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Abstract. We present the generalized Drazin inverse for certain anti-triangular operator matrices. Let

E,F,EFπ ∈ B(X)d. If EFEFπ = 0 and F2EFπ = 0, we prove that M =

(
E I
F 0

)
has g-Drazin inverse and

its explicit representation is established. Moreover, necessary and sufficient conditions are given for the
existence of the group inverse of M under the condition FEFπ = 0. The group inverse for the anti-triangular
block-operator matrices with two identical subblocks is thereby investigated. These extend the results of
Zhang and Mosić (Filomat, 32(2018), 5907–5917) and Zou, Chen and Mosić (Studia Scient. Math. Hungar.,
54(2017), 489–508).

1. Introduction

Let B(X) be a Banach algebra of all bounded linear operators over a Banach space X. An operator T
in B(X) has generalized Drazin inverse (i.e., g-Drazin inverse) provided that there exists some S ∈ B(X)
such that ST = TS,S = STS,T − T2S is quasinilpotent. Such S is unique, if it exists, and we denote it by
Td. If we replace the quasinilpotent by nilpotent in B(X), S is called the Drazin inverse of T, denoted by
TD. Equivalently, an operator T in B(X) has Drazin inverse TD if and only if TTD = TDT,TD = TDTTD,Tn =
Tn+1TD for some n ∈N. Such smallest n is called the Drazin index of T and denote it by ind(T).

Let E,F ∈ B(X) and I be the identity operator over the Banach space X. It is attractive to investigate

the g-Drazin (Drazin) inverse of the block-operator matrix M =
(

E I
F 0

)
. It was firstly posed by Campbell

that the solutions to singular systems of differential equations are determined by the Drazin inverse of the
preceding operator matrix M (see [3]).

Since M is similar to the matrix
(

E F
I 0

)
, i.e., M =

(
0 I
I −E

) (
E F
I 0

) (
0 I
I −E

)−1

, it attracts many

authors to investigate the g-Drazin (Drazin) inverse of M or
(

E F
I 0

)
. In 2005, Castro-González and Dopazo
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gave the representations of the Drazin inverse for a class of operator matrix
(

I I
F 0

)
(see [6, Theorem 3.3]).

In 2011, Bu et al. investigate the Drazin inverse of the operator matrix
(

E F
I 0

)
under the condition

EF = FE (see [2, Theorem 3.2]). In 2016, Zhang investigated the g-Drazin inverse of M under the conditions
FdEFπ = 0,FπFE = 0 and FπEFd = 0,EFFπ = 0 (see [17, Theorem 2.6, Theorem 2.8]). In [18, Theorem 2.3],
Zhang and Mosić considered the g-Drazin inverse of M under the wider condition FEFπ = 0. We refer the

reader to [19, 20, 22] for further recent progresses on the g-Drazin (Drazin) inverse of M or
(

E F
I 0

)
.

The motivation of this paper is to further study the generalized inverse of the block-operator matrix
M under the conditions that are wider than FEFπ = 0. In Section 2, we present the g-Drazin inverse for
the operator matrix M under the condition EFEFπ = 0 and F2EFπ = 0, which extend [18, Theorem 2.3]
to a wider case. As the Drazin and g-Drazin inverses coincide with each other for a complex matrix, our
results indeed provide algebraic method to find all function solutions of a new class of singular differential
equations posed by Campbell (see [3]).

If T has Drazin index 1, T is said to have group inverse TD, and denote its group inverse by T#. The
group inverse of the block-operator matrices over a Banach space has interesting applications of resistance
distances to the bipartiteness of graphs (see [16]). Many authors have studied such problems from many
different views, e.g., [1, 4, 5, 7, 14, 15, 22].

In [23, Theorem 2.10], Zou et al. studied the group inverse for M under the condition EF = 0. In Section
3, we present necessary and sufficient condition on the existence of the group inverse and its representation
for the block operator matrix M under the condition FEFπ = 0.

In [5, Theorem 5], Cao et al. considered the group inverse for a block matrix with identical subblocks
over a right Ore domain. Finally, in the last section, we further investigate the necessary and sufficient

condition for the existence of the group inverse of a 2 × 2 block-operator matrix
(

E F
F 0

)
with identical

subblocks. The explicit formula of its group inverse is thereby given under the same condition FEFπ = 0.
Throughout this paper,Cn×n denotes the Banach algebra of all n×n complex matrices. Let T ∈ B(X)d. We

use Tπ to stand for the spectral idempotent operator I − TTd. Let p2 = p,X ∈ B(X). Then X = pXp + pXpπ +

pπXp+ pπXpπ, and we write X as a Pierce representation given by the matrix form X =
(

pXp pXpπ

pπXp pπXpπ

)
p
.

2. g-Drazin inverse of anti-triangular block matrices

The aim of this section is to investigate the g-Drazin invertibility of the block-operator matrix M =(
E I
F 0

)
. The representation of the g-Drazin inverse of M is given under some new kind of conditions. We

begin with

Lemma 2.1. ( [9, Theorem 5.1]) Let p2 = p ∈ B(X) and X =
(

A 0
C B

)
p
, where A,B ∈ B(X)d and C ∈ B(X). Then

X ∈ B(X)d and Xd =

(
Ad 0
Z Bd

)
p
, where Z =

∞∑
i=0

(Bd)i+2CAiAπ +
∞∑

i=0
BiBπC(Ad)i+2

− BdCAd.

