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On the characterization of the set of reflexive generalized inverses of
finite potent endomorphisms

Diego Alba Alonso®’, Fernando Pablos Romo?

Universidad de Salamanca

Abstract. The aim of this work is to characterize the set of reflexive generalized inverses of a finite potent
endomorphism. As an application we determine the structure of the set of reflexive generalized inverses

of an square matrix with entries in an arbitrary field and we offer an algorithm for the explicit computation
of these matrices. Several examples of the given characterization are also provided.

1. Introduction

If A € Mat,xn(k) is a matrix with entries in an arbitrary field k, a matrix A~ € Matyx, (k) is {1}-inverse
of A when AA"A = A and A~ is a {2}-inverse of A when ATAA™ = A~. Matrices that are simultaneously
{1}-inverses and {2}-inverses are called “reflexive generalized inverses”.

A classic example of a reflexive generalized inverse of a matrix A is the Moore-Penrose inverse Af
described by E. H. Moore in [2] and R. Penrose in [9].
Moreover, if we define the index of an square matrix A, that is denoted by i(A), as the smallest integer

such that rk(A‘) = k(AW given A € Mat,x, (k) with i(A) < 1, it is well-known that there exists the
“group inverse” of A as the unique matrix A* € Mat,, (k) satisfying that:

o A-A* A= 4
o A*.A.A* = A%

« At A=A A

Accordingly, A* is a reflexive generalized inverse of A. The set of reflexive generalized inverses of A is
usually denoted by A(1, 2).

During the last years, the second-named author of this work has extended different notions of the theory
of matrices to finite potent endomorphisms on arbitrary vector spaces. Thus, the existence and uniqueness
of the Drazin inverse, the CMP inverse and the DMPs inverses of finite potent endomorphisms has been
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proved in [7], [4] and [6] respectively. From these extensions, the main properties of these generalized
inverses of matrices have been recovered and new relations between them have been given.

In this context, the authors of this work have recently characterized the set of {1}-inverses of a finite
potent endomorphism and have offered an algorithm for the explicit computation of all {1}-inverses of an
arbitrary square matrix in [8].

This paper deals with the answer to the following questions:

e which is the structure of the set of reflexive generalized inverses of a finite potent endomorphism?

e how many reflexive generalized inverses does an arbitrary square matrix with entries in an arbitrary
field admit?

As far as we know the answer to the first question is not stated explicitly in the literature and for the
second question, according to the statements of [10, Section III.1.1], it is known the structure of the set
A(1,2) when A is a matrix with entries in R or C.

In this work, for a square matrix A with entries in an arbitrary field k, according to Theorem 5.1, we

show that
I‘kAl I‘kAz dim N(A)

AL > [ NI N@IxT [] &4y = dmy@ren,
i=1 i=1 i=1

where A = A; + A, is the core-nilpotent decomposition of A.

The paper is organized as follows. In Section 2 we recall the basic definitions of the theory of finite
potent endomorphisms and a summary of statements of the articles [1], [3], [4] and [8].

Section 3 deals with the characterization of the set of reflexive generalized inverses of a finite potent
endomorphism on an arbitrary vector space and Section 4 is devoted to study the set A(1,2) of a square
matrix with entries in an arbitrary field as a particular case of the statements proved for finite potent
endomorphisms previously.

Finally, Section 5 contains the algorithm for computing the set of reflexive generalized inverses of a
square matrix and several examples with the explicit application of this algorithm.

2. Preliminaries

2.1. Finite Potent Endomorphisms

Let k be an arbitrary field, let V be a k-vector space and let us consider an endomorphism ¢ of V. We say
that ¢ is “finite potent” if ¢"V is finite dimensional for some 1, where the power means the composition
po.. M., o ¢. This definition was introduced by J. Tate in [11] as a basic tool for his elegant definition of
Abstract Residues.

In 2007, M. Argerami, F. Szechtman and R. Tifenbach showed in [1] that an endomorphism ¢ is finite
potent if and only if V admits a g-invariant decomposition V' = U, & W,, such that ¢, is nilpotent, W, is
finite dimensional and ¢y, : W, — W, is an isomorphism.

Indeed, if k[x] is the algebra of polynomials in the variable x with coefficients in k, we may view V as an
k[x]-module via ¢, and the explicit definition of the above g-invariant subspaces of V is:

e U, = {v € V such that ¢"(v) = 0 for some m € IN};
W v € V such that p(p)(v) = 0 for some p(x) € k[x]
[ ] = .
¢ relatively prime to x

Note that if the annihilator polynomial of ¢ is x™ - p(x) with (x,p(x)) = 1, then U, = Ker¢™ and
W, = Kerp(g).

