convex compact sets each lying in a Hausdorff topological vector space. For
each i ∈ I suppose Hi : X ≡

∏
i∈I Xi → Xi and there exists a map Si : X → Xi with Hi(w) ⊆ Si(w) for w ∈ X, Si(x)

has convex values for each x ∈ X, and⋃
i∈I

{z ∈ X : Si(z) , ∅} =
⋃
i∈I

⋃
{ int S−1

i (w) : w ∈ Xi}.

Also suppose for all i ∈ I that xi < Si(x) for each x ∈ X. Then there exists a x ∈ X with Hi(x) = ∅ for all i ∈ I.
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Proof. Apply Theorem 2.12 with Fi = Ti = Si (note co Ti = co Si = Si = Fi) so there exists a x ∈ X with
Si(x) = ∅ for all i ∈ I and since H j(w) ⊆ S j(w) for w ∈ X then H j(x) = ∅ for all j ∈ I.

The argument above together with Theorem 2.4, Theorem 2.5, Theorem 2.6, and Theorem 2.7 immedi-
ately yield the following results. We will consider both maximal element type results and existence results
for generalized majorized type maps.

Theorem 2.14. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each i ∈ I
suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X → Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and T−1

i (w) is
open (in X) for each w ∈ Xi. Also suppose for all i ∈ I that xi < Fi(x) for each x ∈ X. Finally assume either (a). for
each i ∈ I that there exists a convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi, or (b). there exists a convex compact set K
of X with F(K) ⊆ K where F(x) =

∏
i∈I Fi(x) for x ∈ X, holds. Then there exists a x ∈ X with Ti(x) = ∅ for all i ∈ I.

Proof. Suppose the conclusion is false. Then for each x ∈ X there exists a j ∈ I with T j(x) , ∅. Now apply
Theorem 2.4 if (a) occurs or Theorem 2.6 if (b) occurs and we have a contradiction.

Theorem 2.15. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each i ∈ I
suppose Hi : X ≡

∏
i∈I Xi → Xi and there exists a map Si : X→ Xi with Hi(w) ⊆ Si(w) for w ∈ X, Si(x) has convex

values for each x ∈ X, S−1
i (z) is open (in X) for each z ∈ Xi and wi < Si(w) for each w ∈ X. Finally assume either (a).

for each i ∈ I that there exists a convex compact set Ki with Si(X) ⊆ Ki ⊆ Xi, or (b). there exists a convex compact set
K of X with S(K) ⊆ K where S(x) =

∏
i∈I Si(x) for x ∈ X, holds. Then there exists a x ∈ X with Hi(x) = ∅ for all i ∈ I.

Theorem 2.16. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each i ∈ I
suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X→ Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and⋃

i∈I

{z ∈ X : Ti(z) , ∅} =
⋃
i∈I

⋃
{ int T−1

i (w) : w ∈ Xi}.

Also suppose for all i ∈ I that xi < Fi(x) for each x ∈ X. Finally assume either (a). for each i ∈ I that there exists a
convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi, or (b). there exists a convex compact set K of X with F(K) ⊆ K where
F(x) =

∏
i∈I Fi(x) for x ∈ X, holds. Then there exists a x ∈ X with Ti(x) = ∅ for all i ∈ I.

Theorem 2.17. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each i ∈ I
suppose Hi : X ≡

∏
i∈I Xi → Xi and there exists a map Si : X→ Xi with Hi(w) ⊆ Si(w) for w ∈ X, Si(x) has convex

values for each x ∈ X, and ⋃
i∈I

{z ∈ X : Si(z) , ∅} =
⋃
i∈I

⋃
{ int S−1

i (w) : w ∈ Xi}.

Also suppose for all i ∈ I that xi < Si(x) for each x ∈ X. Finally assume either (a). for each i ∈ I that there exists a
convex compact set Ki with Si(X) ⊆ Ki ⊆ Xi, or (b). there exists a convex compact set K of X with S(K) ⊆ K where
S(x) =

∏
i∈I Si(x) for x ∈ X, holds. Then there exists a x ∈ X with Hi(x) = ∅ for all i ∈ I.

Next we use our coercive type results (Theorem 2.8 and Theorem 2.9) to immediately rephrase as a
maximal element type result and an existence result for general majorized type maps.

