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g-Drazin inverse and group inverse for the anti-triangular
block-operator matrices
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YFarzanegan Campus, Semnan University, Semnan, Iran

Abstract. We present the generalized Drazin inverse for certain anti-triangular operator matrices. Let
E,FEF" € B(X)'. If EFEF® = 0 and F2EF" = 0, we prove that M = IE: (I) has g-Drazin inverse and
its explicit representation is established. Moreover, necessary and sufficient conditions are given for the
existence of the group inverse of M under the condition FEF™ = 0. The group inverse for the anti-triangular
block-operator matrices with two identical subblocks is thereby investigated. These extend the results of

Zhang and Mosi¢ (Filomat, 32(2018), 5907-5917) and Zou, Chen and Mosi¢ (Studia Scient. Math. Hungar.,
54(2017), 489-508).

1. Introduction

Let B(X) be a Banach algebra of all bounded linear operators over a Banach space X. An operator T
in B(X) has generalized Drazin inverse (i.e., g-Drazin inverse) provided that there exists some S € B(X)
such that ST = TS,S = STS, T — T?S is quasinilpotent. Such S is unique, if it exists, and we denote it by
T?. If we replace the quasinilpotent by nilpotent in B(X), S is called the Drazin inverse of T, denoted by
TP. Equivalently, an operator T in B(X) has Drazin inverse T? if and only if TT” = TPT, TP = TPTTP, T" =
T"1TP for some n € N. Such smallest 7 is called the Drazin index of T and denote it by ind(T).

Let E,F € B(X) and I be the identity operator over the Banach space X. It is attractive to investigate

the g-Drazin (Drazin) inverse of the block-operator matrix M = ( 11:2 é ) It was firstly posed by Campbell

that the solutions to singular systems of differential equations are determined by the Drazin inverse of the
preceding operator matrix M (see [3]).

1
. e . [ E F}\. (0 I E F\([0 I .
Since M is similar to the matrix ( I 0 ), ie, M = ( I —F )( I 0 )( I —F ) , 1t attracts many
authors to investigate the g-Drazin (Drazin) inverse of M or 1(;

~ ™

. In 2005, Castro-Gonzélez and Dopazo
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gave the representations of the Drazin inverse for a class of operator matrix ( II: (I) ) (see [6, Theorem 3.3]).

I 0
EF = FE (see [2, Theorem 3.2]). In 2016, Zhang investigated the g-Drazin inverse of M under the conditions
FEF™ = 0,F"FE = 0 and F"EF? = 0, EFF™ = 0 (see [17, Theorem 2.6, Theorem 2.8]). In [18, Theorem 2.3],
Zhang and Mosi¢ considered the g-Drazin inverse of M under the wider condition FEF™ = 0. We refer the
E F
I 0Ff

The motivation of this paper is to further study the generalized inverse of the block-operator matrix
M under the conditions that are wider than FEF™ = 0. In Section 2, we present the g-Drazin inverse for
the operator matrix M under the condition EFEF™ = 0 and F2EF™ = 0, which extend [18, Theorem 2.3]
to a wider case. As the Drazin and g-Drazin inverses coincide with each other for a complex matrix, our
results indeed provide algebraic method to find all function solutions of a new class of singular differential
equations posed by Campbell (see [3]).

If T has Drazin index 1, T is said to have group inverse T”, and denote its group inverse by T*. The
group inverse of the block-operator matrices over a Banach space has interesting applications of resistance
distances to the bipartiteness of graphs (see [16]). Many authors have studied such problems from many
different views, e.g., [1,4, 5,7, 14, 15, 22].

In [23, Theorem 2.10], Zou et al. studied the group inverse for M under the condition EF = 0. In Section
3, we present necessary and sufficient condition on the existence of the group inverse and its representation
for the block operator matrix M under the condition FEF™ = 0.

In [5, Theorem 5], Cao et al. considered the group inverse for a block matrix with identical subblocks
over a right Ore domain. Finally, in the last section, we further investigate the necessary and sufficient

In 2011, Bu et al. investigate the Drazin inverse of the operator matrix ( EF ) under the condition

reader to [19, 20, 22] for further recent progresses on the g-Drazin (Drazin) inverse of M or

F 0
subblocks. The explicit formula of its group inverse is thereby given under the same condition FEF™ = 0.
Throughout this paper, C™" denotes the Banach algebra of all nx 1 complex matrices. Let T € B(X)?. We
use T to stand for the spectral idempotent operator I — TT?. Let p? = p, X € B(X). Then X = pXp + pXp™ +
pXp  pXp" ) '
PiXp piXp* |

condition for the existence of the group inverse of a 2 X 2 block-operator matrix ( Er ) with identical

p"Xp + p"Xp™, and we write X as a Pierce representation given by the matrix form X =