Hence, this decompositionis unique. We shall call this decomposition the p-invariant AST-decomposition
of V.
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Moreover, we shall call “index of ¢”, i(¢), to the nilpotent order of ¢}, . One has that i(¢) = 0 if and
only if V is a finite-dimensional vector space and ¢ is an automorphism.

Basic examples of finite potent endomorphisms are all endomorphisms of a finite-dimensional vector
space and finite rank or nilpotent endomorphisms of infinite-dimensional vector space.

2.2. CN Decomposition of a Finite Potent Endomorphism

Let V' be again an arbitrary k-vector space. Given a finite potent endomorphism ¢ € Endy(V), there exists
a unique decomposition ¢ = @, + @,, where @,, @, € Endi(V) are finite potent endomorphisms satisfying
that:

o i(p)<1;

e ¢, is nilpotent;
* P op,=¢p,0p, =0.

According to [4, Theorem 3.2], if pP is the Drazin inverse of ¢, one has that 1 = @ o ¢ o ¢ is the core
part of ¢. Also, ¢, is named the nilpotent part of ¢ and one has that

p=p1 = Uy,=Kerp = W, = Imgp < (¢p")’ = p = i(p) < 1. (1)

Moreover, if V.= W, @ U, is the AST-decomposition of V induced by ¢, then ¢, and ¢, are the unique
linear maps such that:

0 ifoew,

i p) if veW,
)= { p) if vel, @

0 ifoeu, @xw:{

2.3. Jordan Bases of a nilpotent endomorphism

Let V be a vector space over an arbitrary field k and let g € Endy(V) be a nilpotent endomorphism. If
n is the nilpotency index of g, according to the statements of [3], setting U7 = Ker ¢'/[Ker g + g(Ker g"*")]

withi e {1,2,...,n}, ui(V,g9) = dimka and Sy, a set such that #S (v, = pi(V, g) with S;,v,9) N Spyvg) = 0
for all i # j, one has that there exists a family of vectors {v,,} that determines a Jordan basis of g:

B= | (o900 .07 @) 3)
Si € SH;‘(VJ)
1<i<n

Moreover, if we write Hfi =(vs, 9(vs,), ..., gi‘l(vsi)), the basis B induces a decomposition

v P H. (4)

Si € S(vg)
1<i<n
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2.4. Bases of a Finite Potent endomorphism

Let us now consider a finite potent endomorphism ¢ € End,(V) with CN-decomposition ¢ = ¢, + ¢,
and that induces the AST-decomposition V = U, ® W,,. Keeping the above notation, if 7 is the nilpotency
order of ¢,, we can construct a basis By = By, U By, of V where

BWq, = {wll .. -/wr}

is a basis of W,, (r = dimy W,,) and
Bu,= | (o 9@ 9 @)

Si € Suu,,)
1<i<n

is a Jordan basis of U, determined by ¢y, .
If = @, + @, is the CN-decomposition of ¢, it is clear that

By, = U {05, 0, (s), - - -, (pi‘l(vsi)}

S; € SH:‘(Uq;xﬂ)
1<i<n
and
Kerp= P @@= P @)
Si € Spu(Uy.p) Si € Sp(Uy.p)
1<i<n 1<i<n

2.5. {1}-Inverses of a Finite Potent Endomorphism

Let V be a k-vector space and let f € End(V) be an arbitrary endomorphism. Recall that f~ € Endi(V)
is a {1}-inverse of f € Endi(V) when

fof of=f.

It is known from [8, Lemma 3.2] that f~ € Endy(V) is a {1}-inverse of f if and only if for every v € V we
have that

ffU@)=v+u

with u € Ker f.
With the above notation, according to [8, Proposition 3.3], one has that:

N

Proposition 2.1. If ¢ € Endi(V) is a finite potent endomorphism, then an endomorphism ¢ € Endi(V) is a
{1}-inverse of ¢ if an only if ¢ satisfies that

o P(wy) = ((p|wq))‘1(wh) +up foreachh €{1,...,r};
o O(pi(vs)) = I (v, + ugi for every si € Sy, and j€{1,...,i -1}
o P(vs;) = Ts, for every s; € Sy )

where 95, € V and uy, u; € Ker ¢ foreach h € {1,...,r} and for every s; € S,

@

pandje{l, ... i—1}.
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3. Reflexive Generalized Inverses of Finite Potent Endomorphisms

Let V be again an arbitrary k-vector space.