Lemma 2.2. ( [11, Theorem 4.2.2]) Let P,Q ∈ B(X)d. If PQP = 0 and Q2P = 0, then P +Q ∈ B(X)d. In this case,

(P +Q)d =
∞∑

i=0
(P +Q)(Pd)i+2QiQπ +

∞∑
i=0

Pi+1Pπ(Qd)i+2 +
∞∑

i=0
QPiPπ(Qd)i+2

− (P +Q)PdQd.

Using the previous lemmas, We now investigate the g-Drazin inverse of the block-operator matrix M.
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Theorem 2.3. Let E,F ∈ B(X)d. If EFE = 0 and F2E = 0, then M =
(

E I
F 0

)
has g-Drazin inverse. In this case,

Md =

(
Λ Σ
Γ ∆

)
, where

Λ = EEπFd
− FEdFd +

∞∑
i=0

[I + F(Ed)2](Ed)2i+1FiFπ +
∞∑

i=0
E2i+3Eπ(Fd)i+2 +

∞∑
i=0

FE2i+1Eπ(Fd)i+2,

Σ = −EEdFd
− F(Ed)2Fd +

∞∑
i=0

[I + F(Ed)2](Ed)2i+2FiFπ +
∞∑

i=0
E2i+2Eπ(Fd)i+2 +

∞∑
i=0

FE2iEπ(Fd)i+2,

Γ = FEπFd +
∞∑

i=0
F(Ed)2i+2FiFπ +

∞∑
i=0

FE2i+2Eπ(Fd)i+2,

∆ = −FEdFd +
∞∑

i=0
F(Ed)2i+3FiFπ +

∞∑
i=0

FE2i+1Eπ(Fd)i+2.

Proof. Let

P =
(

E2 E
0 0

)
,Q =

(
F 0

FE F

)
.

Then M2 =

(
E2 + F E

FE F

)
= P +Q. Using Lemma 2.1, we have

Qd =

(
Fd 0

FE(Fd)2 Fd

)
,Qπ =

(
Fπ 0
−FEFd Fπ

)
.

Likewise, we obtain Pd =

(
(Ed)2 (Ed)3

0 0

)
,Pπ =

(
Eπ −Ed

0 I

)
. One easily checks that

PQP =

(
E2F EF

0 0

) (
E2 E
0 0

)
=

(
E2FE2 E2FE

0 0

)
= 0;

Q2P =

(
F 0

FE F

) (
FE2 FE

0 0

)
=

(
F2E2 F2E

FEFE2 FEFE

)
= 0.

In light of Lemma 2.2, M2 has g-Drazin inverse, and so M has g-Drazin inverse. In this case,

Md =M(M2)d =
∞∑

i=0
M3(Pd)i+2QiQπ +

∞∑
i=0

MPi+1Pπ(Qd)i+2 +
∞∑

i=0
MQPiPπ(Qd)i+2

−M3PdQd.

We compute that

M3(Pd)i+2QiQπ

=

(
E I
F 0

)3 (
(Ed)2 (Ed)3

0 0

)i+2 (
F 0

FE F

)i (
Fπ 0
−FEFd Fπ

)
=

(
E3 + EF + FE E2 + F

FE2 + F2 FE

) (
(Ed)2i+4 (Ed)2i+5

0 0

) (
Fi 0

FEFi−1 Fi

) (
Fπ 0
−FEFd Fπ

)
=

(
(Ed)2i+1 + F(Ed)2i+3 (Ed)2i+2 + F(Ed)2i+4

F(Ed)2i+2 F(Ed)2i+3

) (
FiFπ 0

FEFi−1Fπ FiFπ

)
=

(
[I + F(Ed)2](Ed)2i+1FiFπ [I + F(Ed)2](Ed)2i+2FiFπ

F(Ed)2i+2FiFπ F(Ed)2i+3FiFπ

)
(i ≥ 1),
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M3(Pd)2Qπ

=

(
E I
F 0

)3 (
(Ed)2 (Ed)3

0 0

)2 (
Fπ 0
−FEFd Fπ

)
=

(
E3 + EF + FE E2 + F

FE2 + F2 FE

) (
(Ed)4 (Ed)5

0 0

) (
Fπ 0
−FEFd Fπ

)
=

(
Ed + F(Ed)3 (Ed)2 + F(Ed)4

F(Ed)2 F(Ed)3

) (
Fπ 0
−FEFd Fπ

)
=

(
[I + F(Ed)2]EdFiFπ [I + F(Ed)2](Ed)2Fπ

F(Ed)2Fπ F(Ed)3Fπ

)
,

MPi+1Pπ(Qd)i+2

=

(
E I
F 0

) (
E2 E
0 0

)i+1 (
Eπ −Ed

0 I

) (
Fd 0

FE(Fd)2 Fd

)i+2

=

(
E2i+3Eπ −E2i+3Ed + E2i+2

FE2i+2Eπ −FE2i+2Ed + FE2i+1

) (
(Fd)i+2 0

FE(Fd)i+3 (Fd)i+2

)
=

(
E2i+3Eπ(Fd)i+2 E2i+2Eπ(Fd)i+2

FE2i+2Eπ(Fd)i+2 FE2i+1Eπ(Fd)i+2

)
,

MQPπ(Qd)2

=

(
E I
F 0

) (
F 0

FE F

) (
Eπ −Ed

0 I

) (
(Fd)2 0

FE(Fd)3 (Fd)2

)
=

(
EFEπ(Fd)2 + FEEπ(Fd)2 Fd

− FEEd(Fd)2

FFd 0

)
,

MQPiPπ(Qd)i+2

=

(
EF + FE F

F2 0

) (
E2 E
0 0

)i (
Eπ −Ed

0 I

) (
Fd 0

FE(Fd)2 Fd

)i+2

=

(
FE2i+1Eπ(Fd)i+2 FE2iEπ(Fd)i+2

0 0

)
(i ≥ 1),

M3PdQd

=

(
E3 + EF + FE E2 + F

FE2 + F2 FE

) (
(Ed)2Fd (Ed)3Fd

0 0

)
=

(
E2EdFd + FEdFd EEdFd + F(Ed)2Fd

FEEdFd FEdFd

)
.