2. g-Drazin inverse of anti-triangular block matrices

The aim of this section is to investigate the g-Drazin invertibility of the block-operator matrix M =
E I . o o . .
( r o ) The representation of the g-Drazin inverse of M is given under some new kind of conditions. We
begin with

Lemma 2.1. ([9, Theorem 5.1]) Let p*> = p € B(X) and X = ( 40 ) , where A, B € B(X)? and C € B(X). Then
p

C B
d d _ Ad 0 _w d\i+2 iAT ooin d\i+2 d d
X € B(X)* and X* = 7 Bl ,whereZ—Z%)(B) CA'A +%BB C(A%)*= — B"CA*“.
4 1= 1=l
Lemma 2.2. ([11, Theorem 4.2.2]) Let P,Q € B(X)?. If PQP = 0 and Q*P = 0, then P + Q € B(X)". In this case,
(P+Q) = T.(P+ QUPY2QIQ™ + T, PHPHQ*2 + T QPPT(QY)* — (P + QPIQH.
i=0 i=0 i=0

Using the previous lemmas, We now investigate the g-Drazin inverse of the block-operator matrix M.
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Theorem 2.3. Let E,F € B(X)". If EFE = 0 and F2E = 0, then M = ( ? 0

) has g-Drazin inverse. In this case,

Mdz( /1} i ),where

EEan _ PEdFd + Z[I + F(Ed)Z](Ed)2i+lFiFn + Z E2i+3En(Fd)i+2 + Z FE2i+1En(Fd)i+2l

A =
i=0 o i=0 o i=0 o
Yy = _EEdFd _F(Ed)zl:d + Z[I+F(Ed)2](Ed)2i+2FiFn + Z E2i+2En(Fd)i+2 + Z FEZiEn(Fd)HZ/
i=0 i=0 i=0
r = FEnPd + Z F(Ed)2i+21:i1:n + Z FE2i+2En(Fd)i+2,
i=0 i=0
A = _FEdFd + Z F(Ed)2i+31:i1:n + Z FE2i+1E7T(Fd)i+2'
i=0 i=0
Proof. Let
E? E F 0
P‘( 0 0 )’Q_(FE F)'
2
Then M? = ( EFEF l]f: ) =P + Q. Using Lemma 2.1, we have

Moo\ o0
Qd :( FE(Fd)2 Pd )/Q :( _FEFd E™ )

(EY? (B

pr={ B "E' ) One casily checks that
0 0 , = O . neeaSIYC ecKs a

Likewise, we obtain P9 = ( I

E°F EF \( E* E\_( E2FE? EPFE
PQP‘(O 0)(0 o)‘ 0o 0 )‘O'
E o0 PE PE
2 — — —
Qer = (PE F)( 0 0 )‘(FEPEZ FEPE)_O'

In light of Lemma 2.2, M? has g-Drazin inverse, and so M has g-Drazin inverse. In this case,
Md — M(MZ)d — Z MS(Pd)i+2QiQn + Z MPi+1pn(Qd)i+2 + Z MQpipn(Qd)HZ —MSPde.
i=0 i=0 i=0

We compute that

M3(Pd)i+2QiQn
C(E I (@& &P\ FE o[ FF o0
_(F o)( 0 0 ) (PEF ~FEF? F“)
[ BB+EF+FE E2+F \[ (E92+4 (E%)2+5 F 0 r0
- FE*+F*  FE 0 0 FEF-! F )( ~FEF? F* )
(Ed)2i+1 + F(Ed)2i+3 (Ed)2i+2 + F(Ed)2i+4 Fipn 0
= F(Ed)2i+2 F(Ed)2i+3 FEFi—an FiFn )

[I+F(Ed)2](Ed)2i+1FiFn [I+F(Ed)2](Ed)2i+2FiFn )
F(Ed)21'+21:i1:n F(Ed)21'+31:i1:n (l 2 1)/
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M3(Pd)2Qn
E 1V @EY €V FF o
F O 0 0 —-FEF? F~™
_ ( EB+EF+FE E?>+F \[ (E%* (Ed)5 F™ 0
- FE? + F? FE 0 —FEF? F©
E? + F(EY)?® (E%)? + F(EY)*
F(E%)? F(E%)? —FEFd
[I + F(EY)2EYFIF™  [I + F(E%)?] (Ed)ZF”
F(Ed)21:n F(Ed)31:'77 ’
MPi+1 pn(Qd)i+2 ’ ’
_(E 1\(E E\"[E* -E oo \"
“\F o 0 0 0 I FE(F%)? F¢

E2i+3En _E2i+3Ed + E2i+2 (Fd)i+2 0
FE2i+2En _FE2i+2Ed+FE2i+1 )( FE(Fd)H—S (Fd)i+2
E2i+3En(Fd)i+2 E2i+2En(Pd)i+2

( FE2i+2En(Fd)i+2 FE2i+1En(Fd)i+2 )/

MQP™(Q%)?