Definition 3.1. Given an endomorphism f € Endy(V), we say that f € Endi(V) is a “reflexive generalized inverse”
of f when it satisfies that:

« fofof=f

o fofof=f.
It is clear that f is a reflexive generalized inverse of f when f is a {1}-inverse of f and f is a {1}-inverse
of f.

Our purpose is now to characterize the set of all reflexive generalized inverses of a finite potent endo-
morphism ¢ € Endi(V). We shall denote this set by X,(1,2).
With the above notation, let us fix a basis By = Bw, U By, of V with

¢
BWq) = {wll .. -/wr}

and
By, = U {vsi,go(vs,),...,(pi‘l(vsi)}.
s;€S wi(Uy,p)
1<i<n

If C = (cij) is the matrix associated to Plw, in the basis By,, we have that

T

p(w;) = Z Cijw;

i=1

forevery je{l,...,r}h
If ¢ € Endi(V) is a reflexive generalized inverse of ¢, since ¢ is a {1}-inverse of ¢, then it follows from
Proposition 2.1 that

pn) = () @)+ Y, AL (@, 5)
Sir € Sy Uy )
1<i'<n

with A? € k for each sy € Sy, u,,¢) and each h € {1,...,r} and where only a finite number of the scalars {A" }
are different from zero.
Moreover, one has that

PP =9 @)+ Y B ) (6)
St € Sy (Up.p)
1<i’'<n

with B/ = 0 for almost all s; € Sy, and j € {1,...,i—1}.

Finally, we have that ¢(vs,) = 75, where 75, € V for every s; € Sy, ) and foralli € {1,...,n}.

The explicit characterization of the reflexive generalized inverses of a finite potent endomorphism is
proved in the following:
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Proposition 3.2. Let V be an arbitrary k-vector space and let us consider a finite potent endomorphism ¢ € Endy(V).
With the previous notation, an endomorphism ¢ € Endy(V) is a reflexive generalized inverse if and only if it satisfies
(5), (6) and

o)=Y yiws Y [iszz’(plwsm 7)
j=1

1=
S € Sy Uyp)
1<i<n

with

e Z(AS, o YN+ Y (Z[és,, ) (8)

=1
I Si € Sy (Uyp) |

1<i”<n

with cfzj,’l = 0 for almost all sy € Sy, o) and € {1,...,7 —1}.

Proof. Let ¢ be a reflexive generalized inverse of ¢. Since ¢ is a {1}-inverse, one can easily check that the
three conditions of this proposition hold.

Conversely, let us consider an endomorphism ¢ € End(V) satisfying (5) and (6) and the required
condition for ¢(vs,) for every s; € S ui(U,,p) and foralli € {1,...,n}. In this case, it follows from Proposition
2.1 that ¢ is a {1}-inverse of ¢ and a computation shows that

(@ o @ o) (wy) = P(wy)
foreachh e {l,...,r} and
(@ 0 @ 0 P)@/(vs)) = P(@(05))

forevery s; € Sy, and j€{1,...,i—1}.

Hence, to prove the claim we only have to check that

(@ opod)vs) = P(us,)

for each s; € SuiUy.) and foralli e {1,...,n}.

Thus, since

PPN =9 )+ Y. BT ),
Sit € Sy (Up.)

1<i"<n
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bearing in mind that

r i"-1
@opo@)@)=@op)( Y vi-wi+ Y, 1) &lelw,)])
= 517 € Spp(Upg)
1<i"<n
-1
=¢ ZV P+ ) [Z, &' (@,,)])
Sir € Sy (Uy,p)
1<i”<n
r i1
(Y. aywl+ )] Zézaf '(0,,)])
=l Siv € Sy (Upp) |
1<i”<n

<

r

=2 D o) @l + Y [2@ e A5 )] ¢ o)

= h=t Sir € Sy (Uyp) M
1<i’"<n
=2 =2
Y (D) g+ [Z el Y, BT e w))
S € Spp(Upg) 0 Sir € Sy Uy )
1<i”"<n 1<i<n

Yo Y (fi £/ (0]
=1

Si € SuyUyp) 0
1<i<n
r -2
Y (ke Y (Z[és,,- D) o ),
St € Sy () M 57 € Sy Uy !
1<i<n 1<i"<n

the assertion is deduced. O

Remark 3.3. We wish to point out that, in general, a reflexive generalized inverse of a finite potent endomorphism is
not a finite potent operator.