Therefore Md =

(
Λ Σ
Γ ∆

)
,where Λ,Σ,Γ,∆ are as in the preceding stating. This completes the proof.

Lemma 2.4. ( [10, Theorem 2.3]) Let P,Q ∈ B(X)d. If PQ = 0, then P +Q ∈ B(X)d. In this case,

(P +Q)d =

∞∑
i=0

QiQπ(Pd)i+1 +

∞∑
i=0

(Qd)i+1PiPπ.

We obtain the main result in this section, which is an extension of [18, Theorem 2.3] for block-operator
matrices.

Theorem 2.5. Let E,F,EFπ ∈ B(X)d. If EFEFπ = 0 and F2EFπ = 0, then M =
(

E I
F 0

)
has g-Drazin inverse. In

this case,

Md =


ε [ζ − (αζ + βθ)]δd +

∞∑
i=1

[ζi(1 − γζ) − εi(αζ + βθ)](δd)i+1

η [θ + (1 − γζ)]δd +
∞∑

i=1
[θi(1 − γζ) − ηi(αζ + βθ)](δd)i+1

,
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where
α = EFπ, β = FπEFFd + Fπ, γ = FFπ,
δd = Fd + FFd

− FFdEFd;

ε = (αΛ + Γ)Λ + (αΣ + ∆)Γ,
ζ = (αΛ + Γ)Σβ + (αΣ + ∆)∆β,
η = γΛ2 + γΣΓ,
θ = γΛΣβ + γΣ∆β;

εn+1 = αεn + βηn, ε1 = ε,
ζn+1 = αζn + βθn, ζ1 = ζ,
ηn+1 = γεn, η1 = η,
θn+1 = γθn, θ1 = θ;

Λ =
∞∑

i=0
[I + F(FπEdFπ)2](FπEdFπ)2i+1Fi,

Σ =
∞∑

i=0
[I + F(FπEdFπ)2](FπEdFπ)2i+2Fi,

Γ =
∞∑

i=0
F(FπEdFπ)2i+2FiFπ,

∆ =
∞∑

i=0
F(FπEdFπ)2i+3FiFπ.

Proof. Let p =
(

Fπ 0
0 0

)
. Then M =

(
α β
γ δ

)
p
,where

α =

(
EFπ 0

0 0

)
, β =

(
FπEFFd Fπ

0 0

)
,

γ =

(
0 0

FFπ 0

)
, δ =

(
FFdE FFd

F2Fd 0

)
.

Then M = P + Q, where P =
(

0 0
0 δ

)
,Q =

(
α β
γ 0

)
. Since F2EFπ = 0, we have FFdEFπ = (Fd)2F2EFπ = 0.

By hypothesis, E,EFπ have g-Drazin inverses. In view of [18, Lemma 2.2], FFdE has g-Drazin inverse and
(FFdE)d = FFdEd. By using [18, Lemma 2.2] again, EFπ has g-Drazin inverse and (EFπ)d = EdFπ. Moreover,
FFdEdFπ = FFd(EFπ)d = (Fd)2F2EFπ[(EFπ)d]2 = 0, and then FπEdFπ = EdFπ. Hence, α has g-Drazin inverse

and αd =

(
FπEdFπ 0

0 0

)
, and then

απ = p −
(

EFπ 0
0 0

) (
FπEdFπ 0

0 0

)
=

(
Fπ 0
0 0

)
−

(
FπEFπ 0

0 0

) (
FπEdFπ 0

0 0

)
=

(
Fπ − FπE(FπEdFπ) 0

0 0

)
=

(
Fπ − FπEEdFπ 0

0 0

)
=

(
FπEπFπ 0

0 0

)
.

One easily checks that βγ =
(

FFπ 0
0 0

)
, (βγ)d = 0. Obviously, we have

δd =

(
0 Fd

FFd
−FFdEFd

)
, δπ =

(
FFd 0

0 I

)
−

(
FFdE FFd

F2Fd 0

) (
0 Fd

FFd
−FFdEFd

)
=

(
0 0
0 Fπ

)
;

Pd =

(
0 0
0 δd

)
,Pπ =

(
p 0
0 pπ

)
−

(
0 0
0 δ

) (
0 0
0 δd

)
=

(
p 0
0 δπ

)
,PiPπ = 0 (i ≥ 1).
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We compute that α(βγ)α = 0 and (βγ)2α = 0.According to Theorem 2.3,
(
α 1
βγ 0

)
has g-Drazin inverse and(

α 1
βγ 0

)d

=

(
Λ Σ
Γ ∆

)
,where

Λ = α(βγ)d + βγααπ[(βγ)d]2
− α2αd(βγ)d

− βγαd(βγ)d +
∞∑

i=0
[I + βγ(αd)2](αd)2i+1(βγ)i(βγ)π

+
∞∑

i=0
α2i+3απ[(βγ)d]i+2 +

∞∑
i=1
βγα2i+1απ[(βγ)d]i+2,

Σ = (βγ)d
− βγααd[(βγ)d]2

− ααd(βγ)d
− βγ(αd)2(βγ)d +

∞∑
i=0

[1 + βγ(αd)2](αd)2i+2(βγ)i(βγ)π

+
∞∑

i=0
α2i+2απ[(βγ)d]i+2 +

∞∑
i=1
βγα2iαπ[(βγ)d]i+2,

Γ = βγ(βγ)d
− βγααd(βγ)d +

∞∑
i=0
βγ(αd)2i+2(βγ)i(βγ)π +

∞∑
i=0
βγα2i+2απ[(βγ)d]i+2,

∆ = −βγαd(βγ)d +
∞∑

i=0
βγ(αd)2i+3(βγ)i(βγ)π +

∞∑
i=0
βγα2i+1απ[(βγ)d]i+2.

