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Some weighted Hermite—-Hadamard type inclusions based on
interval-valued convex and co-ordinated convex mappings

Hasan Kara?, Mehmet Zeki Sarikaya?, Hiiseyin Budak?

*Department of Mathematics, Faculty of Science and Arts, Duzce University, Tiirkiye

Abstract. In this paper, we establish some Hermite-Hadamard inclusions for interval-valued convex
functions and interval-valued co-ordinated convex functions by using interval-valued weighted function.
The inclusions established in this work provide generalizations of some results given in earlier works.

As special cases, we give some new weighted Hermite-Hadamard type inclusions involving logarithmic
function.

1. Introduction

The Hermite-Hadamard inequality discovered by C. Hermite and J. Hadamard see, e.g., [8], [19, p.137])
is one of the most well established inequalities in the theory of convex functions with a geometrical

interpretation and many applications. These inequalities state that if f : I — R is a convex function on the
interval I of real numbers and a,b € I with a < b, then

f(“zb) — aff( LOH0), M)

Both inequalities hold in the reversed direction if f is concave. Hermite-Hadamard inequalities have been
established by many mathematicians. We note that Hermite-Hadamard inequality may be regarded as a
refinement of the concept of convexity and it follows easily from Jensen’s inequality. Hermite-Hadamard
inequality for convex functions has received renewed attention in recent years and a remarkable variety of
refinements and generalizations have been studied (see, for example, [5]-[10], [18], [21]).

Interval analysis, which is utilized in mathematics and computer models as one of the ways for resolving
interval uncertainty, occupies an important place in the literature. Despite the fact that this theory has a
long history dating back to Archimedes’” equation of the circle, much research on the subject was not
published until the 1950s. In 1966, Ramon E. Moore founder of interval calculus, released the first book
[23] on interval analysis. Subsequently, dozens of researchers examined the theory and application of
short-term analysis. Recently, thanks to applications, interval analysis is a useful tool in various areas of
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great interest in uncertain data. You can see applications in computer graphics, test and calculation physics,
error analysis, robots, and much more. Many authors have recently come to terms with absolute inequality
arising from short-term jobs. Sadowska [20] discovered the Hermite-Hadamard inequality for set-valued
functions, which are more general form of interval-valued functions.

Jleli and Samet obtained new Hermite-Hadamard type inequalities involving fractional integrals with
respect to another function in [11]. In [22], Tung introduced firstly fractional integrals of a function with
respect to the another function for interval-valued functions. Katugompala established a new fractional
integration, which generalizes the Riemann-Liouville and Hadamard fractional integrals into a single
form. Budak and Agarwal established the Hermite-Hadamard-type inequalities for co-ordinated convex
function via generalized fractional integrals, which generalize some important fractional integrals such as
the Riemann-Liouville fractional integrals, the Hadamard fractional integrals, and Katugampola fractional
integrals in [2]. Budak et al. investigated the Riemann-Liouville integrals for interval-valued functions to
obtain Hermite-Hadamard inequality via these integrals in [1]. Kara et al. [12] defined interval-valued left-
sided and right-sided generalized fractional double integrals. While many mathematicians have studied the
interval-valued convex function, have also considered other type convex functions such as interval-valued
LR-convex functions. Recently, in [13-15], several researchers extended the concept of interval-valued
convexity and defined different kinds of LR-convexity for interval-valued functions. They also obtained
many Hermite-Hadamard type inequalities for LR-interval-valued convex functions.

In 2020, Zabandan [26] established an extensions of Hermite-Hadamard inequality and as a result the
author obtain the Hermite-Hadamard inequality for fractional and logarithmical integral. On the other
hand, Sarikaya and Kiliger [25] obtained an important inequalities for co-ordinated convex functions. In
addition to this, the extensions of Hermite-Hadamard type inequalities for Riemann-Liouville fractional
integral logarithmic integral are given.