Let us now denote by X,,(1,2) the set of all reflexive generalized inverses of a finite potent endomorphism
@ € Endi (V).

Theorem 3.4 (Structure of X, (1,2)). If p € Endi(V) is a finite potent endomorphism, then there exists a bijection

, i-1
Xp(1,2) = [H Ker ¢] x [ H [(V/ Ker @) x H Ker (p]] . 9)
= 5i € Su(Uyg) =
1<i<n

Proof. If we denote:
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o uy = y AL @' (v,,) € Ker ¢;
81 € Sy (Uy )
1<i<n

o ”i, = Y :’ @' Y(vs,) € Ker ;
Sir € Sy Uy )
1<i<n

cl=[Th) w0 (D )] € ViKer,
Sir € Syy(U,p)
1<i<n

it follows from Proposition 3.2 that the map

, i-1
X,(1,2) — [H Ker o] x [ H [(V/ Ker @) x H Ker ¢]|
h=1

Si € Spi(U,.p) =1

1<i<n

is a bijection.
0

To conclude this section we shall compute the set X,,(1,2) for a certain finite potent endomorphism
@ € Endi(V).

Example 3.5. Let V be a vector space of countable dimension over an arbitrary ground field k. Let {v1,v3,v3,...} be
a basis of V indexed by the natural numbers and let us consider the finite potent endomorphism ¢ € Endy(V) defined
as:

U1 — 0+ 0y lf i=1

—201 — U5 lf i=2

(P(Ui): Uy + 04 + Us lf i=3

Vis1 if i=2r

0 if i=2r+1

forall r > 2. We shall characterize the set X,(1,2).
A computation shows that the AST-decomposition of p is V = W, ® U,, with

Wy = (v1 + 02 — 04 + 205, =201 + 0 — 04 — Us) and U, = (201 + 02 + 203,04, 05,...),

that the matrix associated with Plw, in this basis is

and that Ker @ = (Uzr11)r2.
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Let us write
3 3
v} = AJ(01 + U2 — Vg + 205) + A5 (=201 + U2 — vy — Vs)+

+ A3(201 + 3 +205) + A} (403 +v5) + Y Aon, =

§>3

10
= (A3 =243 + 24301 + (A + A3 + Ao, + 24305+ (o)
(A3 = 23+ 420)0s + A3 = 23+ A)vs + Y Ao,
>3
and
vy, = (A7 =2AT + 247 )01 + (AT + AT + AT )0 + 245 03+
(AT = AT+ 40 V0s + QAT = AT + AT )os + Y A, (11)

5>3

forall v > 3 and with A3, A3, A3, A3, A3, AT, AT, A", AY', AL € k for every s > 3.
Given an endomorphism ¢ € X, (1), since p(2v1 + v2 + 203) = 4vy + vs, if we consider the basis By = Bw, UBy,
with
BW¢, = {Ul + 0y — 04 + 2?]5, —27]1 + Uy — U4 — 715}

and
Bu, = {201 + v2 + 203,404 + v5, 405} U [U{UZW Uzr+1}] /

>3

it follows from Proposition 3.2 that:

o P(v1 + v — Uy +205) = —U1 — Uy + Vg — 205 + Uy;

A _ 1 1 1 )
P(=201 + vy — Vg —V5) = U1 + 53Uy — 504 — 5Us5 + Uy,

P2u1 + vy + 203) =V,

(;3(4?)4 + 715) =201 + Uy + 203 + Uy,

(;3(47)5) = 47]4 + U5 + Us;

P(v2y) = Uér;
® O(v2r41) = Vor + Unpy1;

with w1, Uy, s, Us, Uzr41 € Ker ¢ and v} and vy, as above.