Theorem 2.18. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each i ∈ I
suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X → Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and T−1

i (w)
is open (in X) for each w ∈ Xi. Also suppose for all i ∈ I that xi < Fi(x) for each x ∈ X. Finally assume there is a
compact subset K of X and for each i ∈ I a convex compact subset Yi of Xi such that for each x ∈ X\K there exists a
j ∈ I with T j(x) ∩ Y j , ∅ (or, alternatively co (T j(x)) ∩ Y j , ∅). Then there exists a x ∈ X with Ti(x) = ∅ for all i ∈ I.

Theorem 2.19. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each i ∈ I
suppose Hi : X ≡

∏
i∈I Xi → Xi and there exists a map Si : X→ Xi with Hi(w) ⊆ Si(w) for w ∈ X, Si(x) has convex

values for each x ∈ X, S−1
i (z) is open (in X) for each z ∈ Xi and wi < Si(w) for each w ∈ X. Finally assume there is a

compact subset K of X and for each i ∈ I a convex compact subset Yi of Xi such that for each x ∈ X\K there exists a
j ∈ I with S j(x) ∩ Y j , ∅ (or, alternatively H j(x) ∩ Y j , ∅). Then there exists a x ∈ X with Hi(x) = ∅ for all i ∈ I.
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Proof. Apply Theorem 2.18 with Fi = Ti = Si (note co Ti = co Si = Si = Fi = Ti) so there exists a x ∈ X with
Si(x) = ∅ for all i ∈ I and since H j(w) ⊆ S j(w) for w ∈ X then H j(x) = ∅ for all j ∈ I.

Remark 2.20. We note here, that in fact, Theorem 2.11, Theorem 2.13, and Theorem 2.19 were proved in [7].

Theorem 2.21. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each i ∈ I
suppose Fi : X ≡

∏
i∈I Xi → Xi and there exists a map Ti : X→ Xi with co (Ti(x)) ⊆ Fi(x) for x ∈ X and⋃

i∈I

{z ∈ X : Ti(z) , ∅} =
⋃
i∈I

⋃
{ int T−1

i (w) : w ∈ Xi}.

Also suppose for all i ∈ I that xi < Fi(x) for each x ∈ X. Finally assume there is a compact subset K of X and for
each i ∈ I a convex compact subset Yi of Xi such that for each x ∈ X\K there exists a j ∈ I with R j(x) ∩ Y j , ∅ (or,
alternatively co (R j(x))∩Y j , ∅) where R j : X→ X j is given by R j(y) = {z j : y ∈ int T−1

j (z j)} for y ∈ X. Then there
exists a x ∈ X with Ti(x) = ∅ for all i ∈ I.

Theorem 2.22. Let {Xi}i∈I be a family of convex sets each lying in a Hausdorff topological vector space. For each i ∈ I
suppose Hi : X ≡

∏
i∈I Xi → Xi and there exists a map Si : X→ Xi with Hi(w) ⊆ Si(w) for w ∈ X, Si(x) has convex

values for each x ∈ X, and ⋃
i∈I

{z ∈ X : Si(z) , ∅} =
⋃
i∈I

⋃
{ int S−1

i (w) : w ∈ Xi}.

Also suppose for all i ∈ I that xi < Si(x) for each x ∈ X. Finally assume there is a compact subset K of X and for each
i ∈ I a convex compact subset Yi of Xi such that for each x ∈ X\K there exists a j ∈ I with θ j(x) ∩ Y j , ∅ where
θ j : X → X j is given by θ j(y) = {z j : y ∈ int S−1

j (z j)} for y ∈ X. Then there exists a x ∈ X with Hi(x) = ∅ for all
i ∈ I.

Now we use our maximal element results to establish some equilibrium results for generalized games
(or abstract economies). A generalized game is given by Γ = (Xi,Ai,Bi,Pi)i∈I where I is a set of players
(agents), Xi is a nonempty subset of a Hausdorff topological vector space Ei, Ai, Bi : X ≡

∏
i∈I Xi → Ei are

constraint correspondences and Pi : X→ Ei is a preference correspondence. An equilibrium of Γ is a point
x ∈ X such that for each i ∈ I we have xi ∈ Bi(x) and Ai(x) ∩ Pi(x) = ∅.