The main goal of this paper is to obtain some Hermite-Hadamard inclusions for interval-valued convex
functions and interval-valued co-ordinated convex functions by using interval-valued weighted function.
These results will generalize the results obtained in [25] and [26]. The general structure of the study
consists of six chapters including an introduction. The remaining part of the paper proceeds as follows: In
Section 2, we give the definitions and theorems of interval-valued functions. In Section 3, we summarise
the concept of fractional integrals for interval-valued functions with one and two variables. In section
4, we obtain weighted Hermite-Hadamard type inclusions for interval-valued convex functions. The
obtained results are provided of the earlier works. We establish important inclusions for co-ordinated
convex functions. As special cases of these inclusions we give the extension of Hermite-Hadamard type
inclusions Riemann-Liouville fractional integral with logarithmic function in Section 5. Furthermore, some
remarks and corollaries are presented in this section. At the end of the paper, some conclusions and further
directions of research are discussed in Section 6.

2. Interval-Valued Functions

In this section we recalling some basics definitions, results, notions and properties, which are used
throughout the paper. We denote R} the family of all positive intervals of R. The Hausdorff distance

between [X, X] and [y, Y] is defined as

d(1X, X1, 1Y, Y]) = max {|X - ¥|,X - Y}.

The (Ryz,d) is a complete metric space. For more details and basic notations on interval-valued functions
see ([24, 27]).

It is remarkable that Moore [23] introduced the Riemann integral for the interval-valued functions. The
set of all Riemann integrable interval-valued functions and real-valued functions on [g, b] are denoted by
TR (app) and R ), respectively. The following theorem gives relation between (IR)-integrable and Riemann
integrable (R-integrable) (see [24], pp. 131):
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Theorem 2.1. Let F : [a,b] — Ry be an interval-valued function such that F(t) = [E(t), l_f(t)] .F € IRqapy if and
only if E(t), F(t) € Rap) and

b b
(R) f E(t)dt, (R) f f(t)dt‘.

In [27, 28], Zhao et al. introduced a kind of convex interval-valued function as follows:

b
(IR) f F(Hdt =

Definition 2.2. Let h : [c,d] — R be a non—negative function, (0,1) C [c,d] and h # 0. We say that F : [a,b] — ]R}
is a h—convex interval-valued function, if for all x, y € [a,b] and t € (0, 1), we have

h(t)F(x) + h(1 = t)F(y) € F(tx + (1 = t)y). )
With SX(h, [a, b], RY) will show the set of all h—convex interval-valued functions.

The usual notion of convex interval-valued function corresponds to relation (2) with h(t) = ¢, see [20]. Also,
if we take h(t) = #° in (2), then Definition 2.2 gives the other convex interval-valued function defined by
Breckner, see [4].

Otherwise, Zhao et al. obtained the following Hermite-Hadamard inequality for interval-valued functions
by using h—convex:

Theorem 2.3. [27] Let F : [a,b] — R be an interval-valued function such that F(t) = [E(t),l_-"(t)] and F €
IRqapy, b :10,1] = R be a non-negative function and h (%) #0.IfF € SX(h,[a, 0], ]R}), then

b 1
1 a+b 1
- (%)F( > ) 257 a(IR) af F(x)dx 2 [F(a) + F(b)] Of h(t)dt. 3)
Remark 2.4. (i) If h(t) = t, then (3) reduces to the following result:
b
by, 1 F(a) + F(b
F(%) 2 Ta(IR)fF(x)dx ) w, W

which is obtained by Sadowka in [20].