Thus, we derive

Λ =
∞∑

i=0
[1 + βγ(αd)2](αd)2i+1(βγ)i,

Σ =
∞∑

i=0
[1 + βγ(αd)2](αd)2i+2(βγ)i,

Γ =
∞∑

i=0
βγ(αd)2i+2(βγ)i,

∆ =
∞∑

i=0
βγ(αd)2i+3(βγ)i.

We compute that

(1 + βγ(αd)2)(αd)2i+1(βγ)i

=

(
I + F(FπEdFπ)2 0

0 I

) (
(FπEdFπ)2i+1 0

0 0

) (
FiFπ 0

0 0

)
=

(
[I + F(FπEdFπ)2](FπEdFπ)2i+1Fi 0

0 0

)
,

(1 + βγ(αd)2)(αd)2i+2(βγ)i

=

(
I + F(FπEdFπ)2 0

0 I

) (
(FπEdFπ)2i+2 0

0 0

) (
FiFπ 0

0 0

)
=

(
[I + F(FπEdFπ)2](FπEdFπ)2i+2Fi 0

0 0

)
,

βγ(αd)2i+2(βγ)i

=

(
FFπ 0

0 0

) (
(FπEdFπ)2i+2 0

0 0

) (
FiFπ 0

0 0

)
=

(
F(FπEdFπ)2i+2FiFπ 0

0 0

)
,

βγ(αd)2i+3(βγ)i

=

(
FFπ 0

0 0

) (
(FπEdFπ)2i+3 0

0 0

) (
FiFπ 0

0 0

)
=

(
F(FπEdFπ)2i+3FiFπ 0

0 0

)
.
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Then we have

Λ =
∞∑

i=0
[I + F(FπEdFπ)2](FπEdFπ)2i+1Fi,

Σ =
∞∑

i=0
[I + F(FπEdFπ)2](FπEdFπ)2i+2Fi,

Γ =
∞∑

i=0
F(FπEdFπ)2i+2FiFπ,

∆ =
∞∑

i=0
F(FπEdFπ)2i+3FiFπ.

We easily verify that (
α β
γ 0

)
=

(
α 1
γ 0

) (
1 0
0 β

)
,(

α 1
βγ 0

)
=

(
1 0
0 β

) (
α 1
γ 0

)
.

Therefore it follows by Cline’s formula (see [12, Theorem 2.2]) that

Qd =

(
α 1
γ 0

) (
Λ Σ
Γ ∆

)2 (
1 0
0 β

)
=

(
αΛ + Γ αΣ + ∆
γΛ γΣ

) (
Λ Σβ
Γ ∆β

)
=

(
ε ζ
η θ

)
,

where
ε = (αΛ + Γ)Λ + (αΣ + ∆)Γ,
ζ = (αΛ + Γ)Σβ + (αΣ + ∆)∆β,
η = γΛ2 + γΣΓ,
θ = γΛΣβ + γΣ∆β.

Moreover, we have

Qπ =

(
p 0
0 1 − p

)
−

(
α β
γ 0

) (
ε ζ
η θ

)
=

(
p − αε − βη −αζ − βθ
−γε 1 − p − γζ

)
.

Write Qn =

(
εn ζn
ηn θn

)
. Then

εn+1 = αεn + βηn,
ζn+1 = αζn + βθn,
ηn+1 = γεn,
θn+1 = γθn.

QiQπ(Pd)i+1

=

(
εi ζi
ηi θi

) (
p − αε − βη −αζ − βθ
−γε 1 − p − γζ

) (
0 0
0 (δd)i+1

)
=

(
εi ζi
ηi θi

) (
0 −(αζ + βθ)(δd)i+1

0 (1 − p − γζ)(δd)i+1

)
=

(
0 ζi(1 − p − γζ)(δd)i+1

− εi(αζ + βθ)(δd)i+1

0 θi(1 − p − γζ)(δd)i+1
− ηi(αζ + βθ)(δd)i+1

)
.
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Since δγ = 0, we have PQ = 0. In light of Lemma 2.4,

Md =
∞∑

i=0
QiQπ(Pd)i+1 +

∞∑
i=0

(Qd)i+1PiPπ

= QdPπ +QπPd +
∞∑

i=1
QiQπ(Pd)i+1

=

(
ε ζδd

η θδd

)
+

(
0 −(αζ + βθ)δd

0 (1 − p − γζ)δd

)

+


0

∞∑
i=1

[ζi(1 − p − γζ) − εi(αζ + βθ)](δd)i+1

0
∞∑

i=1
[θi(1 − p − γζ) − ηi(αζ + βθ)](δd)i+1


=


ε [ζ − (αζ + βθ)]δd +

∞∑
i=1

[ζi(1 − γζ) − εi(αζ + βθ)](δd)i+1

η [θ + (1 − γζ)]δd +
∞∑

i=1
[θi(1 − γζ) − ηi(αζ + βθ)](δd)i+1

 .
as required.