E I F 0)\(E" —Ed)( (F9)? 0 )
F OJ\FE F 0 I FE(F)3  (F4)?
( EFE™(F%)? + FEE™(F%)?2 F? — FEE4(F?)?

FF4 0 ’
MQPiPn(Qd)Hz ' '
EF+FE F\[ E> E\/(E* -E Moo \"
P2 0 0 0 0 I FE(F?? F?
2i+1 o pd\i+2 2ir(pd\i+2
_ (PE E™(F4)*2  FE%E7(F?) )(1.21)’

0 0
M3Pde
E’+EF+FE E?>+F \( (E)2F* (E%)*F )
FE2 + P2 FE 0 0
[ B?E'F? + FEFY  EE?F? + F(E?)*F¢ )
- FEE?F¢ FEAF?

Therefore M* = ( /1} i ), where A, L, T, A are as in the preceding stating. This completes the proof. [

Lemma 2.4. ([10, Theorem 2.3]) Let P,Q € B(X)". If PQ = 0, then P + Q € B(X)". In this case,
(P + Q)d — Z QiQn(Pd)i+1 + Z(Qd)i+1pipn'
i=0 i=0

We obtain the main result in this section, which is an extension of [18, Theorem 2.3] for block-operator
matrices.

Theorem 2.5. Let E,F,EF™ € B(X)?. If EFEF™ = 0 and F?EF™ = 0, then M = ( 11:3 (I) ) has g-Drazin inverse. In
this case,

e [C—(aC+poys’ + fl [G(1 - yO) - ei(aC + BOYI@)™!

Md = 00
n o [0+1 -yl + ;1[91‘(1 = 70) = mi(al + BOYI(&)*!
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where
a = EF",p=F'EFF!+F",y=FF7,
o4 = P!+ FF? - FFEF?;
e = (@aA+D)A+ (aZ+ AT,
C = (@A+D)IB+ (al + A)AB,
n = yA’2+yIl,
0 = yALB+yLZAB;
Enpl = A&y + PNy, €1 =€,

Cl’l+1 = aCn + ﬁgn/ Cl = C/

T]l’l+1 = Vgn/ Th = T]/
Ons1 = 7/9n, 0, =0;

Z[I+F(FwEan)Z](FnEdPn)2i+lFi,
i=0
Yy = Z[I_l_F(FnEdl:n)Z](FnEdPn)2i+2Fil
i=0

(o)

>
Il

T — Z F(FnEdPn)ZiJrZFiFn,
i=0
A = ZF(FnEan)ZH?’FiFT(.
i=0
TU
Proof. Letp=(% 8 ).ThenM=(;( g ) , where
P
_ ([ EF* 0 _( FFEFF? F™
=19 off=l 0o o)
B 0 0 ,_ FFE FF¢
s Fre 0 ))°T\ PPFF 0 |

4977

Then M = P + Q, where P = ( 00 ),Q = ( @ p ) Since F?EF™ = 0, we have FF?EF™ = (F%)?F2EF™ = 0.

0 6 y 0

By hypothesis, E, EF™ have g-Drazin inverses. In view of [18, Lemma 2.2], FFE has g-Drazin inverse and
(FFPE)® = FFE?. By using [18, Lemma 2.2] again, EF™ has g-Drazin inverse and (EF™)? = E?F*. Moreover,
FFEF™ = FFYEF™)? = (F'*F2EF™[(EF™)?]* = 0, and then F*E‘F" = E9F". Hence, a has g-Drazin inverse

F'EF™ 0

d_
andaz—( 0 0

), and then

Tt

24

EF” F’TEdF7T 0
0
O

) F”EF“ )( FrE4FT

0 0

nEnFn )

One easily checks that fy = ( 8 ), (By)* = 0. Obviously, we have

0

5 = 0 Fd 5 = FF* 0\ _( FF'E FF? 0
~ \ FFM —FFEF? |'7 T\ 0 I F2F 0 FF?

pi o [0 0\ e (P 0O [0 0)0 0\ (p O
0 o) 0 p" 0os6/)lo & 0 & |

p-
_ (F” F”E(F"EdF”) 0) ( F”EE‘IP" 0

0

Pd

pipt

|

~FFIEF! ) - (

0 0
0 F©

=03>1).