(ii) If h(t) = t°, then (3) reduces to the following result:

b
b F F(b
zs-lp(‘%) D ﬁ(m) f F(x)dx 2 %

which is obtained by Gomez et al. in [17].
Theorem 2.5. [29]Let F : A — Ry. Then F is called ID-integrable on A with ID-integral U = (ID) f f F(t,s)dA, if
A
for any € > 0 there exist 6 > 0 such that
d(S(FE,P,6,A) < ¢

for any P € P(5, A). The collection of all ID-integrable functions on A will be denoted by TDy,.
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[29]Let A = [a,b] X [c,d]. If F : A — Ry is ID-integrable on A, then we have

(ID) f f F(s, H)dA = (IR) fb (IR) fd F(s, t)dsdt.
A y :

Definition 2.6. [30] A function F : A — IR} is said to be interval valued co-ordinated convex function if the
following inclusion holds

F(tx + (1 = t)y,su + (1 — s)w) 5)
D tsF(x,u) + t(1 = s)F(x,w) + s(1 = t)F(y, u) + (1 = s)(1 — H)F(y, w),

forall (x,u),(y,w) € Aands, t € [0,1].

3. Fractional Integrals of Interval-Valued Functions

In this section, we give fractional version of double integral for interval-valued functions and recall some
basic definitions of interval-valued integrals.
In [16] Lupulescu defined the following interval-valued left-sided Riemann-Liouville fractional integral.

Definition 3.1. Let F : [a,b] — Ry be an interval-valued function such that F(t) = [E(t), I?(t)] and let a > 0. The
interval-valued left-sided Riemann—Liouville fractional integral of function F is defined by

Jo F(x) = (IR) f (x—s)" Y E(Ddt, x>a

where I is Euler Gamma function.

Based on the definition of Lupulescu, Budak et al. in [3] gave the definition of interval-valued right-sided
Riemann-Liouville fractional integral of function F by

b
]2 F(x) = ﬁ(m) f (s—x)"TE(dt, x<b

where I is Euler Gamma function.

Theorem 3.2. If F : [a,b] — Ry is an interval-valued function such that F(t) = [F(t) F(t)] then we have

8 F() = [I3,F), 15, F )]
and
Ji F(x) = [I3F@), I ()]

Now we recall the concept of interval-valued double integral given by Zhao et al. in [29]:
In [3], Budak et al. gave the fractional version of Hermite Hadamard type inequalities for interval-valued
convex functions as follows:

Theorem 3.3. If F : [a,b] — R} is a convex interval-valued function such that F(t) = [E(t), I_T(t)] and a > 0, then
we have

a+b F(a+1)
)2 25

2 [12.F ) + @] 2 2O ©)
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By applying the concepts of Lupulescu [16] and Zhao [29] about interval-valued integrals, Budak et al.
[1], define interval-valued Riemann-Liouville double fractional integral of function F(x, y) as follows:

Definition 3.4. Let F € D). The Riemann-Lioville integrals ] et
a,c > 0 are defined by

+]if " and ]Z'f _of order a, B > 0 with

a+d 4

Xy
1 _ _
]HHF(x y) W(IR)ff(x—t)“ 1(y—s)ﬁ YF(t,5)dsdt, x> a, y>c,

x d
Zfd Flx,y) = m(ﬂ{)ff(x -5 (s - y)ﬁ_lF(t,s) dsdt, x>a, y<d,
a vy
by
]ZfHF(x, y) = W(IR)IIG —x)* ! (y - s)ﬁ_1 F(t,s)dsdt, x<b, y>c,

b d
ARCRY mm@xf f (=2 sy P 9)dsdt, x<b, y<d,

respectively.
Lemma 3.5. [30] A function F : A — R} is interval-valued convex on co-ordinates if and only if there exist two

functions Fy : [c,d] = R}, Fx(w) = F(x,w) and Fy : [a,b] — R}, Fy(u) = F(y, u) are interval-valued convex.

4. Weighted Hermite-Hadamard type Inclusions for Interval-Valued Convex Functions

In this section, we will give the following inclusions by using interval-valued convex functions.

