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Lp geominimal Gaussian surface area

Shuang Moua

aSchool of Mathematics and Statistics, Shaanxi Normal University Xi’an, 710119, China

Abstract. In this paper, we study the Lp geominimal Gaussian surface area for p ≥ 1. We prove some
properties of the Lp geominimal Gaussian surface area, such as continuity and Santaló style inequality.
Moreover, we obtain that the opposite question of continuity of the Lp geominimal Gaussian surface area is
also continuous.

1. Introduction

In this paper, we will work in the n-dimensional Euclidean space, Rn, and write x = (x1, · · ·, xn) for
x ∈ Rn. For x, y ∈ Rn, we write x ·y = x1y1+ · · ·+xnyn for the standard inner product of x and y, let |x| =

√
x · x

for the Euclidean norm of x. A set K ⊂ Rn is convex if λx + (1 − λ)y ∈ K for all x, y ∈ K and each λ ∈ [0, 1].
A convex subset K ⊂ Rn is a convex body if K is compact and has nonempty interior. Let Kn, Kn

0 , Kn
c and

K
n
s denote the class of all convex bodies in Rn, the class of all convex bodies containing the origin o in their

interiors, the class of all convex bodies with their centroid at origin o, and the set of all convex bodies with
their Santaló point at origin o. Let |K| denote the n-dimensional volume of a convex body K. For K ∈ Kn

0 ,
the geominimal surface area G(K) of K was firstly introduced by Petty [18] more than five decades ago, i.e.,

G(K) = inf
{∫

Sn−1
h(Q,u)dS(K,u) : Q ∈ Kn

s and |Q∗| = ωn

}
, (1)

where Q∗ is the polar body of Q, S(K, ·) is the surface area of the convex body K and h(Q, ·) is the support
function (see Section 2). In [18], Petty proved the existence and uniqueness to the solution of the optimal
problem (1). As Petty stated the geominimal surface area serves as a bridge connecting affine differential
geometry, relative differential geometry and Minkowski geometry. This implies that the geominimal surface
area is one of the basic concepts in Brunn-Minkowski theory.

With the development of Lp Brunn-Minkowski theory and motivated by the Lp mixed volume, the
classical geominimal surface area has been extended to Lp case by Lutwak [13] (for p ≥ 1). Using the Lp
affine surface area integral formula, Ye [20] introduced the Lp geominimal surface area for all −n , p < 1.
Moreover, Zhu, Zhou and Xu [25] extended the Lp geominimal surface area to the Lp mixed geominimal
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surface area and obtained Blaschke-Santaló inequality for the Lp mixed geominimal surface area. Ye, Zhu
and Zhou [22] also obtained affine isoperimetric inequalities for the Lp mixed geominimal surface area with
respect to multiple convex bodies. Recently, Li, Wang and Zhou [6] introduced (p, q) mixed geominimal
surface area and (p, q) mixed affine surface area. For more results for the geominimal surface area, the
reader can refer to [1, 5, 6, 8, 9, 11, 12, 15–17, 21, 23, 24, 26].

The Gaussian volume of Borel set K is denoted by γn as follows,

γn(K) =
1

(
√

2π)n

∫
K

e−
|x|2

2 dx.

Huang, Xi and Zhao [4] established the variational formula for the Gaussian volume γn. Recently, Liu [7]
extended the variational formula for the Gaussian volume γn to the Lp (p ≥ 1) case:

lim
ϵ→0

γn(K +p ϵ · L) − γn(L)
ϵ

=
1
p

∫
Sn−1

h(L,u)pdSγn,p(K,u), (2)

where Sγn,p(K, ·) is the Lp Gaussian surface area of K (see Section 2).
Utilizing the relationship between the geominimal surface area and the Lp variational formula for the

Gaussian volume γn, we discuss the geominimal Lp Gaussian surface area, i.e., whether there exists M ∈ Kn
0

with |M∗
| = ωn such that it is the unique solution for the following optimal problem

inf
{∫

Sn−1
h(Q,u)pdSγn,p(K,u) : Q ∈ Kn

0 and |Q∗| = ωn

}
? (3)

The main aim of this paper is to solve the solution of the optimal problem (3).

Theorem 1.1. Let K ∈ Kn
0 . Then there is a unique convex body M ∈ Kn

0 with |M∗
| = ωn such that∫

Sn−1
h(M,u)pdSγn,p(K,u) = inf

{∫
Sn−1

h(Q,u)pdSγn,p(K,u) : Q ∈ Kn
0 , |Q

∗
| = ωn

}
.