)
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a 1

We compute that a(8y)a = 0 and (8y)*a = 0. According to Theorem 2.3, ( gy 0

(5 &) (2 £
y
A = aBy) + Braa[(By)' ] - a*a(By)! - Byal(By)’ + go [+ By (@Y1 (By) (By)"
+ E) a2 [(By)' ] + i; By Lam[(By)1+2,
L= (B - Braal(By)' P - aa(By)? - By(a’Y(By) + ]é) [1+ By(a)1(a?)>*2(By) (By)"
+ E) a2 [(By)' ] + i§1 Bya®a™[(By)'1*?,
I = Byy) - praa’yy + L By (@) (By) (By)" + L Bya®2am[(By)']+?,

A = —ﬁwd(ﬁy)“g ﬁy(ad)2”3(ﬁy)i(ﬁ7/)"+§ Bya2*lam[(By)1i*2,

) has g-Drazin inverse and

Thus, we derive

A = LI+ B Pl py),
L o= L+ APl e,
r==x By (@) *2(By),
A= LAy

We compute that
(1+ By(a)) @y By | |
I+F(FTEF)? 0 \[ (FFE‘F™)**1 0 \( F'F"
0 I 0 0 0
_ ( [I+ P(FnEdPn)Z](FTLEan)ZHlPi 0 )
B 0 0)

o O
~——

1+ By(@”))a®)**(By) .
I+ F(FnEan)Z 0 (FnEan)2i+2 0 )( FiF™

o O
S—~—

0 I 0 0 0
3 [I+F(FnEan)Z](FnEan)ZHZFi 0
B 0 0)
By’ By
EF™ 0 (FnEan)2i+2 0 FiFn 0
0 0 0 0 )( 0 0 )
F(Fn Ean)2i+2FiFn 0
0 0 )
By(a®)* 3 (By)
FF™ 0 (FnEan)2i+3 0 FIF™ 0
0 0 0 0 )( 0 0 )

F(FnEan)ZHSFiFn 0
0 0 ) '
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Then we have

A = Z[I_l_F(FnEdl:n)Z](FnEdPn)2i+lFil
i=0

Y = Z[I_l_F(FnEdl:n)Z](FnEdPn)2i+2Fil
i=0

o)

r = Z F(FnEdPn)ZHZFiFT(I
i=0

E 1:(1:71 Ean)2i+3Fil:n .
i=0

>
Il

We easily verify that

s (a 1\[(A V(10
e =1, 0) r A (0 8
[ aA+T aZ+A\[ A Ip
N ( YA yL )(F Aﬁ)
_ (¢ C
B (n 9)
where
e = (@A+DA+(aX+A)T,
C = (aA+D)IB+ (@ + A)AB,
n = yA*>+yil,
0 = yALB+yZAB.

Moreover, we have

x p 0 a f £
o = (0 1—P)_(V 0) n
_ (P—ae—ﬁn —aC-p )

B —ye l-p-yC )

Write Q" =( € G ).Then

Mn O
Ent1 = QA&+ PNy,
Cin = aCy+ ﬁenr
M+l = Véns
One1 = Ven-
QiQn(Pd)iH
_ & G p—ae—pn —al-poO 0 0
-\ n 6 —ye 1-p-yC J\ 0 @&)*

tn

j a)(o —mﬁ+ﬁm®%”l)
ni 0 J\ 0 (1—p—y0st)*

G(L—p = YOO = eial + pO)(©*)*!
0 6i(1—p -y - nial + pO)(S*)+!

o

)

|

4979
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Since 6y = 0, we have PQ = 0. In light of Lemma 2.4,

Md

iQiQn(Pd)Hl + i(Qd)iHPipn
den + and + f QiQn(Pd)H—l
i=1

e o 0 —(al+po)
n 65" |\ 0 (1-p-y0u

0 fl [Gi(1 = p = y0) — ei(aC + BOY(O)!

0 fl [0:1 - p - yO) - ni(aC + BOY()!

e [C—(aC+poys’ + fl [Ci(1 - yO) — el + pOYI(5)*!
N[0+ - Y0l + f [0:(1 — y0) — ni(aC + BOY](&)*!

as required. [

Corollary 2.6. Let E,F,EF™ € B(X)d. IfEFEF™ = 0 and F2EF™ =0, then M = ( ]}: 1(; )has g-Drazin inverse. In

this case,

o ' 2

(| e €= @C+poNs + LG - y0) - eilaC + BO)](E)*!
i=1

o)

M = ( E E
! 110+ (= yOl + L0 - yO) — il + O

O~
™ o
N —

where a,B,7,6,€,C,1,0, &n, Cy, Ny and Oy, are given as in Theorem 2.5.