Theorem 4.1. Let F : [a,b] — R} be an interval-valued convex function on [a,b] such that F(t) = [E(t), l_-"(t)] and
0 :[0,1] — R} be an interval-valued convex function such that © € IR o). Then the following inclusions hold:

P(”;b) 2®(; (IR)f[ ” +9(Z_x)]1-“(x)dx2w @)

1
where © = (IR)fQ(t) dt.
0

Proof. Since F is interval-valued convex function on [, b], by change of variable x = tb + (1 — f)a we have

b
1 X—a b-x
20(b—a) (IR)f[G(b—a)+G(b—a)]F(x)dx

- 2®(b IR)f[Q(t)"‘@(l—f) F(tb+ (1 —t)a) (b —a)dt

V)

% (IR)f[Q H+0A-0)]EF®)+ (1 —-t)F(a)dt
0
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_ F(b) IR)ff[e(t +9(1_t)]dt+ﬂ(ﬂ{)f(l—t)[@(t)-‘re(l—t)]df

By simple calculation, we see that
1 1 1
(IR)ft(G(t) +0(1-t)dt = (IR)f(l -HewH+0Q1-tldt = (IR)fG(t)dt =
0 0 0
So we have

b
1 x—a b—x F(a)+F(b)
m(IR)f[G(m)+Q(b_a)]F(x)deT‘

For proving the second part of the inclusion, considering the convexity of F, we have

F(a+b) _ F(tu+(1—t)b+(1—t)a+tb)

2 2
2 %F(ta+(1—t)b)+%F((l—t)a+tb).

Multiplying both sides by O () and integrating on [0, 1] we obtain,
1
F(”;b)(m)fe ) dt
0

1 1
%(IR)fG(t)F(ta+(1—t)b)dt+%(IR)fG(t)F((l—t)a+tb)dt
0 0

(V)

b

- ﬁ(m)f{e(’;_ )+9(Z )]F(x)dx

a

Hence

b
a+b 1 xX—a b—x
F( 2 )2z@(b—a)(IR)I[G(E)JrQ(b—a)]P(X)dx

The proof is completed. [

Remark 4.2. If we choose O(t) = [t,t], on [0,1] in Theorem 4.1, then the inclusions (7) reduce to Sadowska’s
Hermite Hadamard inclusions (3).

Remark 4.3. If we choose O (t) = [t"“l, t“‘l] (a > 0) on [0,1] in Theorem 4.1, then the inclusions (7) reduce to the
Riemann-Liouville fractional integral inclusions (6).

Corollary 4.4. Under assumption of Theorem 4.1 with O (t) = [(— Int)* !, (-In t)“_l] (a>0)on[0,1], we get the
following inclusions

a+b ac—l b_g a1 F@)+F )
J Sy
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Corollary 4.5. LetF : [a,b] — IRI+ be interval-valued convex on [a, bl and F € IR ap)). Then, one has the inclusions:

a+b

b
1 b—-a b—a

L F@+F@)
- 2

U

Proof. From (3), we have

F(”;b) (10)

1 b

n+b b
= (b [(IR)[ F(x)dx+(IR)fa+2hF(x)dx}.

By change of variable x = % in the first integral of right side of (10), using inclusion (3), we get

(IR)fﬂn;bF(x)dx - %(m)fa F(”T”)dt (11)

2 (IR)f( (IR)fF(x)dx)
= (IR)f ((IR)f = dt)F(x)dx
1 b
= —(IR)f( )F(x)dx.
2 a
By similar way, using change of variable x = % in the other integrals of right side of (10), respectively, we
have
! 1 ' (bt
(IR) Fx)dx = =(R) | F(——]dt (12)
wb 2 B 2
b
2 (IR)f (— (IR) f F(x)dx)dt

= (IR) f (ln )F (x) dx.

By substituting the inclusions (11) and (12) in (10), and using the last inclusion of (8) for a = 2, we get
a+b
{&s

1 b
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1 "(b-a
2 m {(IR) L (ln E)F (.X') dx

b
+ (IR)f (lnlg:z)F(x)dx}

F(a) + F(b)
- 2
which proves the inclusion (9). O

5. Weighted Hermite—-Hadamard type Inclusions for Interval-Valued Co-ordinated Convex Functions

Throughout this section, we will use the following symbols

v = (5=~ (57)

d— -
-t olf=)

and
1 1
v, = (IR)fvl () dt and V¥V, = (IR)fvz (s)ds.
0 0

In this section, we will give the inclusions for interval-valued co-ordinated convex functions.