The solution M of Theorem 1.1 is usually called the Lp Gaussian Petty body. Let K ∈ Kn
c be a simplex,

then the Lp Gaussian Petty body M and K are homothetic. For K ∈ Kn
0 , let

G̃γn,p(K) = inf
{∫

Sn−1
hp

L(u)dSγn,p,K(u) : L ∈ Kn
c , |L

∗
| = ωn

}
.

Since the Gaussian volume γn has neither affine invariance nor homogeneity, we obtain that the Lp geomin-
imal Gaussian surface area has neither affine invariance nor homogeneity. Fortunately, the Lp geominimal
Gaussian surface area is continuous. Moreover, we obtain that the opposite question of continuity is also
continuous.

Theorem 1.2. For p ≥ 1. Let K,Ki ∈ K
n
c be simplexes and let α > 0 satisfying |K∗i | = α and |K∗| = α. If

G̃γn,p(Ki)→ G̃γn,p(K), then Ki → K.

The organization of this paper is as follows. Section 2 collects some basic concepts and various facts that
will be used in the proofs of our results. Section 3 includes the basic properties of the Lp variation formula
(2) and proves the main result Theorem 1.1. Section 4 proves the continuity of the Lp geominimal Gaussian
surface area and the Lp Gaussian Petty body. Moreover, we will prove the main result Theorem 1.2.

2. Background and Notation

We now introduce the basic well-known facts and standard notations in this section. For more details
and more concepts in convex geometry, please see [2, 3, 19].
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The Minkowski sum of two Borel sets K,L is defined by K+L := {x+ y : x ∈ K, y ∈ L}. The scalar product
of λ ∈ R and Borel K is defined by λK := {λx : x ∈ K}. For K ∈ Kn, the volume radius of K is defined by

vrad(K) =
(
|K|
ωn

)1/n

.

The origin-centered unit ball in Rn is denoted by Bn
2 , i.e., Bn

2 = {x ∈ R
n : |x| ≤ 1}, and let ωn denote the

volume of Bn
2 . Let Sn−1 denote the unit sphere in Rn. Let C(Sn−1) be the set of continuous functions on Sn−1.

Let ∂K, convK denote the boundary and the convex hull of K, respectively.
For convex set K, it is uniquely determined by the support function hK of K which is defined by

hK(u) = max{x · u : x ∈ K}, ∀u ∈ Sn−1. For λ > 0 and K,L ∈ Kn, we obtain hλK = λhK. Moreover, K ⊂ L if and
only if

hK(u) ≤ hL(u), ∀u ∈ Sn−1. (4)

Let H(u, t) = {x : x · u = t} and H−(u, t) = {x : x · u ≤ t} denote the hyperplane and the closed halfspace. Let
H(u, h(K,u)) and H−(u, h(K,u)) be respectively, the support plane and the support halfspace of K, with outer
normal vector u. Obviously, for K ∈ Kn, one has K =

⋂
u∈Sn−1 H−(u, h(K,u)). If there are finite outer normal

vectors such that K =
⋂m

i=1 H−(ui, h(K,ui)), then K is called polytope. Given a polytope P, a face of P is the
intersection of P with a supporting hyperplane. A face of (n − 1)-dimension is called a facet, and the outer
normal vector of the facet is called the facet normal vector.

For the class Kn, we consider the topology generated by the Hausdorff metric dH(·, ·). Here dH(K,L) is
defined by

dH(K,L) = ∥hK − hL∥∞ = sup
u∈Sn−1

|hK(u) − hL(u)|,

for K,L ∈ Kn. Given K ∈ Kn and any Borel set ω ⊂ Sn−1, the surface area measure S(K, ·) is defined by

S(K, ω) =
∫
ννν−1

K (ω)
dHn−1,

where ννν−1
K (ω) is the reverse Gauss image of ω and Hn−1 is the (n − 1)-dimensional Hausdorff measure.

Moreover, for any K ∈ Kn, there is an integral formula for volume, that is,

|K| =
1
n

∫
Sn−1

hK(u)dS(K,u). (5)

Let lu = {tu : t ≥ 0} for u ∈ Sn−1. The set L ⊂ Rn is star-shaped with respect to the origin, if for each
u ∈ Sn−1, the set L ∩ lu is a closed line segment containing the origin. The radial function ρL : Sn−1

→ [0,∞)
of star-shaped set L, with respect to the origin, is defined by

ρL(u) = max{λ ≥ 0 : λu ∈ L}, ∀u ∈ Sn−1.