Proof. In view of Theorem 2.5, the block operator matrix ( g (I) ) has g-Drazin inverse. We easily see that
I'Y (I O\(E I
0) \0 F I 0)
EFEY (E I (E ! dlz I 0
I o) \I 0 F 0 0 FJ

and so the proof is completed by Theorem 2.5. [

M

If 1(_2 ) has g-Drazin inverse. That is, ( ]IE 1(; ) has g-Drazin

O~
O~

it follows by Cline’s formula that (

inverse. Moreover, we have

We note that the corresponding facts of the preceding lemmas in this section are valid for Drazin
inverse. Construct P,Q, A, L, T, A as in Theorem 2.5. Then MP = QPP™ + Q"PP + ¥, Q'Q"(PP)"*!. Bxplicitly,

i=1
TT TC
Q= II:ZFE I; ) Since F™*1F™ = 0, we see that A, X, T, A can be represented as the finite sums. Then by

using the most of the technicalities that occur in the proof of Theorem 2.5, we have
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Theorem 2.7. Let E,F,EF™ € B(X)P. If EFEF™ = 0 and F?EF™ = 0, then M = ( l]f: (I) )has Drazin inverse. In
this case,
D < e [C—(aC+pO)IO" + é[Ci(l =70) = ei(aC + BO)I(G°)™ ,
n o [0+@-y0lP + izfi[@i(l =70 = ni(al + BO)I(O°)*!
where

a EF™, = F'EFFP + F*,y = FFT,
5P = FP+FFP — FFPEFY;

e = (@A+D)A+ (aZ + A,

C = (@aA+D)XB+ (aZ + A)AB,

n = yA>+yIl,

0 = yAXLB+yLAB;
Eny1 = QEn+ PNy, €1 =€,
Cn+1 = aCn + ﬁgn/ Cl = C/
Mn+1 = Yéu,Mm =1,

6n+1 = )/Gn, 61 = 6,
v . .
A = Z [I+ F(FWEan)2](FnEdPn)Zwle,
i=0

o . .
Y = Y[+ F(FE‘Fr)2|(FrE‘Fr)2+2Fi,
i=0
m ) )
I = Z F(FﬂEan )21+2F1Fn,
i=0
m ) )
A = Z F(PnEan)ZH'BF’Fn.
i=0

) F'E F© )
where k = md( FET 0 ),m = ind(F).
3. Group inverse of anti-triangular block matrices

The aim of this section is to provide necessary and sufficient conditions on E and F so that the block

r o ) has group inverse. We now derive

operator matrix (

E I
Theorem 3.1. LetM—( r o

) and E, F, EF™ have Drazin inverses. If FEF™ = 0, then the following are equivalent:

(1) M has group inverse.
(2) F has group inverse and E"F™ = Q.

In this case,
M = EPF* F* + (EPF™)? — EPFTEF*
~\ FF* —FF*EF#* )

X1 X2
Xo1 X»

E I X X\ [ Xu X2 E I
F 0 Xn Xn )| \ Xu Xn F 0 )

Proof. (1) = (2) Write M* = ( ) Then MM* = M*M, and so
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Then we have
EX11 + X = XnE + XioF,

FX1 = Xo1.
Since MM*M = M, we have
EXi1+ X0 =1,
FXq1 =0.
Therefore
F = (FE)XH + FX»,
= (FE)FdFXH + FX21
= (FEF)(FX11) + FXy
= P2X12.
In view of [23, Lemma 1.2], F has group inverse.
FF* 0 a b
Lete-( 0 I ) ThenM—(C d)e,where
_ FF*E FF*
- F’Ff 0 b
_ FTEFF# FT = EF” O
€= 0 0o )*7{ o o

As in the proof of Theorem 2.5, we prove that (EF™)” = EPF™. Then we compute that

g 0 r* o EPF* 0
FF* —FF*EF* | 0o o)

w0 0 _(EF O
T=lo )"l 0o o)

In view of [13, Theorem 2.1], we have d"ca™ = 0, and so
E*F® 0 \( FFEFFP FT™ 0 0\ (0 E'F")\ _ 0
0 o0 0 0 0O FFJ7l0 0 e
Therefore E™F™ = (, as required.
(2) = (1) Since EF™ has Drazin inverse and FEF™ = 0, EF™ has g-Drazin inverse and FF*EF™ = F¥(FEF™) =
0. It follows by [18, Lemma 2.2] that FFE has g-Drazin inverse and (FF*E)’ = FF*EP. Then FEPF™ =

F(FF*EP)F™ = F(FF*E)"F" = F[(FF*E)"|*(FF*E)F™ = F[(FF*E)*|?F*(FEF™) = 0.
Set

Therefore we have

N = [ E°F* Ff+ (EPF")? ~ EPF'EF*
-\ rr —FF*EF* '