Accordingly, from a non-difficult computation we obtain that the above equalities are equivalent to the following:

A — 1 1 3 1 1 1 .
) (p(vl) —50Up) — 504 — _US + UL — 3UY — _”5,

A 1 1 1 3 29 2 1 1 5 .
[ (P('UZ) __'01 —_ _'02 —+ _'03 - _'Ul —_ 1_'05 —_ _ul —+ _uz + _ul —_ 1_u5/

A 1 5 1 5 53 1 1 13 /.
P(v3) = 301 + F02 — 503 + 304 + 3205 + FUp — glUy + ToUs + U,

sy = 1 1 1 1 1 1 1.
P(vg) = 501 + 302 + 5U3 — 704 — 705 + 3Us — g Us;

P(vs) = vy + o5 + Lus;

P(vy) =0,
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o P(v2r11) = Vg + U1,

and, therefore, one has that an endomorphism ¢ € Endy(V) is a reflexive generalized inverse of ¢ if and only if

—30p — 303 — 205 + Fuy — dup — Jus if =1
—%Ul - %vz + %?)3 - %04 - %U5 - %Ml + %Mz + }11/{4 - %U5 lf i=2
o1+ 30— dvs+ 3o+ Bos + Jup — dug + Bus+0,  if  i=3
P(v;) = %"01 + 411"02 + %"03 - }1"04 - %”05 + %u4 - %u5 Zf i=4
?)4+}IZ)5+%M5 1f i=5
vl if  i=2r
Uj—1 + U; Zf i=2r+1

with u1, ua, uy, us, usr1 € Ker @ and v} and v}, satisfying (10) and (11) for every r > 3 respectively.

Remark 3.6. In [5], the second-named author has recently introduced the notion of “core-nilpotent endomorphism”
of a infinite dimensional vector space. We wish to point out that, using arquments similar to those made in this
section, it is possible to study the set of reflexive generalized inverses of a core-nilpotent endomorphism of an arbitrary
k-vector space.

4. Reflexive Generalized Inverses of square matrices

Let E be a k-vector space of dimension n with k an arbitrary field.

Our purpose is now to characterize the set of all reflexive generalized inverses of an endomorphism
f € Endy(E).

With the above notation, let us fix a basis Bg = Bwf U By, of E with

Bw

= {wll-"/wr}
f

and
Buy= | tw fou),.. Ny

1<I<s
If C = (cyj) is the matrix associated to ﬁwf in the basis Bw,, we have that

,
f(wj) = Z Cijw;
i=1
forevery je{l,...,r}
Setting m;, = Ziﬁl:l n; for every 1 < h <s, if | = (d;j) is the matrix associated with f on the basis By one
has that:

1. dijj=cjforall1<i,j<r;

2. dij=0foreachi>rand1<j<r

3. dijj=0foreach j=r+m,withhe{l,...,s};

4. dij = 0,1 forevery j>r+1and j#r+m,withhe(l,...,s],

where 0; ;1 is the Kronecker delta.
Note thatn =r+ms =1+ Y.;_; 1.
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Lemma 4.1. With the previous notation, if A = (aij) € Mat,x,(k), then one has that:

711'—2

s
Z[ Z Ar+my ) (r+mj 1 +2+2) ° a(r+m,;1+z+1)(r+m1_1+1)] =
j=1 z=0
n
= Z (a(r+mjz)h “dpi - O(i(r+m,,1+1))/
ih=r+1

forevery j/ €{1,...,s}.

Proof. Since, for everyi € Nwithr+1<i<mnandi #r+mforallh € {1,...,s} there exists a unique
decomposition
i=r+mj1+z+1,

where j € {1,...,s}and z € {0, ...,n; — 2}, the statement is immediately deduced from the expression of the
matrix | = (d;j). O

Corollary 4.2. Keeping the notation, we have that:

s 711’—2
Z[ Z Q(r+my )(r+mj g +2+2) * 0‘(7+mi_1+z+1)(r+m,,1+1)] =
j=1 z=0
n n
= Z (Z Q(r+mjr)h “dyi - ai(y+ml,l+1))-
h=r+1 i=1

Proof. Bearing in mind that d;; = 0 for each j = r + my, with h € {1,..., s}, the claim is a direct consequence
of Lemma4.1. O

If f € Endi(E) is a reflexive generalized inverse of f, since f is a {1}-inverse of f, then it follows from
Proposition 2.1 that:

Fan) = (f, )7 @) + Y @ £ ), (12)

j=t

with Aremh € k for each h € {1, ..., r}. Moreover, denoting 1 = 0, one has that:

FF @) = F7@) + Y Aompirrm e - £ @) (13)
j=1

forl<t<mn —landallle{l,...,s}.