Theorem 5.1. Let F : A ¢ R?> — R} be interval-valued co-ordinated convex on A in R>and F € T Dy. Let
v1,v2 1 [0,1] = R be two functions such that vi, v € IR0z Then, one has the inclusions:

a+b c+d 1 b
F( ) )24\Pvl‘yvz(b—a)(d—c) (IR)]; fchl(x)Tz(y)P(x,y)dydx (13)

F(a,c) + F(a,d) + F(b,c) + F(b,d)
o) 1 .

Proof. According to () withx =ta+(1-fH)b,y=(1—-t)a+th,u=sc+(1—-s)d, w=(1-s)c+sdandt =5 = %,
we find that

a+b c+d
(5

411 [F(ta+ (1 —t)b,sc+ (1 —s1)d) + F(ta + (1 — £)b, (1 — s)c + sd) (14)

(V)

+F((1—Ha+th,sc+ (1 —s)d)+ F(1 —ta+tb,(1—s)c+sd)].
Thus, multiplying both sides of (14) by vy () v (s), then by integrating with respect to (,5) on [0, 1] X [0, 1],

we obtain
1 pl
)(IR)](; j(; v1 (t) va (s) dsdt

a+b c+d
F( 2 72
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1 1
2 411 [(IR) f f v1 () 2 (8) [F(ta + (1 — t)b,sc + (1 — s)d) + F(ta + (1 — t)b, (1 — s)c + sd)] dsdt
0 0

SRS
+ (IR) fo ]0‘ v1 () v2 () [F((1 — t)a+ tb,sc + (1 —s)d) + F((1 — t)a + tb, (1 — s)c + sd)] dsdt]|.

Using the change of the variable, we get

a+b c+d 1ol
F(T, T)(IR)L f(; %] (t)vz(S)det

1 b b—x d—y
2 i (™ [ [ w5 (e
b~ b—x y—c
+(IR)fa [ Ul(b—a)v2(d—c

b d _ d—
+(IR)];jc‘vl(%)vz(d—_z)}"(x,y)dydx

cam) [ ()4

)F (v, y) dydx

)F ) dydx} ,

4475

which completes the proof of the first inclusion. For the proof of the second inclusion in (13), we first note

that if F is an interval-valued co-ordinated convex on A, then we have
F(ta+ (1 —=1tb,sc+ (1 —-s)d) 2 tsF(a,c) + s(1 — EFD,c) + t(1 —s)F(a,d) + (1 — £)(1 — s)F(b, d),
F(ta+ (1 —=1tb,(1 =s)c+sd) 2 t(1 —s)F(a,c)+ (1 —6)(1—s)Fb,c)+ tsF(a,d)+ (1 — t)sF(b,d),

F((1—-ta+tb,sc+ (1 —-s)d) 21 —t)sF(a,c)+stF(b,c)+ (1 —t)(1—s)F(a,d)+ t(1 —s)F(b,d),

and
F((1-tya+th,(1 =s)c+sd) 2 (1 -1t)(1—-s)F(a,c) +t(1 —s)F(b,c) + (1 — t)sF(a,d) + tsE(b, d).
By adding these inclusions, we have

F(ta+ Q1 -1t)b,sc+ (1 —s)d)+F(ta+ (1—15Hb,(1-s)c+sd)
+F((1—8Ha+th,sc+ (1 —s)d)+F((1—-t)a+tb (1-s)c+sd)

> F(a,c) + E(b,c) + F(a,d) + F(b, d).