Then we directly check that

MN

EDF” F* + (EPF™)? - EPFEF* )

FF* —FF*EF*
_ EPF™ + FF* FF*EF* + EEPFFEPF™
h FF#

El EDF”
- (2 FF!
|
v

DprgF™ 4+ FF*  EPF™

B FF*EF™ FF#
_ EDF“ F* + (EPF™)? — EPF*EF* E I
- —FF*EF* F 0

gm

= N
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M(1-MN) = (E I)(O _EDFH)=0,

Fo)lo F
(1- MN)N
_ (0 —EPF*\( EPF* F*+ (EPF")2 — EPFTEF*
“lo FF* ~FFEF?
= 0.

Therefore M* = N, as asserted. [

Corollary 3.2. Let M = ( 1; g ) and E,F,EF™ have Drazin inverses. If FEF™ = 0O, then the following are
equivalent:

(1) M has group inverse.

(2) F has group inverse and E"F™ = Q.

In this case,

r A
#_
w5 2)
where
I = F'EPFR,
A = I-FFEPFTE,
A = F*+(EPF™)? - EPFTEFY,
E = EPF"—F*E - (EPF™)’E + EPF"EFPE,
E I
Proof. Let N —( r o Then

Therefore M has group inverse if and only if so does N, if and only if F has group inverse and E"F™ = 0, by
Theorem 3.1. In this case,

I
# -INH#HDP —
M—PNP_(IO I p

Po)elV k)

~ I FTEPF™ 0 I\ (T A
= | PP PP PP -EPFERf N\ T -E )T\ A E )
where
— FT(EDFT[,
I — FEPFTE,

= F*+ (EPF™)? - EPF"EFY,
= EPF™ — F*E — (EPF)2E + EPFFEF*E,

o> B>
Il

as asserted. [

Theorem 3.3. Let M = ( EF

I 0 ) and E, F, EF™ have Drazin inverse. If F*EF = 0, then the following are equivalent:

(1) M has group inverse.
(2) F has group inverse and F*E™ = Q.
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In this case,

M = FTEP FF*
~\ F*+(F*EP)?> — FFEF"EP —F*EFF* |°
ET 1
Proof. We consider the transpose MT = ( I ) of M. Then M has group inverse if and only if so does

MT. Applying Theorem 3.1, M has group inverse if and only if F! has group inverse and (ET)*(FT)™ = 0,
i.e., F has group inverse and F*E™ = 0. In this case, we have

M = [(MT)]T = (ENPET™ (FT) + (EDPET))? - (ENPE)ETED |
- ( ) - FT(FT)# —FT(FT)#ET(FT)# s

as desired. O

Corollary 3.4. Let M = ( 11:3 (I) ) and E, F have Drazin inverses. If FTEF = 0, then the following are equivalent:

(1) M has group inverse.
(2) F has group inverse and F*E™ = Q.

In this case,
M = (

[m >

r

A 7

where

— FHEDFT(,

F* + (F"EP)? — F*EF"ED,

I — EFTEPFT,

= F"EP — EF* — E(F'EP)? + EF*EFTEP,

m>p =
Il

Proof. Let N :( I; l(; ) Then

E I
— p-1 -
M=P NP,P—(I O)'

In view of Theorem 3.3,
N = FTEP FF*
~\ F*+ (F'EP)2 - F*EF"EP —F*EFF*
Hence, M has group inverse if and only if so does N, if and only if F has group inverse and F*E™ = 0, by
Theorem 3.3. Moreover, we have

e v (0 I \y[E I (T A
M" =P NP_(I —E)N(I 0)_(/\ :)
where
I = FrEDF®,
A = F*+(F"EPY? — FFEFTED,
A = I—EFTEDFT,
E = FP"ED — EF* Z E(F*EPY2 + EF*EF™ED,

as asserted. [

We come now to extend [23, Theorem 2.10] to wider cases as follows.
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Corollary 3.5. Let M = ( E F )and E, F EF™ have Drazin inverses. If EF = AFE(A € C) or EF? = FEF, then the

I 0
following are equivalent:

(1) M has group inverse.
(2) F have group inverse and F*E™ = Q.

In this case,

M = F*EP Fr*
~\ F*+ (F'EP)?2 - F*EF"EP —F*EFF*
Proof. If EF = AFE(A € C), then F*EF = AF"FE = 0. If EF? = FEF, then F"EF = F'EF?F* = F*"FEFF* = 0. This
completes the proof by Theorem 3.3. [

4. Block-operator matrices with identical subblocks

In [4], Cao et al. considered the group inverse for block matrices with identical subblocks over a right
Ore domain. In this section we are concerned with the group inverse for block-operator matrices with
identical subblocks over a Banach space.