A compact star-shaped set with respect to the origin is uniquely determined by its radial function. If ρL is
positive and continuous on Sn−1, then star-shaped set L is called star body with respect to the origin. Let In

0
be the set of all star bodies with respect to the origin. Clearly, the radial function of K ∈ Kn

0 is continuous
and positive, i.e.,Kn

0 ⊂ I
n
0 . If K ∈ In

0 , then

∂K = {ρK(u)u : u ∈ Sn−1
}.

It is well known that (e.g., see [19]) for any K ∈ Kn
0 and for all u ∈ Sn−1,

hK∗ (u) =
1
ρK(u)

and ρK∗ (u) =
1

hK(u)
, (6)

where K∗ is the polar body of K, is defined by

K∗ = {x ∈ Rn : x · y ≤ 1, for all y ∈ K}.
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The radial metric is defined by

dρ(K,L) = ∥ρK − ρL∥∞ = sup
u∈Sn−1

|ρK(u) − ρL(u)|,

for K,L ∈ In
0 . We shall use the fact that the Hausdorrf metric and the radial metric are topologically

equivalent on Kn
0 . We say that the sequence {Ki}i≥1 ⊂ K

n
0 converges to a convex body K0 ∈ K

n
0 ( write as

Ki → K0 ), if dH(Ki,K0) → 0 as i → ∞. Obviously, according to the fact that dH(Ki,K0) → 0 if and only if
dρ(Ki,K0)→ 0, and (6), we have

Ki → K0 ⇔ K∗i → K∗0. (7)

For each real p ≥ 1 and a, b > 0, the compact set a · K +p b · L ∈ Kn
0 is called the Minkowski-Firey Lp

combination of K,L ∈ Kn
0 , which is introduced by Firey (see, e.g., [19]) and is defined by

hp
a·K+pb·L(·) = ahp

K(·) + bhp
L(·). (8)

For each p ∈ R\{0} and a, b > 0, the compact set a ⋄ K+̃pb ⋄ L ∈ In
0 is called the radial Lp combination of

K,L ∈ In
0 , which is defined by

ρp
a⋄K+̃pb⋄L(·) = aρp

K(·) + bρp
L(·). (9)

Note that for convex bodies K,L ∈ Kn
0 it follows from (6), (8) and (9) that

K+̃−pL = (K∗ +p L∗)∗ f or p ≥ 1. (10)

The Gaussian volume of Borel set K is denoted by γn,

γn(K) =
1

(
√

2π)n

∫
K

e−
|x|2

2 dx.

Huang, Xi and Zhao [4] established the variational formula for the Gaussian volume γn. Recently, Liu [7]
extended the variational formula for the Gaussian volume γn to the Lp (p ≥ 1) case:

lim
ϵ→0

γn(K +p ϵ · L) − γn(L)
ϵ

=
1
p

∫
Sn−1

h(L,u)pdSγn,p(K,u), (11)

where Sγn,p(K, ·) is the Lp Gaussian surface area measure of K, i.e., which is defined by

Sγn,p(K, ω) =
1

(
√

2π)n

∫
ννν−1

K (ω)
e−
|x|2

2 (x · νK(x))1−pdHn−1(x). (12)

For p = 1, the L1 Gaussian surface area measure of the convex body K is Sγn (K, ·). The Lp Gaussian surface
area measure Sγn,p(K, ·) of K has some basic properties.
(1). dSγn,p(K, ·) = h(K, ·)1−pdSγn (K, ·).
(2). It is absolutely continuous with respect to (n − 1)-dimensional Hausdorffmeasure.
(3). It is not concentrated on any closed hemisphere, i.e., for all v ∈ Sn−1, there exists a constant c > 0 such
that ∫

Sn−1
(u, v)+dSγn,p(K,u) ≥ c, (13)

where (u · v)+ = max{u · v, 0}.
(4). It is a weakly convergent measure, i.e., for Ki,K0 ∈ K

n
0 , if Ki → K0, then

lim
i→∞

∫
Sn−1

f (u)dSγn,p(Ki,u) =
∫

Sn−1
f (u)dSγn,p(K0,u),

for all f ∈ C(Sn−1).



S. Mou / Filomat 38:14 (2024), 4991–5001 4995

Moreover, if { fi}i≥1 ⊂ C(Sn−1) converges uniformly to f0 ∈ C(Sn−1) and Ki ∈ K
n
0 converges to K0 ∈ K

n
0 in

the Hausdorff distance, and the Lp Gaussian surface area measure Sγn,p(Ki, ·) converges weakly to Sγn,p(K0, ·),
we see that

lim
i→∞

∫
Sn−1

fi(u) dSγn,p(Ki,u) =
∫

Sn−1
f0(u) dSγn,p(K0,u). (14)

We also use the following lemmas in the proofs of our main results.