In our first result, we can use either Theorem 2.10, Theorem 2.14 or Theorem 2.18, but since the analysis
is essentially the same using either of these theorems we will just state and prove the result using Theorem
2.18.

Theorem 2.23. Let Γ = (Xi,Ai,Bi,Pi)i∈I be a generalized game, i.e. {Xi}i∈I is a family of convex sets each lying in a
Hausdorff topological vector space Ei and for each i ∈ I the constraint correspondences Ai, Bi : X ≡

∏
i∈I Xi → Ei

and the preference correspondence Pi : X → Ei. Also for each i ∈ I suppose cl Bi (≡ Bi) : X → CK(Xi) is upper
semicontinuous (here CK(Xi) denotes the family of nonempty convex compact subsets of Xi) and assume the following
conditions hold for each i ∈ I:

(2.1)
{

Ai : X→ Xi has nonempty convex values and
A−1

i (x) is open (in X) for each x ∈ Xi

(2.2) Ai(x) ⊆ Bi(x) for x ∈ X

(2.3)
{

there exist maps Si, ϕi : X→ Xi with co (Si(z)) ⊆ ϕi(z) for z ∈ X,
S−1

i (z) is open (in X) for each z ∈ Xi and xi < ϕi(x) for x ∈ X

and

(2.4) Si(x) ⊆ Ai(x) for x ∈ X.
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In addition, suppose

(2.5)
{

if x ∈ X with xi ∈ Bi(x) and Si(x) = ∅
for a i ∈ I, then Ai(x) ∩ Pi(x) = ∅.

Next suppose there exists a compact subset K of X and for each i ∈ I a convex compact set Yi of Xi such that for each
x ∈ X\K there exists a j ∈ I with S j(x) ∩ Y j , ∅. Then there exists an equilibrium point of Γ i.e. there exists a x ∈ X
with xi ∈ Bi(x) and Ai(x) ∩ Pi(x) = ∅ for all i ∈ I.

Remark 2.24. (i). Note a particular case of ϕi in (2.3) is ϕi = Ai ∩ Pi if the appropriate assumptions are satisfied.
(ii). One could write (2.5) as: if x ∈ X and xi ∈ Bi(x) and Si(x) = ∅ for all i ∈ I, then Ai(x)∩Pi(x) = ∅ for all i ∈ I.

Proof. For i ∈ I let Mi = {x ∈ X : x < Bi(x)} and note Mi is open in X since Bi : X → CK(Xi) is upper
semicontinuous. Let Fi : X→ Xi and Ti : X→ Xi be given by

Fi(x) =
{
ϕi(x), x <Mi
Ai(x), x ∈Mi

and Ti(x) =
{

Si(x), x <Mi
Ai(x), x ∈Mi.

Note if i ∈ I then co (Ti(x)) ⊆ Fi(x) for x ∈ X (note if x ∈ Mi then co (Ti(x)) = co (Ai(x)) = Ai(x) = Fi(x) from
(2.1) whereas if x <Mi then co (Ti(x)) = co (Si(x)) ⊆ ϕi(x) = Fi(x) from (2.3)) and also note for y ∈ Xi we have

T−1
i (y) = {z ∈Mi : y ∈ Ti(z)} = {z ∈Mi : y ∈ Ai(z)} ∪ {z ∈ X\Mi : y ∈ Si(z)}

=
[
Mi ∩ {z ∈ X : y ∈ Ai(z)}

]
∪
[
(X\Mi) ∩ {z ∈ X : y ∈ Si(z)}

]
=
[
Mi ∩ A−1

i (y)
]
∪

[
(X\Mi) ∩ S−1

i (y)
]

=
[
Mi ∪ S−1

i (y)
]
∩ A−1

i (y)

(note, see (2.4), S−1
i (y) ⊆ A−1

i (y)) which is open in X. Next, we show for i ∈ I that xi < Fi(x) for x ∈ X. To
see this fix i ∈ I and x ∈ X. First consider x ∈ Mi and then xi < Bi(x) so xi < Ai(x) from (2.2), i.e. xi < Fi(x) if
x ∈ Mi. Next, suppose x < Mi and then xi < ϕi(x) = Fi(x) from (2.3). Consequently xi < Fi(x) for x ∈ X and
i ∈ I. Now let K and Yi be as in the statement of Theorem 2.23. If x ∈ X\K then there exists a j ∈ I with
S j(x) ∩ Y j , ∅, so if x ∈ X\K and x < M j then T j(x) ∩ Y j = S j(x) ∩ Y j , ∅ whereas if x ∈ X\K and x ∈ M j then
∅ , S j(x) ∩ Y j ⊆ A j(x) ∩ Y j = T j(x) ∩ Y j from (2.4).