E F

Theorem 4.1. Let M = ( rF o

) and E, EF™ have Drazin inverse and F has group inverse. If FEF™ = O, then the

following are equivalent:

(1) M has group inverse.
(2) EE"F* =0.

In this case,

+ (T A
M = ( A B )’
where

I' = [I-E"F"][EPF™ + EF"E(F*)?] + ETF"E(F*)?,
A = [I-E"F"|[F* — E"FFE(F")?EF* — EPFTEF*]

— ETFE(F*)?EF*,
A = F[EPF" + E"FTE(F*)?]> + F* — FEFF"[E(F*)*]?

—  FEPFTE(F*y?,

[
|

= [FEPF™ + FEF*E(F*)*][F* — E*F"E(F*)?EF*
— EPFTEF*] - [F* — FEFF"E(F*)?E(F*)?

— FEPFrE(F*)?EF*.
Proof. (1) = (2) Obviously, we have

(FE F\( I o0

M=tr o\ re 1)
M2 = EF"E + F?2 EF I 0
- 0 P2 F*E 1 |°
Write M* = ( %i §Z ) Then M*M? = M, and so

X1 X2 EFFE+F> EF\ _( F'E F
X1 X» 0 P2 )"\ F o0}
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Therefore
X11EFTE + X1, F? = FE,
hence,
X1y EFFEF™ + X1, F2F™ = F*EF™.
It follows that

X1 (EF™)? = FFEF™ = EF™.
In light of [23, Lemma 1.2], EF™ has group inverse. By virtue of [18, Lemma 2.2], (EF™)* = EPF™. Therefore

EF™

(EF™)*(EF™)? = EPF*EF*EF™ = EP(I — FPF)EFFEF™
EPEF™EF™ = EPE(I - FPF)EF™ = EPE2F™
E(EEP)F™ = E(I - EF)FT;

hence, EE™F™ = Q.
(2) = (1) Since EE"F™ = 0, we have EPF*(EF™)? = E?EPF™ = E(1 — E™)F* = EF~, and so EF™ has group
inverse by [23, Lemma 1.2].

E I FF* 0
LetN—(Fz 0).Choosee—( 0 1).Then
_( FF'E FF*)\ _( F'EFF* F*)\  _(EF* 0
=l e oo )°7 0 0/ o o
and b = 0. Then

0 )
d .
e

s [ 0 (F*)2 [ EOF 0
T=V e —rrEE?2 )Y T 0 o)

O O ET[FT( 0
T T
a (0 FT[ ),d ( 0 I ).

Obviously, a"cd™ = 0. In light of [13, Theorem 2.1], N has group inverse. Moreover, we have

#
« (a0
V(T )

Moreover, we have

We compute that

where
z = d"c(a")? + (d*)*ca™ — d*ca®.
Clearly,
b nd #\2 _Tnrm #\2 #\2
e EFERf -EFEPPEES )
0 EPFrEDEm 0 EPFrE(F%?
2o # o _
d)ca™ = 0 0 ),dca—(o 0 .
Hence we compute that z = (z,-]-), where
z11 = ETFTE(F%)?,
z1p = EPFFEPF™ — EMFFE(FH)?E(F*)> — EPFTE(F*)?,
271 = 0, Zyp = 0.
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Therefore

where

a = EPF* 4+ ETFTE(F*)?,
ﬁ — (F#)Z+EDFnEDPn_EnFnE(F#)ZE(F#)Z_EDFnE(F#)ZI
y = FF,
6 = —FF'E(F"?
Hence, we have
NN* = N*N
([ E I\[a B
“ P o)ly o
_(a B\[E I
" ly sJ)\F 0
[ EEPF+FF*
B FPa Fr* |

Thus we have

E'F* —a
an( ~Pa F" )

Obviously, one checks that

EL\(I 0
M‘(Fo OF)’
I
0

V=0 7 )(F

By virtue of Cline’s formula, M has Drazin inverse. We see that

(5 4ps t)

_ E I E™F" -« I 0
h F 0 —-F2a F© 0 F
3 -F’a —EaF
a FE"F" —FaF

We directly compute that

FPa = FPEPF™ + PPEFFRE(F*)? = F2EFY(EPF™)? + F2(EF)(EPFM)E(F*)? = 0,
EaF EEF"EF¥ = 0,

FEFE® FEPEF™ = F(EPF™)(EF™) = F(EF™)(EPF™) = 0,
FaF = FEFF*EF* = F(EPF™)(EF")EF* = F(EF™)(EPF™)EF* = 0.