Lemma 2.1. (see [10]) If {Ki}i≥1 ⊂ K
n
0 is a bounded sequence such that {|K∗i |}i≥1 is also a bounded sequence, there

exists a subsequence {Ki j } j≥1 of {Ki}i≥1 and K ∈ Kn
0 such that Ki j → K. In addition, if |K∗i | = ωn, then |K∗| = ωn.

Lemma 2.2. (see[13]) Let {Ki}i≥1 ⊂ K
n
0 be a convergent sequence with the limit K0. If the sequence {|K∗i |}i≥1 is

bounded, then K0 ∈ K
n
0 .

3. The Lp geominimal Gaussian surface area

Firstly, we will prove the continuity of the Lp variational formula for the Gaussian volume γn.

Lemma 3.1. For p ≥ 1. Let {Ki}i≥1 ⊂ K
n
0 and {Li}i≥1 ⊂ K

n
0 be two sequences of convex bodies with Ki → K0 ∈ K

n
0

and Li → L0 ∈ K
n
0 as i→∞. Then∫

Sn−1
h(Li,u)pdSγn,p(Ki,u)→

∫
Sn−1

h(L0,u)pdSγn,p(K0,u), as i→∞.

Proof. Since Ki → K0 ∈ K
n
0 and Li → L0 ∈ K

n
0 as i → ∞, then Sγn,p(Ki, ·) converges weakly to Sγn,p(K0, ·) and

the support function hLi (·) converges uniformly to hL0 (·), as i → ∞. Thus, an application of (14) completes
the proof.

Next, we will discuss the boundedness of convex bodies.

Lemma 3.2. Let {Ki}i≥1 ⊂ K
n
0 and K ∈ Kn

0 be such that Ki → K as i → ∞. If {Li}i≥1 ⊂ K
n
0 is a sequence such that∫

Sn−1 hp(Li,u)dSγn,p(Ki,u) is uniformly bounded , then the sequence {Li}i≥1 is uniformly bounded.

Proof. Let Ri(ui) = max{ρ(Li,u) : u ∈ Sn−1
}. Obviously, [o,R(ui)ui] ⊂ Li and using (4) shows that Ri(ui)(ui·u)+ ≤

h(Li,u). Suppose the sequence {Li}i≥1 is not uniformly bounded, then Ri(ui) converges to infinity. Thus,
given a sufficiently large M > 0, there is an integer N such that Ri ≥ M for all i > N. For each sequence
{ui}i≥1 ⊂ Sn−1, since the sphere Sn−1 is a compact set, there is a vector u0 ∈ Sn−1 and the subsequence ui j of
ui such that lim j→∞ ui j = u0. Using Lemma 3.1, Jessen’s inequality, (13) and the boundness of the sequence∫

Sn−1 h(Li,u)pdSγn,p(Ki,u) we obtain that there is a constant C > 0 such that

C ≥ lim
i→∞

∫
Sn−1

hp
Li

(u)dSγn,p(Ki,u)

≥ lim
i→∞

∫
Sn−1

Ri(ui)p(ui,u)p
+dSγn,p(Ki,u)

≥ lim
j→∞

Mp
∫

Sn−1
(u,ui j )

p
+dSγn,p(Ki j ,u)

= MpSγn,p(K,Sn−1)
(

1
Sγn,p(K,Sn−1)

∫
Sn−1

(u,u0)+dSγn,p(K,u)
)p

≥ MpS1−p
γn,p(K,Sn−1)cp.

By the arbitrariness of M, let M→∞, we obtain a contradiction C ≥ ∞. The proof of lemma is complished
quickly.
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Now, we define the Lp geominimal Gaussian surface area Gγn,p(K) of the convex body K.

Definition 3.3. Suppose K ∈ Kn
0 . The Lp geominimal Gaussian surface area Gγn,p(K) of the convex body K, is defined

by

Gγn,p(K) = inf
{∫

Sn−1
h(Q,u)pdSγn,p(K,u) : Q ∈ Kn

0 and |Q∗| = ωn

}
. (15)

Remark: For each convex body L ∈ Kn
0 , we have |(vrad(L∗)L)∗| = ωn. Thus, the foluma (15) is equivalent

to

Gγn,p(K) = inf
L∈ Kn

0

{∫
Sn−1

h((vrad(L∗)L,u)pdSγn,p(K,u)
}
. (16)

Next, we will prove the main result Theorem 1.1.