Then all the conditions in Theorem 2.18 are satisfied so there exists a x ∈ X with Ti(x) = ∅ for all i ∈ I.
Now since Ai has nonempty values for each i ∈ I, then for each i ∈ I we have x < Mi so x < Mi with
Ti(x) = ∅ for all i ∈ I i.e. xi ∈ Bi(x) and Si(x)(= Ti(x)) = ∅ for i ∈ I. Now from (2.5) we have xi ∈ Bi(x) and
Ai(x) ∩ Pi(x) = ∅ for all i ∈ I, so x is an equilibrium point of Γ.

In our next result we can use either Theorem 2.12, Theorem 2.16 or Theorem 2.21 but since the analysis
is essentially the same using either of these theorems we will just state and prove the result using Theorem
2.16.

Theorem 2.25. Let Γ = (Xi,Ai,Bi,Pi)i∈I be a generalized game (as described in Theorem 2.23) and for each i ∈ I
suppose cl Bi (≡ Bi) : X→ CK(Xi) is upper semicontinuous. Also for i ∈ I assume (2.1) and (2.2) hold and in addition
assume

(2.6)


there exist maps Si, ϕi : X→ Xi with co (Si(z)) ⊆ ϕi(z) for z ∈ X,⋃

j∈I {x ∈ X : S j(x) , ∅} =
⋃

i∈I
⋃
{ int S−1

i (w) : w ∈ Xi}

and xi < ϕi(x) for x ∈ X

and suppose (2.4) and (2.5) hold. Finally assume there exists a convex compact set K of X with A(K) ⊆ K and
ϕ(K) ⊆ K where A(x) =

∏
i∈I Ai(x) and ϕ(x) =

∏
i∈I ϕi(x) for x ∈ X. Then there exists an equilibrium point of Γ.
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Proof. For i ∈ I let Mi, Fi and Ti be as in Theorem 2.23 and as in Theorem 2.23 we have co (Ti(x)) ⊆ Fi(x) for
x ∈ X, xi < Fi(x) for x ∈ X, and for y ∈ Xi we have

T−1
i (y) =

[
Mi ∪ S−1

i (y)
]
∩ A−1

i (y).

Now, we show
⋃

j∈I {x ∈ X : T j(x) , ∅} =
⋃

i∈I
⋃
{ int T−1

i (w) : w ∈ Xi}. To see this let i ∈ I and x ∈ X
with Ti(x) , ∅. First, consider x < Mi. Then Si(x) = Ti(x) , ∅ and since

⋃
j∈I {x ∈ X : S j(x) , ∅} =⋃

i∈I
⋃
{ int S−1

i (w) : w ∈ Xi} then there exists a j ∈ I and a w ∈ X j with x ∈ int S−1
j (w). Then we have

immediately that x ∈ M j ∪ int S−1
j (w) and also x ∈ A−1

j (w) (note int S−1
j (z) ⊆ S−1

j (z) ⊆ A−1
j (z) for z ∈ X). Thus

x ∈ [M j ∪ int S−1
j (w)] ∩ A−1

j (w). Now [M j ∪ int S−1
j (w)] ∩ A−1

j (w) is open in X and

[M j ∪ int S−1
j (w)] ∩ A−1

j (w) ⊆ [M j ∪ S−1
j (w)] ∩ A−1

j (w) = T−1
j (w)

so
x ∈ [M j ∪ int S−1

j (w)] ∩ A−1
j (w) ⊆ int T−1

j (w)

i.e. x ∈
⋃

i∈I
⋃
{ int T−1

i (w) : w ∈ Xi}. Next, consider x ∈ Mi. Then Ti(x) = Ai(x) , ∅ so there exists a y ∈ Xi

with y ∈ Ai(x) so x ∈ A−1
i (y). Now x ∈ Mi so x ∈ Mi ∪ int S−1

i (y) and thus x ∈ [Mi ∪ int S−1
i (y)] ∩ A−1

i (y) and
the argument above gives

x ∈ [Mi ∪ int S−1
i (y)] ∩ A−1

i (y) ⊆ int T−1
i (y)

i.e. x ∈
⋃

i∈I
⋃
{ int T−1

i (w) : w ∈ Xi}. As a result⋃
i∈I

{z ∈ X : Ti(z) , ∅} =
⋃
i∈I

⋃
{ int T−1

i (w) : w ∈ Xi}.