Hence M = MMPM, i.e., M has group inverse. Thus we have M* = MP.
Moreover, we have

E I I 0
MD:(F o)(N#)z(o P)
_(E I ﬁ210
“\F o sJ\o F
_ (T A
- \lAE
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where

I = (Ea+y)a+ (EB+0)y,
A = (Ea+y)BF + (EB + 0)SF,
A = F@*+py),

E = Fap+po)E

Therefore we complete the proof by the direct computation. [

E F

Corollary 4.2. Let M = ( r o

) and E, EF™ have Drazin inverse and F has group inverse. If FTEF = Q, then the

following are equivalent:

(1) M has group inverse.
(2) FFET"E = 0.

In this case,
M = (

—
1 >

)

[F*EP + (F*"2EFE™][I — F*E™] + (F*)2EF"ET,

= [F* — F*E(F*EF"E™ — F*EFTEP][I — FTE™] - F*E(F*)2EF"ET,
[F*EP + (F*2EF"E™°F + F* — [(F*2E2F*E"F — (F*)2EF*EPF,

[F* — F¥E(F*)?EF"E™ — F*EFEP][F*EPF + (F¥)2EFFE"F] — F*E[F*
(F*YE(F*)2EFTETF — (F*)2EF"EPF].

A

where

[ > > —
I

Proof. By virtue of Cline’s formula, F*E has Drazin inverse. Then the proof is complete by applying

ET FT
Theorem 4.1 to the transpose MT = ( oo ) O
F
0

Corollary 4.3. Let M = ( IE:

) and E, F have group inverse, EF™ has Drazin inverse. If F*'EF = 0, then M has

)

= [ - EFFF|[E*E™ + EFFRE(F*)?] + ERFRE(E*)?,

[[ - EFF™|[F* — EFFTE(F*)*EF* — E*FEF*] — E"F™E(F*)2EF*,

FIE*F™ + EFFRE(F*)2]2 + F* — FETE™[E(F*)2]? — FE*F™E(F*)?,

= [FE*F™ + FEFF E(F*)?][F* — E*F"E(F*)2EF* — E*F"EF*] — [F¥ — FEXFrE(F*)2E(F*)?
—  FE*FTE(F*Y]EF*.

group inverse. In this case,
M = (

[ >

r
A

where

m> > -~
I}

Proof. Since E has group inverse, we see that EE™ = 0, and so EE™F" = 0. In light of Theorem 4.1, M has
group inverse. Therefore we obtain the representation of M* by the formula in Theorem 4.1. [

As an immediate consequence of Corollary 4.3, we have

Corollary 4.4. Let M = ( EF ) and E, F have group inverse, EF™ has Drazin inverse. If EF = AFE (A € C) or

F 0

EF? = FEF, then M has group inverse. In this case,

[ >

r
# _
M—(A
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where

= [I— EFFT|[E*F™ + EXFTE(F¥)2] + ETERE(F*)?,

[I - E*FF|[F* — EFERE(F*EF* — E*FTEF*] — EFFRE(F*)EFY,

FIE*E™ + EXFFE(F*)2]? + F* — FEFE[E(F*)2]2 — FE*ERE(F*)?,

= [FE*F™ + FETF*E(F*?][F* — E"FFE(F*)2EF* — E*FXEF*] — [F* — FEFFFE(F*)2E(F*)?
—  FE*FRE(F*)?]EF*.

[m > > -
I}

Proof. As in proof of Corollary 3.5, we obtain the result by Corollary 4.3. [

We illustrate Theorem 4.1 by a numerical example.

E T 1 2 0 i i 0
Example 4.5. LetM:(F 0 )€C6X6,whereE: 0 -1 0|,F=10 0 0 |eC®3,i2=—1. Then
0O 0 O 0 0 1
0 1 0 —i —i 0
0o -1 0 0 0 O
. o 0 o0 o0 01
M=l 201 1 0
0O 0 0O 0o o0 o0
o o0 1 0 0 O

Proof. Obviously, we have

1 2 0 00 0 —i —i 0 0 -1 0
=0 -1 0o |,Er=|0 0 0 [,F*=l 0 0 o | Fr=|l0 1 o]
0 0 0 00 1 0 0 1 0 0 0

Hence we check that FEF™ = 0, EE™F™ = 0. Construct I', A, A and E as in Theorem 4.1. Then we compute

that
0 1 0 —-i -1 0 —-i —i 0 110
r=y0 -1 0|,A=] 0 0f,A=l 0 0 O0],E=]0 0 0 [.
1 0 0 1 0 0O

0
0 0 0 0 0
This completes the proof by Theorem 4.1. [J
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