Corollary 2.6. Let E,F,EFπ ∈ B(X)d. If EFEFπ = 0 and F2EFπ = 0, then M =
(

E F
I 0

)
has g-Drazin inverse. In

this case,

Md =

(
E I
I 0

) 
ε [ζ − (αζ + βθ)]δd +

∞∑
i=1

[ζi(1 − γζ) − εi(αζ + βθ)](δd)i+1

η [θ + (1 − γζ)]δd +
∞∑

i=1
[θi(1 − γζ) − ηi(αζ + βθ)](δd)i+1


2 (

I 0
0 F

)
,

where α, β, γ, δ, ε, ζ, η, θ, εn, ζn, ηn and θn are given as in Theorem 2.5.

Proof. In view of Theorem 2.5, the block operator matrix
(

E I
F 0

)
has g-Drazin inverse. We easily see that

(
E I
F 0

)
=

(
I 0
0 F

) (
E I
I 0

)
,

it follows by Cline’s formula that
(

E I
I 0

) (
I 0
0 F

)
has g-Drazin inverse. That is,

(
E F
I 0

)
has g-Drazin

inverse. Moreover, we have (
E F
I 0

)d

=

(
E I
I 0

)
[
(

E I
F 0

)d

]2

(
I 0
0 F

)
,

and so the proof is completed by Theorem 2.5.

We note that the corresponding facts of the preceding lemmas in this section are valid for Drazin

inverse. Construct P,Q,Λ,Σ,Γ,∆ as in Theorem 2.5. Then MD = QDPπ +QπPD +
∞∑

i=1
QiQπ(PD)i+1. Explicitly,

Q =
(

FπE Fπ

FFπ 0

)
. Since Fm+1Fπ = 0, we see that Λ,Σ,Γ,∆ can be represented as the finite sums. Then by

using the most of the technicalities that occur in the proof of Theorem 2.5, we have
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Theorem 2.7. Let E,F,EFπ ∈ B(X)D. If EFEFπ = 0 and F2EFπ = 0, then M =
(

E I
F 0

)
has Drazin inverse. In

this case,

MD =


ε [ζ − (αζ + βθ)]δD +

k∑
i=1

[ζi(1 − γζ) − εi(αζ + βθ)](δD)i+1

η [θ + (1 − γζ)]δD +
k∑

i=1
[θi(1 − γζ) − ηi(αζ + βθ)](δD)i+1

,
where

α = EFπ, β = FπEFFD + Fπ, γ = FFπ,
δD = FD + FFD

− FFDEFD;

ε = (αΛ + Γ)Λ + (αΣ + ∆)Γ,
ζ = (αΛ + Γ)Σβ + (αΣ + ∆)∆β,
η = γΛ2 + γΣΓ,
θ = γΛΣβ + γΣ∆β;

εn+1 = αεn + βηn, ε1 = ε,
ζn+1 = αζn + βθn, ζ1 = ζ,
ηn+1 = γεn, η1 = η,
θn+1 = γθn, θ1 = θ;

Λ =
m∑

i=0
[I + F(FπEdFπ)2](FπEdFπ)2i+1Fi,

Σ =
m∑

i=0
[I + F(FπEdFπ)2](FπEdFπ)2i+2Fi,

Γ =
m∑

i=0
F(FπEdFπ)2i+2FiFπ,

∆ =
m∑

i=0
F(FπEdFπ)2i+3FiFπ.

where k = ind
(

FπE Fπ

FFπ 0

)
,m = ind(F).

3. Group inverse of anti-triangular block matrices

The aim of this section is to provide necessary and sufficient conditions on E and F so that the block

operator matrix
(

E I
F 0

)
has group inverse. We now derive

Theorem 3.1. Let M =
(

E I
F 0

)
and E,F,EFπ have Drazin inverses. If FEFπ = 0, then the following are equivalent:

(1) M has group inverse.
(2) F has group inverse and EπFπ = 0.

In this case,

M# =

(
EDFπ F# + (EDFπ)2

− EDFπEF#

FF#
−FF#EF#

)
.

Proof. (1)⇒ (2) Write M# =

(
X11 X12
X21 X22

)
. Then MM# =M#M, and so

(
E I
F 0

) (
X11 X12
X21 X22

)
=

(
X11 X12
X21 X22

) (
E I
F 0

)
.



H. Chen, M. Sheibani / Filomat 38:14 (2024), 4973–4990 4982

Then we have
EX11 + X21 = X11E + X12F,

FX12 = X21.

Since MM#M =M, we have
EX11 + X21 = I,

FX11 = 0.

Therefore
F = (FE)X11 + FX21

= (FE)FdFX11 + FX21

= (FEFd)(FX11) + FX21
= F2X12.

In view of [23, Lemma 1.2], F has group inverse.

Let e =
(

FF# 0
0 I

)
. Then M =

(
a b
c d

)
e
,where

a =

(
FF#E FF#

F2F# 0

)
, b =

(
0 0

FFπ 0

)
= 0,

c =

(
FπEFF# Fπ

0 0

)
, d =

(
EFπ 0

0 0

)
.

As in the proof of Theorem 2.5, we prove that (EFπ)D = EDFπ. Then we compute that

a# =

(
0 F#

FF#
−FF#EF#

)
, dD =

(
EDFπ 0

0 0

)
.

Therefore we have

aπ =
(

0 0
0 Fπ

)
, dπ =

(
EπFπ 0

0 0

)
.