Finally, we have that f(1,) = i, where @i, € E for all i € {1,...,s}. The explicit characterization of the
reflexive generalized inverses of an endomorphism on a finite-dimensional k-vector space is proved in the
following:

Proposition 4.3. Let E be an arbitrary finite dimensional k-vector space and let us consider an endomorphism
f € Endi(E). With the previous notation, one has that f € Endi(E) is a reflexive generalized inverse of f if and only
if it satisfies (12), (13) and

n.—1

r S ]
f(u;) = Z ai(r+m,,1+1) Cw; + Z[Z a(r+m/-_1+z+1)(r+m,,1+1)fz(u/-)] (14)

i=1 j=1 z=0
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with

n
Q)+ +1) = Z Qe * Ani * Qiramy_y+1) (15)
=1

where Q(ramy g +z4+1)(r-+mp_y +1) € k foreveryle(l,...,standz € {0,..., n, — 1}.
Proof. Relating the above notation with the notation of Section 3, if we write v, = 1;, we have that the vector
v, takes the place r + mj_; + 1 in the basis Bg for every [ € {1,...,s}. Moreover, the vector f'(vs,) takes the

place ¥ + mj_; + t + 1 in the basis Bg foreveryl € {1,...,s}and t € {1,...,m; — 1}.
Thus, writing vs, = v;, it makes sense to denote:

h — .
i /\s,v = Q@r+mphs
s,
® V! = Qiremyy+1);
L4 ﬁ a(r+m] Y(r+m_1+t+1);

L4 5:::2 = Qr+mjog+z+1)(r+my_1 +1)-
Accordingly, bearing in mind that with this notation i = n; and i = n; and writing v, = u; with
j’ €11,...,s}, one has that:

si i 1
L é . Qr+m)(r+my_1+1)7

sl _ .
L4 és:” = A(r+mp_y +H+1)(r+myg +1)7

s 1+1
® B, = Qlrm(remy 1 +142);

and, therefore, applying Lemma 4.1 and Corollary 4.2 we obtain that:

s H ’—2
Z[Z Q(r+m))(r+my o +1+2) * A(r+my _+1+1)(r+m_g +1) ]
=1 =0
n
= Z (a(r+mj)h “dp; - ai(r+m,_1+1)) =
i,h=r+1
n n
= Z (Z QA(r+my)h  Api * ai(r+m1,1+1)),
h=r+1 i=1
forevery je{l,...,s}.
Thus, replacing ¢ with f, the statement is deduced from Proposition 3.2 because (5) implies (12), (13) is
deduced from (6), from (7) we obtain (14) and (15) is a particular case of (8). [

Corollary 4.4. With the notation of Proposition 4.3, one has that:

n

Q) (r+mpy +1) = Z Aremph * Ani * Ai(remy_y +1)
hi=1
h#r+ my + 1
tef{o,...,s—1}

forall j,le{l,...,s}.

Proof. Bearing in mind that d(4,+1); = 0 for every i € {1,...,n} and each t € {0, ...,s — 1}, the statement is
immediately deduced from Proposition 4.3. [
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5. Algorithm for the computation of reflexive generalized inverses of a square matrix

This final section is devoted to the application of the previous results to characterize the set A(1,2) of
reflexive generalized inverses of a finite square matrix A with entries in an arbitrary field k and to offer an
algorithm for the explicit computation of A(1,2) .

Theorem 5.1 (Structure of A(1,2)). Let A € Mat (k) be a square matrix with entries in an arbitrary field k and
let A = A1 + Ay be its core-nilpotent decomposition. Then, the structure of A(1,2) is determined from the following
bijection:

rk Ay 1k As dim N(A)

A2 = [[ [ NI ([ [Nl J] K4 = gimereks, (16)
i=1 i=1 i=1

Proof. Bearing in mind the well-known relationship between finite square matrices and endomorphisms of
finite-dimensional vector spaces, the statement is immediately deduced from Proposition 4.3. [J

Accordingly, an algorithm for computing the set A(1, 2) is the following:

1. Write A in its Jordan canonical form: A = PJP~!.

2. If C € Matx.(k), let {mq,my,..., ms} be the set of natural numbers such that m; < m;;; and each
(r + m;)-column of | are zero.

3. If] = (g Z(\Jf) with C invertible and N nilpotent, compute the inverse C™! .

4. Calculate the nullspace N(J).
ct o
0 N
6. Add a general element of N(J) in the non-zero columns of |’ to get a matrix J”.

5. Put]’z(

7. Obtain a matrix | by completing the zero columns of J”” with arbitrary parameters except the i- rows
of this columns with

ie{r+my,r+my, ..., r+mg}.