(15)

Then, multiplying both sides of (15) by v; (t) v2 (s) and integrating with respect to (¢,s) over [0, 1] X [0, 1], we

get
1 Al
(IR)f f vi(®)va S)[F(ta+ (1 —t)b,sc+ (1 —s)d)+ F(ta+ (1 —£)b, (1 —s)c + sd)
o Jo

+F((1—ta+th,sc+ (1 —s)d)+ F((1—t)a+tb (1 —s)c+sd)]dsdt

1 Al
2 [F(a,c)+ FE(,c)+ F(a,d)+ F(b,d)] IR) f f v1 (t) vy () dsdt.
0o Jo
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Here, using the change of the variable we have

s (™[ [ (55)=(
IR)ffm(b_ )vz )F(x/y)dydx

L

+(IR)fo1

L F@9+F@, d)ZF(b C)+F(bd)(1R)ffv1(t)vz (s) dsdt.

The proof is completed. [

Z) F(x, y)dydx

) F(x, y)dydx

)F (v y) dydx}

Remark 5.2. If we choose v1 (t) = [t,t], v2(s) = [s,5] on [0,1] in Theorem 5.1, then the inclusions (7) become the
inclusions

b
F(a+b c+d)2 1 — (IR)f de(x,y)dydeF(a’C)JrF(a’d)+F(b’c)+F(b’d), (16)

27 2 b-a)d 4
which are given by Kara et al. in [12].

Remark 5.3. If we choose vy (t) = [t"“l,t“‘l] (@>0),v2(5) = [sﬁ‘l,sﬁ‘l] (B > 0) on [0,1] in Theorem 5.1, then
the inclusions (7) become the fractional integral inclusions

a+b c+d
plz= -
(5 )

I'(a+1I'B+ 1)
4 —a) (d-
F(a,c)+ F(a,d) +F(b,c)+ F(b,d)
- 4
which are proved by Kara et al. in [12].

[LH JF,d) + 08 F,0 + 1,7 Fa,d) + 1", _F(a,0)]

Corollary 5.4. Under assumption of Theorem 5.1 with vy () = [(— Int)* ™, (-In t)“_l] ,(@>0),v2(8) = [(— Ins) !, (-In s)ﬁ_l] (
on [0, 1], we get the following inclusions

a+b c+d
(55 w
5 1

T AT(@I(B)(b—a)(d-c)

a-1

+

=
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F(a,c)+ F(a,d)+ F(b,c)+ F(b,d)
2 ) .

Corollary 5.5. Let F : A ¢ R* — R} be interval-valued co-ordinated convex on A in R* with0 <a <b, 0 <c <d
and F € TD. Then, one has the inclusions:

F(a+b c+d) (18)

272
1 b
m(ﬂz)f; fF(x,y)dydx
4(b—-a)(d-c)
x(IR)fbdeIn(Z:z)]+[In(z:zm
e

F(a,c)+F(a,d)+F(bc)+F(bd)
1 .

V)

V)

2

Proof. From (16), we have

a+b c+d
F(TT) (19)

b
2 (_;_ (IR)f de(x, y) dydx
= —Dd=9o {(IR)f f F(x,y)dydx + (IR)f f F(x, y)dydx

+ (IR)f f F(x, y)dydx + (IR) f f F(x, y)dydx}

By change of variable x = ‘%t and y = &* in the first integral of right side of (19), using inclusion (16) and
from Fubini Theorem, we get

(IR) f f F(x,y) dydx 20)
_ i(IR)LbﬁdF(aTH,CTH)dsdt
ol [remehs
Y

V)
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o [t

T : s _ a+t @ b+t _ Cts _ b+t _ d+s
By similar way, using change of variable x = - and y = 5%, x = %5- and y = 5*, x = %" and y = 5* in the

other integrals of right side of (19), respectively, we have

(IR) fsz(x y) dydx (21)

_ (IR)ff (a+t d+s)ddt
1 b d 1 t
Z(IR)L jc\ (m (IR)L fF(x,y)dydx)dsdt

2
= (IR)f f (1n—)( )F(x y) dydx,
b st
(IR) fm f F(x, y) dydx (22)
1 Pt (b4t c+s
= Z(IR)L jc‘ F(T,T)det
1 b d 1 b s
= (IR)f f (n )(ln—)F(x y) dydx,
b d
(IR) fm fMF(x,y)dydx (23)
1 Pt b+t d+s
= Z(IR)L jc‘ F(T’T)det
2