In view of [13, Theorem 2.1], we have dπcaπ = 0, and so(
EπFπ 0

0 0

) (
FπEFFD Fπ

0 0

) (
0 0
0 Fπ

)
=

(
0 EπFπ

0 0

)
= 0.

Therefore EπFπ = 0, as required.
(2)⇒ (1) Since EFπ has Drazin inverse and FEFπ = 0, EFπ has g-Drazin inverse and FF#EFπ = F#(FEFπ) =

0. It follows by [18, Lemma 2.2] that FF#E has g-Drazin inverse and (FF#E)d = FF#ED. Then FEDFπ =
F(FF#ED)Fπ = F(FF#E)dFπ = F[(FF#E)d]2(FF#E)Fπ = F[(FF#E)d]2F#(FEFπ) = 0.

Set

N =
(

EDFπ F# + (EDFπ)2
− EDFπEF#

FF#
−FF#EF#

)
.

Then we directly check that

MN =

(
E I
F 0

) (
EDFπ F# + (EDFπ)2

− EDFπEF#

FF#
−FF#EF#

)
=

(
EEDFπ + FF# FF#EF# + EEDFπEDFπ

0 FF#

)
=

(
I EDFπ

0 FF#

)
=

(
EDFπEFπ + FF# EDFπ

FF#EFπ FF#

)
=

(
EDFπ F# + (EDFπ)2

− EDFπEF#

FF#
−FF#EF#

) (
E I
F 0

)
= NM,
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M(1 −MN) =

(
E I
F 0

) (
0 −EDFπ

0 Fπ

)
= 0,

(1 −MN)N

=

(
0 −EDFπ

0 Fπ

) (
EDFπ F# + (EDFπ)2

− EDFπEF#

FF#
−FF#EF#

)
= 0.

Therefore M# = N, as asserted.

Corollary 3.2. Let M =

(
E F
I 0

)
and E,F,EFπ have Drazin inverses. If FEFπ = 0, then the following are

equivalent:

(1) M has group inverse.
(2) F has group inverse and EπFπ = 0.

In this case,

M# =

(
Γ ∆
Λ Ξ

)
,

where
Γ = FπEDFπ,
∆ = I − FπEDFπE,
Λ = F# + (EDFπ)2

− EDFπEF#,
Ξ = EDFπ − F#E − (EDFπ)2E + EDFπEF#E,

Proof. Let N =
(

E I
F 0

)
. Then

M = P−1NP,P =
(

0 I
I −E

)
.

Therefore M has group inverse if and only if so does N, if and only if F has group inverse and EπFπ = 0, by
Theorem 3.1. In this case,

M# = P−1N#P =
(

E I
I 0

)
N#

(
0 I
I −E

)
=

(
I FπEDFπ

EDFπ F# + (EDFπ)2
− EDFπEF#

) (
0 I
I −E

)
=

(
Γ ∆
Λ Ξ

)
,

where
Γ = FπEDFπ,
∆ = I − FπEDFπE,
Λ = F# + (EDFπ)2

− EDFπEF#,
Ξ = EDFπ − F#E − (EDFπ)2E + EDFπEF#E,

as asserted.

Theorem 3.3. Let M =
(

E F
I 0

)
and E,F,EFπ have Drazin inverse. If FπEF = 0, then the following are equivalent:

(1) M has group inverse.
(2) F has group inverse and FπEπ = 0.
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In this case,

M# =

(
FπED FF#

F# + (FπED)2
− F#EFπED

−F#EFF#

)
.

Proof. We consider the transpose MT =

(
ET I
FT 0

)
of M. Then M has group inverse if and only if so does

MT. Applying Theorem 3.1, M has group inverse if and only if FT has group inverse and (ET)π(FT)π = 0,
i.e., F has group inverse and FπEπ = 0. In this case, we have

M# = [(MT)#]T =

(
(ET)D(FT)π (FT)# + ((ET)D(FT)π)2

− (ET)D(FT)πET(FT)#

FT(FT)#
−FT(FT)#ET(FT)#

)T

,

as desired.

Corollary 3.4. Let M =
(

E I
F 0

)
and E,F have Drazin inverses. If FπEF = 0, then the following are equivalent:

(1) M has group inverse.
(2) F has group inverse and FπEπ = 0.

In this case,

M# =

(
Γ ∆
Λ Ξ

)
,

where
Γ = FπEDFπ,
∆ = F# + (FπED)2

− F#EFπED,
Λ = I − EFπEDFπ,
Ξ = FπED

− EF#
− E(FπED)2 + EF#EFπED,

Proof. Let N =
(

E F
I 0

)
. Then

M = P−1NP,P =
(

E I
I 0

)
.

In view of Theorem 3.3,

N# =

(
FπED FF#

F# + (FπED)2
− F#EFπED

−F#EFF#

)
.

Hence, M has group inverse if and only if so does N, if and only if F has group inverse and FπEπ = 0, by
Theorem 3.3. Moreover, we have

M# = P−1N#P =
(

0 I
I −E

)
N#

(
E I
I 0

)
=

(
Γ ∆
Λ Ξ

)
,

where
Γ = FπEDFπ,
∆ = F# + (FπED)2

− F#EFπED,
Λ = I − EFπEDFπ,
Ξ = FπED

− EF#
− E(FπED)2 + EF#EFπED,

as asserted.

We come now to extend [23, Theorem 2.10] to wider cases as follows.
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Corollary 3.5. Let M =
(

E F
I 0

)
and E,F,EFπ have Drazin inverses. If EF = λFE(λ ∈ C) or EF2 = FEF, then the

following are equivalent:

(1) M has group inverse.
(2) F have group inverse and FπEπ = 0.