Proof. Firstly, we prove the existence of Theorem 1.1. By Definition 3.3, there exists a sequence {Mi}
∞

i=1 ⊂

K
n
0 with |M∗

i | = ωn such that

Sγn,p(K,Sn−1) =
∫

Sn−1
hp

Bn
2
(u)dSγn,p(K,u) ≥

∫
Sn−1

hp
Mi

(u)dSγn,p(K,u) > 0, for all i ≥ 1.

Obviously, the sequence
∫

Sn−1 hp
Mi

(u)dSγn,p(K,u) is uniformly bounded. By Lemma 3.2, the sequence {Mi}
∞

i=1
is uniformly bounded. Thus, using the Blaschke selection theorem, there is a subsequence of {Mi}

∞

i=1, for
convenience, still recorded as {Mi}

∞

i=1 which converges to a compact convex set M. Using Lemma 2.2 and
Mi ∈ K

n
0 shows that M ∈ Kn

0 . And using (7) implies that M∗

i converges to M∗ as i → ∞. Thus, we obtain
|M∗
| = ωn. From Lemma 3.1, we show that

lim
i→∞

∫
Sn−1

hp
Mi

(u)dSγn,p(K,u) =
∫

Sn−1
hp

M(u)dSγn,p(K,u).

Now we prove the uniqueness of Theorem 1.1. Assume that there exist two convex bodies M1,M2 ∈ K
n
0

with |M∗

1| = |M
∗

2| = ωn such that

Gγn,p(K) =
∫

Sn−1
hp

M1
(u)dSγn,p(K,u) =

∫
Sn−1

hp
M2

(u)dSγn,p(K,u).

For p ≥ 1, the new compact set M with respect to M1,M2 ∈ K
n
0 is defined by

M =
1
2
·M1+p

1
2
·M2.

Using (10) shows that

M∗ =
1
2
⋄M∗

1+̃−p
1
2
⋄M∗

2.

Using the Lp Brunn-Minkowski inequality (see, e.g., [19]) we obtain that |M∗
| ≤ ωn and the equality holds

if and only if M∗

1 and M∗

2 are dilates. If M∗

1 and M∗

2 are dilates, for convenience, we set M∗

1 = sM∗

2 for real
number s > 0. Since |M∗

1| = sn
|M∗

2| = ωn, we deduce that s = 1. Then M1 = M2 if and only if vrad(M∗) = 1.
By (16), we have

Gγn,p(K) ≤
∫

Sn−1
hp

(vrad(M∗))M(u)dSγn,p(K,u)

≤

∫
Sn−1

hp(M,u)dSγn,p(K,u)

=

∫
Sn−1

(1
2

hp(M1,u) +
1
2

hp(M2,u)
)
dSγn,p(K,u)

= Gγn,p(K).

This implies that vrad(M∗) = 1. This completes the proof of the theorem.
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4. Continuity

The optimal solution M of Theorem 1.1 is called the Lp Gaussian Petty body. And the set of solutions is
denoted by

Mγn,p(K) =
{
M ∈ Kn

0 : Gγn,p(K) =
∫

Sn−1
hp

M(u)dSγn,p(K,u) and |M∗
| = ωn

}
. (17)

Obviously, the uniqueness of Theorem 1.1 implies that the set Mγn,p(K) can define an operator on Kn
0 . We

now prove the continuity of Gγn,p(K) and the operator Mγn,p(K).

Theorem 4.1. Let {Ki}
∞

i=1 ⊂ K
n
0 and K ∈ Kn

0 with Ki → K as i→∞. Then
(i) limi→∞ Gγn,p(Ki) = Gγn,p(K); (ii) limi→∞Mγn,p(Ki) =Mγn,p(K).

Proof. Firstly, we give the proof of (i). Let {Ki}
∞

i=1 ⊂ K
n
0 and K ∈ Kn

0 such that Ki → K as i → ∞. For
sufficiently small ε > 0, using Definition 3.3 and Lemma 3.1, we obtain that there is a convex body Mε ∈ K

n
0

with |M∗
ε| = ωn such that

Gγn,p(K) + ε ≥
∫

Sn−1
hp

Mε
(u)dSγn,p(K,u) = lim

i→∞

∫
Sn−1

hp
Mε

(u)dSγn,p(Ki,u) ≥ lim sup
i→∞

Gγn,p(Ki).