(IR) f f ( e t) - IR) f f F(x, y)dydx)dsdt
= (IR)ff( )( )F(xy)dydx

By substituting the inclusions (20)-(23) in (19) and using the last inclusion of (17) for & = § = 2, we have

a+b c+d
5 )

1 b
2 m(ﬂ%)[ﬂ fF(x,y)dydx
N[ {(IR)f f o

=) (10 = s
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Q

+(IR)fubf (mb
+(1R)f:f (mb )(In—)F(x y) dydx
e [ [ (=) £

F(a,c)+ F(a,d) + F(b,c) + F(b,d)
4
which is proved the inclusion (18). [

) (ln —) F(x, y)dydx

><
&

Q

@‘
R

W‘
><

2

Theorem 5.6. Let F : A ¢ R* — R} be interval-valued co-ordinated convex on A in R* and F € ID). Let
v1,v2 1 [0,1] = R be two functions such that vi, v € IR0 Then, one has the inclusions:

(a+b c+d) 24)

27 2

+d 1 g a+b
2 ‘MMT) IR)le(x)F( > )dx+4\Pv2(d—c)(lR)f Yz(y)F( 5 y)dy

1 b
4V, W,,(b—a)(d -c) (UR) fu f Y1 () Vo (y)F (x, y) dydx

1
8%, (b—a)

V)

(V)

b b
[(IR)f Ty (x)F(x,c)dx+(IR)f Ty (x)F(x,d)dx]

1 d
T8V, (d -0 [UR) f V2()F (@, y)dy + (IR) f Yz(wF(b,y)dy]

F(a,c)+ F(a,d)+ F(b,c)+ F(b,d)

2
4

Proof. Since F : A — R} is interval-valued convex on the co-ordinates, it follows that the mapping g, :
[c,d] = R, g«(y) = F(x,y), is interval-valued convex on [c,d] for all x € [a,b]. Then by using inclusions (7),
we can write

d 1 X X d
0 (52)2 gy 00 [ Tty 2 ZO2 D ey

That is
Flx, <29) > L (IR)de()F(x )d
T2 ) 2w, d-o Y, YRy
(25)
F(x,c) + F(x,d)
= 2 7

for all x € [a,b]. Then, multiplying both sides of (25) by mYl (x), and integrating with respect to x
"
over [a,b], we have

IR)le(x)F( C+d)dx (26)

2V, (b 2
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1 b
. 4\IIU1\I’U2 (b - LI) (d - C) (IR) ‘fu\ f ke (X) Yz(y)F (X, y) d]/dx

5> 1
4V, (b —a)

By similar argument apphed for the mapping g, : [2,b] — R, g,(x) = F(x, y), we have

1

1 b
4V, W, (b —a)(d - o) (R) fa f Y1 () Ya(y)F (x, y) dydx

1 d d
2 I0,.[d-0 [(IR) fc Y2(y)F (a,y) dy + (IR) fc Yz(y)F(b,y)dy].

Adding the inclusions (26) and (27), we have

+d 1 d a+b
—Nm(b_ ) 1R>fmx>F( )d T )<1R>f Tz(y)F( ,y) y

b b
[(IR)f Ty (x)F(x,c)dx+(IR)f Y, (x)F(x,d)dx].

1 b
2 WL W.(h-a)@d=0) (IR) f fd Y1 (x) Ya(y)F (x, y) dydx
b b
2 m[(m)ﬁ Y, (x)F(x,c)dx+(IR)fa e (X)F(x,d)dx]

1 d
A, @0 [(IR) fc L2:()F (@ y)dy + (IR) f Ya(y)F (b,y)dy],

which give the second and the third inclusions in (24).
Now, by using the first inclusion in (7), we also have

F(a;—b’c-;d)gzw (IR)le(x ( c+d)

a+b c+d 1 a+b
F( 272 )‘2wv2<d— >(IR)fY2(y ( y)dy

by addition,
a+b c+d
F (—2 =

—_— 1 4 a+b
4‘I’U1(b — IR)f T, (x)F( )d 0, @-9 (IR)f Tz(y)F(T,y) dy,
which give the first inclusion in (24).