In this case,

M# =

(
FπED FF#

F# + (FπED)2
− F#EFπED

−F#EFF#

)
.

Proof. If EF = λFE(λ ∈ C), then FπEF = λFπFE = 0. If EF2 = FEF, then FπEF = FπEF2F# = FπFEFF# = 0. This
completes the proof by Theorem 3.3.

4. Block-operator matrices with identical subblocks

In [4], Cao et al. considered the group inverse for block matrices with identical subblocks over a right
Ore domain. In this section we are concerned with the group inverse for block-operator matrices with
identical subblocks over a Banach space.

Theorem 4.1. Let M =
(

E F
F 0

)
and E,EFπ have Drazin inverse and F has group inverse. If FEFπ = 0, then the

following are equivalent:

(1) M has group inverse.
(2) EEπFπ = 0.

In this case,

M# =

(
Γ ∆
Λ Ξ

)
,

where
Γ = [I − EπFπ][EDFπ + EπFπE(F#)2] + EπFπE(F#)2,
∆ = [I − EπFπ][F#

− EπFπE(F#)2EF#
− EDFπEF#]

− EπFπE(F#)2EF#,
Λ = F[EDFπ + EπFπE(F#)2]2 + F#

− FEπFπ[E(F#)2]2

− FEDFπE(F#)2,
Ξ = [FEDFπ + FEπFπE(F#)2][F#

− EπFπE(F#)2EF#

− EDFπEF#] − [F#
− FEπFπE(F#)2E(F#)2

− FEDFπE(F#)2]EF#.

Proof. (1)⇒ (2) Obviously, we have

M =
(

FπE F
F 0

) (
I 0

F#E I

)
,

M2 =

(
EFπE + F2 EF

0 F2

) (
I 0

F#E I

)
.

Write M# =

(
X11 X12
X21 X22

)
. Then M#M2 =M, and so

(
X11 X12
X21 X22

) (
EFπE + F2 EF

0 F2

)
=

(
FπE F

F 0

)
.
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Therefore
X11EFπE + X11F2 = FπE,

hence,
X11EFπEFπ + X11F2Fπ = FπEFπ.

It follows that
X11(EFπ)2 = FπEFπ = EFπ.

In light of [23, Lemma 1.2], EFπ has group inverse. By virtue of [18, Lemma 2.2], (EFπ)# = EDFπ. Therefore

EFπ = (EFπ)#(EFπ)2 = EDFπEFπEFπ = ED(I − FDF)EFπEFπ

= EDEFπEFπ = EDE(I − FDF)EFπ = EDE2Fπ

= E(EED)Fπ = E(I − Eπ)Fπ;

hence, EEπFπ = 0.
(2) ⇒ (1) Since EEπFπ = 0, we have EDFπ(EFπ)2 = E2EDFπ = E(1 − Eπ)Fπ = EFπ, and so EFπ has group

inverse by [23, Lemma 1.2].

Let N =
(

E I
F2 0

)
. Choose e =

(
FF# 0

0 I

)
. Then

a =
(

FF#E FF#

F2 0

)
, c =

(
FπEFF# Fπ

0 0

)
, d =

(
EFπ 0

0 0

)
and b = 0. Then

N =
(

a 0
c d

)
e
.

Moreover, we have

a# =

(
0 (F#)2

FF#
−FF#E(F#)2

)
, d# =

(
EDFπ 0

0 0

)
.

We compute that

aπ =
(

0 0
0 Fπ

)
, dπ =

(
EπFπ 0

0 I

)
.

Obviously, aπcdπ = 0. In light of [13, Theorem 2.1], N has group inverse. Moreover, we have

N# =

(
a# 0
z d#

)
,

where
z = dπc(a#)2 + (d#)2caπ − d#ca#.

Clearly,

dπc(a#)2 =

(
EπFπE(F#)2

−EπFπE(F#)2E(F#)2

0 0

)
,

(d#)2caπ =

(
0 EDFπEDFπ

0 0

)
, d#ca# =

(
0 EDFπE(F#)2

0 0

)
.

Hence we compute that z = (zi j), where

z11 = EπFπE(F#)2,
z12 = EDFπEDFπ − EπFπE(F#)2E(F#)2

− EDFπE(F#)2,
z21 = 0, z22 = 0.
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Therefore

N# =

(
α β
γ δ

)
,

where
α = EDFπ + EπFπE(F#)2,
β = (F#)2 + EDFπEDFπ − EπFπE(F#)2E(F#)2

− EDFπE(F#)2,
γ = FF#,
δ = −FF#E(F#)2.

Hence, we have
NN# = N#N

=

(
E I
F2 0

) (
α β
γ δ

)
=

(
α β
γ δ

) (
E I
F2 0

)
=

(
EEDFπ + FF# α

F2α FF#

)
.

Thus we have

Nπ =
(

EπFπ −α
−F2α Fπ

)
.

Obviously, one checks that

M =
(

E I
F 0

) (
I 0
0 F

)
,

N =
(

I 0
0 F

) (
E I
F 0

)
.

By virtue of Cline’s formula, M has Drazin inverse. We see that(
E I
F 0

)
Nπ

(
I 0
0 F

)
=

(
E I
F 0

) (
EπFπ −α
−F2α Fπ

) (
I 0
0 F

)
=

(
−F2α −EαF

FEπFπ −FαF

)
.