Note that the zero columns of J” are the j-columns with
jelr+L,r+m+1,...,r+ms_q +1}.
8. Setting C = (c;j) and J= (al’.].), and applying the expression (15), we write J= (aiij) with

7

0(1]-

foreachie{r+my,...,r+msyand je{r+1,r+m;+1,...,r+ms1 + 1} and being ay,s = a; otherwise.
9. Compute AeAQ,2) depending on 2[dim N(A)] - (rk A) parameters as A =Pjp.

Remark 5.2. We wish to point out that (8) of this algorithm makes sense from Corollary 4.4.
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5.1. llustrative Examples

To finish this work we shall offer several examples of the explicit application of the above algorithm for
the calculation of the set of reflexive generalized inverses of a square matrix.

Example 5.3. We shall now characterize the set of reflexive generalized inverses of the matrix

1+3i 3+6i 5+9i
—2—-i —-6-2i —10-3i|€ Mat3x3(C).
1 3 5

A=

Since the Jordan canonical form of A is
3 -2 1 i 0 0y (1 2 3
-1 1 -2|-]0 0 Of-|1 3 5{,
0 0 1)\ 1 0)J10 01
for the sake of clarity, let us fix the notation exactly as it is stated in the algorithm previously presented. Therefore,
i 00
J=[0 0 O0].
010

Notice that in this case, C = (i) € Mat1x1(C) and we have {m1} with m; = 2 such that the (1 + 2) = (3)—column of |
is zero. It is obvious that C™' = (—i) and that N(J) = {(0,0, A)}rec. Bearing this in mind, let us set

- 0 0
r=lo o 1J.
0 00

Adding a general element of N(J) in the non-zero columns of ], we obtain

-i 0 0
7=lo o 1]
ay 0 ag,

Now, we shall complete the zero columns of |'" with arbitrary parameters except for the i—rows of these colums with

A=

ief{r+m}=1{1+2}={3}
It is clear that the zero columns of ' are the j—columns with

jefr+1} ={2}.

) - aiz 0
J=10 a), 1].
o 0

!’
31 Q33

Hence,

Let us denote | = (i) and J= (a,’.].). The only entry of ] left to compute is

i1 0 0 0"12
axp = (aj, 0 ags)-g g g-aéz = i} - (), + g Oy
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R —i aiz 0
=10 @, 1.

’ M / ’ ’ ’
ay (g -, +ag; - a5,)  al,

Therefore, we get

To conclude, we get that A is a reflexive generalized inverse of A if and only if :

3 -2 1 —1 o, 0 1 2 3
A=|-1 1 =210 o, 111 3 51,
0 0 1 aél (iag1 . a’12 + aé3 . ozéz) 0133 0 01

with g, &y, a0y, a5, € C. Realize that dim N(A) = 1 and rk(A) = 2 that gives us A(1,2) ~ C*, which is coherent
with the computations made in this example.

Example 5.4. Let us now compute the set of reflexive generalized inverses of the matrix

16 33 50 O
-7 =16 -25 0
A= 1 3 5 0 S Mﬂt4><4(lR).

6 23 40 O

Since the Jordan canonical form of A is

3 2 1 0)(55 000 (1 2 3 0
A-|"1 1 -20[]0 00013 50
“lo o 1 o|lfo 1 0 0[]0 O 1 o0l

-1 -1 11 1)\ 0 0 o) \2 5 =31

similarly to that above, let us make clear the notation in every step of the algorithm. Hence,

S~
Il
o O o

0 00
0 00
1 0 0|
0 0 0

In this case, we have that C = (5) € Mat1x1(R) and {mq, my} with my = 2 and my = 3, such that the (1 +2) =
(3)—column of | is zero and so the (1 + 3) = (4)—column of ] is zero too. It is obvious that C™' = (%) and that
N(J) ={(0,0,A,9)}ryer. Bearing this in mind, let us write

O O Qul=
oo oo
[N el N}
o O O o

Adding a general element of N(J) in the non-zero columns of |, we obtain

10 0 0
) 0O 0 1 o0
"= ay, 0 az OF

@, 0 a, 0

Now, we shall complete the zero columns of | with arbitrary parameters, except for the i—rows of these colums
with
i€{r+my,r+my} =1{3,4}.