Finally note F(K) ⊆ K (here F(x) =
∏

i∈I Fi(x) for x ∈ X) since A(K) ⊆ K and ϕ(K) ⊆ K. Thus all the conditions
in Theorem 2.16 are satisfied so there exists a x ∈ X with Ti(x) = ∅ for all i ∈ I. Now since Ai has nonempty
values for each i ∈ I, then for each i ∈ I we have x <Mi so x <Mi with Ti(x) = ∅ for all i ∈ I i.e. xi ∈ Bi(x) and
Si(x)(= Ti(x)) = ∅ for i ∈ I. Now (2.5) guarantees that x is an equilibrium point of Γ.

We can also use our results for majorized type maps to obtain some equilibrium points of Γ. We will
consider Theorem 2.17 and Theorem 2.19 to illustrate the ideas (the argument using the other theorems is
essentially the same).

Theorem 2.26. Let Γ = (Xi,Ai,Bi,Pi)i∈I be a generalized game (as described in Theorem 2.23) and for each i ∈ I
suppose cl Bi (≡ Bi) : X→ CK(Xi) is upper semicontinuous. Also for i ∈ I assume (2.1) and (2.2) hold and in addition
assume

(2.7)


there exist maps Si, ϕi : X→ Xi with ϕi(z)) ⊆ Si(z)
for z ∈ X, Si(x) is convex valued for each x ∈ X,⋃

j∈I {x ∈ X : S j(x) , ∅} =
⋃

i∈I
⋃
{ int S−1

i (w) : w ∈ Xi}

and xi < Si(x) for x ∈ X

and suppose (2.4) holds. In addition, assume

(2.8)
{

if x ∈ X with xi ∈ Bi(x) and ϕi(x) = ∅
for a i ∈ I, then Ai(x) ∩ Pi(x) = ∅.

Next assume there exists a convex compact set K of X with A(K) ⊆ K and S(K) ⊆ K where A(x) =
∏

i∈I Ai(x) and
S(x) =

∏
i∈I Si(x) for x ∈ X. Then there exists an equilibrium point of Γ.
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Proof. For i ∈ I let Mi, Fi and Ti be as in Theorem 2.23 and note from (2.7) that Fi(x) ⊆ Ti(x) for x ∈ X, and
Ti(x) is convex valued for each x ∈ X (note Si(x) and Ai(x) are convex valued for each x ∈ X). For i ∈ I and
y ∈ Xi we have (see Theorem 2.23)

T−1
i (y) =

[
Mi ∪ S−1

i (y)
]
∩ A−1

i (y)

and also the argument in Theorem 2.25 gives⋃
j∈I

{x ∈ X : T j(x) , ∅} =
⋃
i∈I

⋃
{ int T−1

i (w) : w ∈ Xi}.

Next, note for i ∈ I that xi < Ti(x) for x ∈ X. To see this fix i ∈ I and x ∈ X. First consider x ∈ Mi and then
xi < Bi(x) so xi < Ai(x) from (2.2) i.e. xi < Ti(x) if x ∈ Mi. Next, suppose x < Mi and then xi < Si(x) = Ti(x)
from (2.7). Consequently xi < Ti(x) for x ∈ X and i ∈ I. Finally note T(K) ⊆ K (here T(x) =

∏
i∈I Ti(x) for

x ∈ X) since A(K) ⊆ K and S(K) ⊆ K. Thus all the conditions in Theorem 2.17 are satisfied so there exists a
x ∈ X with Fi(x) = ∅ for all i ∈ I. Now since Ai has nonempty values for each i ∈ I, then for each i ∈ I we
have x < Mi so x < Mi with ϕi(x)(= Fi(x)) = ∅ for all i ∈ I. Now (2.8) guarantees that x is an equilibrium
point of Γ.