We directly compute that

F2α = F2EDFπ + F2EπFπE(F#)2 = F2EFπ(EDFπ)2 + F2(EFπ)(EDFπ)E(F#)2 = 0,
EαF = EEπFπEF# = 0,

FEπFπ = FEDEFπ = F(EDFπ)(EFπ) = F(EFπ)(EDFπ) = 0,
FαF = FEπFπEF# = F(EDFπ)(EFπ)EF# = F(EFπ)(EDFπ)EF# = 0.

Hence M =MMDM, i.e., M has group inverse. Thus we have M# =MD.
Moreover, we have

MD =

(
E I
F 0

)
(N#)2

(
I 0
0 F

)
=

(
E I
F 0

) (
α β
γ δ

)2 (
I 0
0 F

)
=

(
Γ ∆
Λ Ξ

)
,
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where
Γ = (Eα + γ)α + (Eβ + δ)γ,
∆ = (Eα + γ)βF + (Eβ + δ)δF,
Λ = F(α2 + βγ),
Ξ = F(αβ + βδ)F.

Therefore we complete the proof by the direct computation.

Corollary 4.2. Let M =
(

E F
F 0

)
and E,EFπ have Drazin inverse and F has group inverse. If FπEF = 0, then the

following are equivalent:

(1) M has group inverse.
(2) FπEπE = 0.

In this case,

M# =

(
Γ ∆
Λ Ξ

)
,

where
Γ = [FπED + (F#)2EFπEπ][I − FπEπ] + (F#)2EFπEπ,
∆ = [F#

− F#E(F#)2EFπEπ − F#EFπED][I − FπEπ] − F#E(F#)2EFπEπ,
Λ = [FπED + (F#)2EFπEπ]2F + F#

− [(F#)2E]2FπEπF − (F#)2EFπEDF,
Ξ = [F#

− F#E(F#)2EFπEπ − F#EFπED][FπEDF + (F#)2EFπEπF] − F#E[F#

− (F#)2E(F#)2EFπEπF − (F#)2EFπEDF].

Proof. By virtue of Cline’s formula, FπE has Drazin inverse. Then the proof is complete by applying

Theorem 4.1 to the transpose MT =

(
ET FT

FT 0

)
.

Corollary 4.3. Let M =
(

E F
F 0

)
and E,F have group inverse, EFπ has Drazin inverse. If FπEF = 0, then M has

group inverse. In this case,

M# =

(
Γ ∆
Λ Ξ

)
,

where

Γ = [I − EπFπ][E#Fπ + EπFπE(F#)2] + EπFπE(F#)2,
∆ = [I − EπFπ][F#

− EπFπE(F#)2EF#
− E#FπEF#] − EπFπE(F#)2EF#,

Λ = F[E#Fπ + EπFπE(F#)2]2 + F#
− FEπFπ[E(F#)2]2

− FE#FπE(F#)2,
Ξ = [FE#Fπ + FEπFπE(F#)2][F#

− EπFπE(F#)2EF#
− E#FπEF#] − [F#

− FEπFπE(F#)2E(F#)2

− FE#FπE(F#)2]EF#.

Proof. Since E has group inverse, we see that EEπ = 0, and so EEπFπ = 0. In light of Theorem 4.1, M has
group inverse. Therefore we obtain the representation of M# by the formula in Theorem 4.1.

As an immediate consequence of Corollary 4.3, we have

Corollary 4.4. Let M =
(

E F
F 0

)
and E,F have group inverse, EFπ has Drazin inverse. If EF = λFE (λ ∈ C) or

EF2 = FEF, then M has group inverse. In this case,

M# =

(
Γ ∆
Λ Ξ

)
,
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where

Γ = [I − EπFπ][E#Fπ + EπFπE(F#)2] + EπFπE(F#)2,
∆ = [I − EπFπ][F#

− EπFπE(F#)2EF#
− E#FπEF#] − EπFπE(F#)2EF#,

Λ = F[E#Fπ + EπFπE(F#)2]2 + F#
− FEπFπ[E(F#)2]2

− FE#FπE(F#)2,
Ξ = [FE#Fπ + FEπFπE(F#)2][F#

− EπFπE(F#)2EF#
− E#FπEF#] − [F#

− FEπFπE(F#)2E(F#)2

− FE#FπE(F#)2]EF#.

Proof. As in proof of Corollary 3.5, we obtain the result by Corollary 4.3.

We illustrate Theorem 4.1 by a numerical example.

Example 4.5. Let M =
(

E F
F 0

)
∈ C6×6, where E =

 1 2 0
0 −1 0
0 0 0

 ,F =
 i i 0

0 0 0
0 0 1

 ∈ C3×3, i2 = −1. Then

M# =



0 1 0 −i −i 0
0 −1 0 0 0 0
0 0 0 0 0 1
−i −i 0 1 1 0
0 0 0 0 0 0
0 0 1 0 0 0


.

Proof. Obviously, we have

E# =

 1 2 0
0 −1 0
0 0 0

 ,Eπ =
 0 0 0

0 0 0
0 0 1

 ; F# =

 −i −i 0
0 0 0
0 0 1

 ,Fπ =
 0 −1 0

0 1 0
0 0 0

 .
Hence we check that FEFπ = 0,EEπFπ = 0. Construct Γ,∆,Λ and Ξ as in Theorem 4.1. Then we compute
that

Γ =

 0 1 0
0 −1 0
0 0 0

 ,∆ =
 −i −i 0

0 0 0
0 0 1

 ,Λ =
 −i −i 0

0 0 0
0 0 1

 ,Ξ =
 1 1 0

0 0 0
0 0 0

 .
This completes the proof by Theorem 4.1.
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