D. Alba Alonso, F. Pablos Romo / Filomat 38:14 (2024), 49554972

Notice that the zero columns of |'" are the j—columns with

Hence,
1 ’ ’
5 0‘}2 0 “/14
J= (/) ) 1/ Aoy
a§1 0 a§3 0
ay 0 « m 0

4970

Let us denote | = (aij) and, maintaining the notation, J= (al’.j). The entries of J left to compute are

!
Ao

0432=(0/31 0 aj, O)-

o O O Gl

O = OO

o O OO

SO OO
o

’
azq = (a31

0(422(&;41 0 Oé43 0)

0(442(&;41 0 Oé43 0)

OO O U1 OO oUuUl OC o U

OR OO0 OFrRrRrOO OFRr OO

S OO O OO Oo oooo

OO OO OO OoC oooo
o

Therefore,

’
a} .
o

0‘12

’ /azz ’ 7
(5a§1 . a}2 + a§3 . “;2) a
(Gay, -aj, +aj;-as,) «

>
Qul—
—_ O

]:

3
3

NSRS

’
31
7

41

To conclude, A is a reflexive generalized inverse of A if and only if:

3 -2 1 0\ (% &, 0 &, (1 2 3
sol-1 1 2000 ay 1 oaf|l 3 5
0 0 1 0 0(;1 [2%%] a’33 34 0 0 1
-1 -1 11 1) \ay, an ap au) \2 5 -3

s ! ! 7 7 ’ ’ /’
with oy, &y, ay, @y, 03, A, ),

1%

!

a
A% 25, . ’
=dag) -y, + Ay,

3| =50 - ajy + gy

o
. 22 | — [ /.
=5ay; - aq, +ay,

3 =50y, - ajy + gy

’

* gy

7
Aoy

7
A,

’
Qyy-

’ 7’ 7’ ! .
(5a§1 az}4 + a§3 ag4)
(Gay, -aj, +ay; - ajy)

@), € Rand azy, azs, asz, asy being the ones previously calculated. Notice that

in this case we have that dim N(A) = 2 and rk(A) = 2 and from Theorem 4.3 we know that A(1,2) ~ R®. Readers

can easily check that this example is compatible with this result.

Example 5.5. Let F7 be the field with seven elements.
inverses of the matrix

€ Matgya(IF7) .

W = O\
ook m
WN =W
N W N

We shall now characterize the set of reflexive generalized
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Since the Jordan canonical form of A is

116 0)(2000)(1 66 4
A_|t 2 00[]0o3 003145
6 6 2 4[10 0 0 0|3 0 3 2|
006 101013033

similarly to that above, let us make clear the notation in every step of the algorithm. Hence,

2 000

0 3
]_00
0 0

=]

0
ol
0

) € Matyy(IF7) and {m1} with my = 2, such that the (2 + 2) = (4)—column of |

In this case,one has that C = (é g

is zero. Bearing in mind that 3 = 4 and } = 5 in F;, one has that C™' = (4 0

0 5) and that N(J) = {(0,0,0, 1)} ek, -

Bearing this in mind, let us set

4 0 00
, {05 00
F'=fo 0 0 1
0 00O
Adding a general element of N(J) in the non-zero columns of |', we obtain
4 0 0 O
0 5 0 0

=10 0 0 1

ay ap 0 ay

Now, we shall complete the zero columns of | with arbitrary parameters, except for the i—rows of these colums with
ie{r+m) = {4}

Notice that the zero columns of |'" are the j—columns with

jefr+1}={3}.

Accordingly,
4 0 o 0
13
2|0 5 a0
0 0
ay ap 0 ay,

Let us denote | = (i) and J= (ozl’,j). The entry of [ left to calculate is

2.0 0 0y (ag
’ ’ ’ O 3 0 O a/ ’ ’ ’ ’ ’ ’
Q43 = (Ot41 a, 0 a44)- 00 o ol aiz =20y, - a5 + 30y, - Aoy + Ay - g,
0 010 0
Therefore,
4 0 @, 0
j _ 0 5 0(§3 0
0 o0 g, 1

’ / / ’ ’ !’ !’ /’ /’
ay  ap Qag-agy +3ag, - ah +ay, - al) o
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So we conclude that A is a generalized inverse of A if and only if

1160 (4 0 &, 0y (1 66 4
At 200/ ]0 5 a 0[]3 145
6 6 2 4[l0 0 o 1|30 3 2|
006 1)\a, o) ass ) 3 0 3 3

with oy, %, a4, a0, 0, ), € 7 and ags being the one previously calculated. Notice that dim N(A) = 1 and
rk(A) = 3 so we have that A(1,2) = (IF7)®, which is coherent with the computations made in this example.
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