Theorem 2.27. Let Γ = (Xi,Ai,Bi,Pi)i∈I be a generalized game (as described in Theorem 2.23) and for each i ∈ I
suppose cl Bi (≡ Bi) : X→ CK(Xi) is upper semicontinuous. Also for i ∈ I assume (2.1) and (2.2) hold and in addition
assume

(2.9)


there exist maps Si, ϕi : X→ Xi with ϕi(z)) ⊆ Si(z) for z ∈ X,
Si(x) is convex valued for each x ∈ X, S−1

i (z) is open (in X)
for each z ∈ Xi and xi < Si(x) for x ∈ X

and suppose (2.4) and (2.8) hold. Next suppose there exists a compact subset K of X and for each i ∈ I a convex
compact set Yi of Xi such that for each x ∈ X\K there exists a j ∈ I with S j(x) ∩ Y j , ∅. Then there exists an
equilibrium point of Γ.

Proof. For i ∈ I let Mi, Fi and Ti be as in Theorem 2.23 and note (see Theorem 2.23 and Theorem 2.26)
that Fi(x) ⊆ Ti(x) for x ∈ X, Ti(x) is convex valued for each x ∈ X and for y ∈ Xi we have T−1

i (y) =[
Mi ∪ S−1

i (y)
]
∩A−1

i (y) so from (2.9) we have that T−1
i (y) is open (in X), and xi < Ti(x) for x ∈ X. Now let K and Yi

be as in the statement of Theorem 2.27. If x ∈ X\K then there exists a j ∈ I with S j(x)∩Y j , ∅, so if x ∈ X\K and
x <M j then T j(x)∩Y j = S j(x)∩Y j , ∅whereas if x ∈ X\K and x ∈M j then ∅ , S j(x)∩Y j ⊆ A j(x)∩Y j = T j(x)∩Y j
from (2.4). Thus all the conditions in Theorem 2.19 are satisfied so there exists a x ∈ X with Fi(x) = ∅ for all
i ∈ I. Now since Ai has nonempty values for each i ∈ I, then for each i ∈ I we have x < Mi so x < Mi with
ϕi(x)(= Fi(x)) = ∅ for all i ∈ I. Now (2.8) guarantees that x is an equilibrium point of Γ.

Remark 2.28. Theorem 2.27 extends and complements results in [6].

Declaration.
Ethical Approval: Not Applicable.
Competing Interests: The author declares no conflict of interest.
Authors Contribution: Not Applicable.
Funding: Not Applicable.
Availability of Data and Matherials: Not Applicable.

References

[1] M. Balaj and L.J. Liu, Selecting families and their applications, Computers and Mathematics with Applications 55 (2008), 1257–
1261.



Donal O’Regan / Filomat 38:13 (2024), 4749–4758 4758

[2] X.P. Ding, W.K. Kim and K.K. Tan, A selection theorem and its applications, Bulletin Australian Math. Soc. 46 (1992), 205–212.
[3] C.D. Horvath, Contractibility and generalized convexity, l Jour. Math. Anal. Appl.156 (1991), 341–357.
[4] L.J. Lim, S. Park and Z.T. Yu, Remarks on fixed points, maximal elements and equilibria of generalized games, Jour. Math. Anal.

Appl. 233 (1999), 581–596.
[5] D.O’Regan, A note on collectively fixed and coincidence points, Fixed Point Theory 24 (2023), 675–682.
[6] D.O’Regan, Existence of equilibria for N–person games, Fixed Point Theory, 25(2024), 697–704.
[7] D.O’Regan, Continuous selections and collectively fixed point theory with applications to generalized games, Aequationes

Mathematicae 97 (2023), 619–628.
[8] N.C. Yanelis and N.D. Prabhakar, Existence of maximal elements and equlibria in linear topological spaces, J. Math. Econom. 12

(1983), 233–245.
[9] X.Z. Yuan and E. Tarafdar, Maximal elements and equilibria of generalized games for condensing correspondences, Jour. Math.

Anal. Appl. 203 (1996), 13–30.
[10] X.Z. Yuan, The study of equilibria for abstract economies in topological vector spaces-a unified approach, Nonlinear Analysis

(1999), 409–430.