Let ε→ 0+, we have
Gγn,p(K) ≥ lim sup

i→∞
Gγn,p(Ki). (18)

Next, we assume Mi ∈ K
n
0 and |M∗

i | = ωn such that Gγn,p(Ki) =
∫

Sn−1 hp
Mi

(u)dSγn,p(Ki,u). Thus

0 <
∫

Sn−1
hp

Mi
(u)dSγn,p(Ki,u) ≤

∫
Sn−1

hp
Bn

2
(u)dSγn,p(Ki,u) < ∞.

This implies that the sequence
∫

Sn−1 hp
Mi

(u)dSγn,p(Ki,u) is bounded. Thus, the sequence {Mi}
∞

i=1 is uniformly
bounded. Using the Blaschke selection theorem shows that there exists a convergent subsequence of
{Mi}

∞

i=1, which is also written as {Mi}
∞

i=1, and a compact convex set M′ such that limi→∞Mi =M′. Combining
|M∗

i | = ωn, Lemma 2.2 and Lemma 2.1, we obtain M′
∈ K

n
0 with |(M′)∗| = ωn. By Definition 3.3, Lemma 3.1

and Theorem 1.1, we have

Gγn,p(K) ≤
∫

Sn−1
hp

M′ (u)dSγn,p(Ki,u) = lim inf
i→∞

∫
Sn−1

hp
Mi

(u)dSγn,p(Ki,u) = lim inf
i→∞

Gγn,p(Ki). (19)

Combining (18) with (19), this completes the proof of (i).
Now, we give the proof of (ii). By (17) and Theorem 1.1, we know that the set Mγn,p(K) has only one

element. For simplicity, we set M =Mγn,p(K) and Mi =Mγn,p(Ki). For Ki → K as i→∞, using the continuity
of Gγn,p(·) we obtain that

Gγn,p(K) = lim
i→∞

Gγn,p(Ki) = lim
i→∞

∫
Sn−1

hp
Mi

(u)dSγn,p(Ki,u).

This implies that
∫

Sn−1 hp
Mi

(u)dSγn,p(Ki,u) is uniformly bounded. Thus, the sequence {Mi}
∞

i=1 is bounded.
By Lemma 2.1, there exists a subsequence {Mi j }

∞

j=1 ⊂ {Mi}
∞

i=1 and a convex body M0 ∈ K
n
0 such that

lim j→∞Mi j =M0 ∈ K
n
0 and |M∗

0| = ωn. By (i) of Theorem 4.1 and Lemma 3.1, one has

Gγn,p(K) = lim
j→∞

Gγn,p(Ki j ) =
∫

Sn−1
hp

M0
(u)dSγn,p(K,u).

Using Theorem 1.1 shows that

Gγn,p(K) =
∫

Sn−1
hp

M(u)dSγn,p(K,u) with |M∗
| = ωn.

Since the operator Mγn,p(K) has only one element, this implies that limi→∞Mi =M. This completes the proof
of the theorem.
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Next, we will discuss the continuity of the solution for the Lp geominimal Gaussian surface area.

Corollary 4.2. Let Ki,K ∈ Kn
0 . For p ≥ 1, let Mi be the solution of Gγn,p(Ki) and M be the solution of Gγn,p(K). If

Gγn,p(Ki) converges to Gγn,p(K), then Mi converges to M.

Proof. Using Theorem 1.1 we obtain that the solution for the Lp geominimal Gaussian surface area is unique.
Hence, let Mi,M be such that

∫
Sn−1 hp

Mi
(u)dSγn,p(Ki,u) = Gγn,p(Ki), and

∫
Sn−1 hp

M(u)dSγn,p(K,u) = Gγn,p(K). Since
Gγn,p(Ki) converges to Gγn,p(K), this shows that there is an integer N such that

Gγn,p(Ki) ≤ Gγn,p(K) + ε, i ≥ N,

for all ε > 0. This implies that the sequence
∫

Sn−1 hp
Mi

(u)dSγn,p(Ki,u) is bounded. Thus, using Lemma 3.2
shows that Mi is uniformly bounded. Using the Blaschke selection theorem, we obtain that there is a
subsequence Mi j of Mi such that it converges to a compact convex set M′. Combining Lemma 2.1 with
Lemma 2.2, we obtain that M′

∈ K
n
0 and |(M′)∗| = ωn. Since Mi j is the solution of Gγn,p(Ki j ), taking the limit

as j→∞, we obtain that M′ is the solution of Gγn,p(K). The uniqueness of the solution immediately get that
lim j→∞Mi j =M. This completes the proof of the corollary.