Finaly, by using the second incluson in (7) we can also state,

and

+d

F(a,c)+ F(b,c)

(IR)f Y1 (x)F(x,c)dx 2 > ,

2v,, (b —a)



2W, (b—a)

2V, (d—c¢)

and

2W,, (d—0)
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b
(UR) f Y () F (x,d) dx 2 w

(IR) f Ya(y)F (a,y)dy 2 w

(IR) fd Y2 (y)F (b, y)dy 2 Iw

which give, by addition, the last inclusion in (24). 0O

Remark 5.7. If in Theorem 5.6 with vy (t) = [t,t], v2(s) = [s,s] on [0,1], then the inclusions (24) become the

inclusions

V)

V)

V)

2

F(a+b’c+d)

2

1 1 b d 1 b

o [ e om e
l b

G0 (IR)fa fp(x’y)dydx

i[—(IR)fF(x c)dx+—(IR)fF(x d)dx

2

1 4 1 d
+E(IR)I F(a,y)dy+ﬁ(IR)I F(b,y)dy]

F(a,c)+ F(a,d)+F(b,c)+F(b,d)
4

which are proved by Zhao et al. in [30].

Remark 5.8. If in Theorem 5.6 with vy (t) = [t“‘l, t"“l] (@>0),v2(s) = [Sﬁ‘l,sﬁ‘l] (B> 0) on [0,1], then the
inclusions (24) become the fractional integral inclusions

V)

(V)

V)

a+b c+d
)

Fl@+1) |, c+d c+d
4(b—a)“[”*P(b ) Ji- ( T)]

rg+1

G VA (5
F(a+1)1*[3+1)[aﬁ
4(b—a)*d- e
T'a+1)
4(b-a)
JTE+1)
4(d— c)f

Fb,d)+ L _Fb,0) + JyP  Fla,d) + ], _F(a,0)|
[J2.F(b,0) + I3, F(b,d) + Ji_F(a,c) + J¢_F(a,d)|

[1f.F(a,d) + I F(b,d) + ' F(a,c) + J_F(b,0)]
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F(a,c)+ F(a,d)+ F(b,c)+ F(b,d)
- 4

which are proved by Budak et al. in [1].

Corollary 5.9. Under assumption of Theorem 5.6 with vy (t) = [(— Int)* !, (-In t)“_l] (a>0),v2(05) = [(— Ins)!, (-In s)ﬂ_l] (B
on [0,1], we get the following inclusions

a+b c+d

F(TT)
5 1 IR b | b—a\]"" | b-a a_lF c+d p
- 4‘I/U1(b—a)( )L No—x 1My S

p-1
+

1 d d—c d—c\I"'] fa+0
a0 [ (G5 <[ (=] Jr(5 )

> 4\Pl,1‘llvz(b—a)(d—6) IR)fdem(b x)] 1+[1n(z:2)]a_1]
b= e
) S‘Pvl(b IR)f H ( )a_1+ ln(%)]a_l][F(x,c)+F(x,d)]dx

| = = g

F(a,c)+F(a,d)+F(b,c)+F(@®,4d)
2 1 .

6. Conclusion

In this paper, by using interval-valued convex and interval-valued co-ordinated convex mappings, we
obtain some interval-valued weighted Hermite-Hadamard inequalities for differentiable convex mappings.
In addition, we discussed the special cases of the main results and we showed that our results generalize
several well-known Riemann Liouville fractional type integrals and Logarithmic integrals. In future works,
authors can obtain some new results by applying inclusions for other kinds of convex functions to our newly
proved identities.
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