Corollary 4.3. Let K ∈ Kn
0 . For p, pi ≥ 1, let Mi be the solution of Gγn,pi (K) and M be the solution of Gγn,p(K). If

Gγn,pi (K) converges to Gγn,p(K), then Mi converges to M.

Proof. The proof is similar to Corollary 4.2.

Lemma 4.4. Let K ∈ Kn
0 be a polytope. For p1, p2 ≥ 1 and p1 , p2. If the convex body M j ( j = 1, 2) is the solution

to the Lp j geominimal Gaussian surface area, then M1 and M2 are polytopes with the same facet normal vector.

Proof. Let K ∈ Kn
0 be a polytope with the facet normal vectors u1, · · ·,um. Obviously, {u1,u2, · · ·,um} is not

concentrated on any closed hemisphere of Sn−1 and K =
⋂m

i=1 H−(ui, hK(ui)). Since the Lp Gaussian surface
measure is absolutely continuous with respect to (n − 1)-dimensional Hausdorffmeasure, this implies that
the Lp Gaussian surface measure Sγn,p1 (K, ·) is a discrete measure concentrated on {u1,u2, · · ·,um} ⊂ Sn−1. Let
P be a polytope with the facet normal vectors u1,u2, · · ·,um, such that

P j =

m⋂
i=1

H−(ui, hM j (ui)).

Therefore, one has M j ⊂ P j. Since M j ∈ Mγn,p j (K) ( j = 1, 2), this implies that vrad(P∗) ≤ 1. Combined
Definition 3.3 with M j ∈Mγn,p j (K) ( j = 1, 2), we obtain

Gγn,p j (K) ≤

∫
Sn−1

hp j (vard(P∗j)P j,u)dSγn,p j (K,u)

≤

∫
Sn−1

hp j (P j,u)dSγn,p j (K,u)

=

m∑
i=1

hp j (P j,ui)Sγn,p j (K, {ui})

=

m∑
i=1

hp j (M j,ui)Sγn,p j (K, {ui})

≤

∫
Sn−1

hp j (M j,u)dSγn,p j (K,u)

= Gγn,p j (K).

This shows that vrad(P∗j) = vrad(M∗

j) = 1. We know that |M j| = |P j| and M j ⊂ P j. Thus, M j = P j, which means
that the optimal solution M j is a polytope with the facet normal vectors u1,u2, · · ·,um. This completes the
proof of the lemma.
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Let conv{x1, · · ·, xm} be the convex hull of x1, · · ·, xm ∈ Rn. If x1, · · ·, xn+1 are affine independent, then
the convex hull conv{x1, · · ·, xn+1} denotes the simplex. Moreover, the convex hull of n points {xi1 , · · ·, xin } ⊂

{x1, · · ·, xn+1} denote the facets of the simplex conv{x1, · · ·, xn+1}. Let T = conv{o, e1, · · ·, en} denotes standard
simplex, where e1, · · ·, en denote the vectors of the standard bases of Rn. Obviously, for each simplex K,
there is a transformation ϕ ∈ GL(n) and x ∈ Rn such that K = ϕT + x. Let K ∈ Kn

0 , then the volume product
|K||K∗| is GL(n) invariant. Moreover, if K ∈ Kn

c , then

|K||K∗| ≤ ω2
n,

with equality if and only if K is an ellipsoid. The lower bound of the volume product is the Mahler
conjecture, i.e., if K ∈ Kn

c , then
(n + 1)n+1

(n!)2 ≤ |K||K∗|, (20)

with equality if and only if K is a simplex. Recently, Meyer and Reisner [14] used the shadow system to
prove an exact reverse Blaschke-Santaló inequality (20) for polytopes inRn that have at most n+ 3 vertices.

Corollary 4.5. Let p ≥ 1. If K ∈ Kn
0 is the simplex and M is the solution of Gγn,p(K), then M and K are homothetic.

Proof. For each simplex K, there is a transformationϕ ∈ GL(n) and x ∈ Rn such that K = ϕT+x. From Lemma
4.1, we obtain that M and K are simplexes with the same facet normal vector. Thus, there is λ > 0 and
x2 ∈ Rn such that M = λϕT+ x2. This implies that M = λK+ x, where λ > 0 and x ∈ Rn with |(λK+ x)∗| = ωn.
This completes the proof of the corollary.

Next, we will establish the main result Theorem 1.2.

Proof. Let the convex body Mi be the solution to the geominimal Lp style Gaussian surface area G̃γn,p(K).
Using Corollary 4.5 we obtain that there are λi > 0 and xi ∈ Rn such that Mi = λiK + xi. Since Mi,K ∈ Kn

c ,

one has xi = o for all i. Combining |K∗i | = α with |M∗

i | = ωn, this implies that Mi =
(
α
ωn

) 1
n Ki. Similarly, we

have M =
(
α
ωn

) 1
n K. Thus, an application of Corollary 4.2 completes the proof.

Corollary 4.6. For p ≥ 1. Let K,Ki ∈ K
n
c be simplexes. Assume |K∗i | = |K

∗
| = α forα > 0, and if

∫
Sn−1 hp(Ki,u)dSγn,p,Ki (u)

converges to
∫

Sn−1 hp(K,u)dSγn,p,K(u), then Ki converges to K.

Proof. Let the convex body Mi be the solution to the geominimal Lp style Gaussian surface area G̃γn,p(K).
Using Corollary 4.5 implies that there are λi > 0 and xi ∈ Rn such that Mi = λiKi + xi. Since Mi,Ki ∈ K

n
c ,

one has xi = o for all i. Combining |K∗i | = α with |M∗

i | = ωn, this implies that Mi =
(
α
ωn

) 1
n Ki. Similarly, we

have M =
(
α
ωn

) 1
n K. Thus, G̃γn,p(Ki) =

(
α
ωn

) p
n
∫

Sn−1 hp(Ki,u)dSγn,p,Ki (u) and G̃γn,p(K) =
(
α
ωn

) p
n
∫

Sn−1 hp(K,u)dSγn,p,K(u).

Since
∫

Sn−1 hp(Ki,u)dSγn,p,Ki (u) converges to
∫

Sn−1 hp(K,u)dSγn,p,K(u), we now obtain G̃γn,p(Ki)→ G̃γn,p(K). Thus,
an application of Theorem 1.2 completes the proof of the corollary.

Next, we will establish the Blaschke-Santaló style inequality for the Lp geominimal Gaussian surface area.

Corollary 4.7. For p ≥ 1. If K ∈ Kn
c is a simplex, then

Gγn,p(K)Gγn,p(K∗) ≤
n2

(2π)nω2p/n
n

(
(n + 1)n+1

(n!)2

) p+n
n

.
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Proof. Let M be the solution to the Lp geominimal Gaussian surface area G̃γn,p(K). Using Corollary 4.6

shows that M = ( |K
∗
|

ωn
)1/nK. Thus G̃γn,p(K) =

(
|K∗ |
ωn

)p/n ∫
Sn−1 h(K,u)dSγn,K(u). Similarly, we have G̃γn,p(K∗) =(

|K|
ωn

)p/n ∫
Sn−1 h(K∗,u)dSγn,K∗ (u). By using (20), one has

(n + 1)n+1

(n!)2 ≤ |K||K∗|,

with equality if and only if K ∈ Kn
c is a simplex. Thus, we have (n+1)n+1

(n!)2 = |K||K∗|. Combining (11) with (12),

this implies that
∫

Sn−1 h(K,u)dSγn,K(u) ≤ 1
(
√

2π)n n|K|. Similarly,
∫

Sn−1 h(K∗,u)dSγn,K∗ (u) ≤ 1
(
√

2π)n n|K∗|. Thus,

G̃γn,p(K)G̃γn,p(K∗) ≤
n2

(2π)nω2p/n
n

(
(n + 1)n+1

(n!)2

) p+n
n

.

Together with G̃γn,p(K) ≥ Gγn,p(K), this completes the proof of the corollary.

We now discuss the monotonicity of the Lp geominimal Gaussian surface area with respect to p.

Corollary 4.8. Let K ∈ Kn
0 . If p1, p2 ≥ 1 and p1 ≤ p2, then

Gp2
γn,p1

(K) ≤ Gp1
γn,p2

(K)
(∫

Sn−1
hK(u)dSγn (K,u)

)p2−p1

.

Proof. Let the convex body Mi be the solution of Gγn,pi (K) for i = 1, 2. Combining Definition 3.3 with Hölder
inequality, one has

Gγn,p1 (K) =

∫
Sn−1

hp1

M1
(u)dSγn,p1 (K,u)

≤

∫
Sn−1

(
hM2 (u)
hK(u)

)p1

hK(u)dSγn (K,u)

≤

( ∫
Sn−1

(
hM2 (u)
h(K,u)

)p2
hK(u)dSγn (K,u)

) p1
p2 ( ∫

Sn−1
hK(u)dSγn (K,u)

) p2−p1
p2

= G
p1
p2
γn,p2

(K)
(∫

Sn−1
hK(u)dSγn (K,u)

) p2−p1
p2

.

This completes the proof.
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