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Abstract. We study connections between skew-symmetric solutions of the classical Yang-Baxter equation
(CYBE) and O-operators of Malcev algebras. We prove that a skew-symmetric solution of the CYBE on a
Malcev algebra can be interpreted as an O-operator associated to the coadjoint representation. We show
that this connection can be enhanced with symplectic forms when considering non-degenerate skew-
symmetric solutions. We also show that O-operators associated to a general representation could give
skew-symmetric solutions of the CYBE on certain semi-direct product of Malcev algebras. We reveal the
relationship between invertible O-operators and compatible pre-Malcev algebra structures on a Malcev

algebra. We finally obtain several analogous results on connections between the CYBE and O-operators in
the case of pre-Malcev algebras.

1. Introduction

The classical Yang-Baxter equation (CYBE) on a finite-dimensional nonassociative algebra of characteristic
zero occupies a central place in connecting mathematics and mathematical physics. The study of the
CYBE on a Lie algebra g has substantial ramifications and applications in the areas of symplectic geometry,
quantum groups, integrable systems, and quantum field theory, whereas characterizing specific solutions
of the CYBE for a given g is an indispensable and challenging task in terms of the viewpoint of pure
mathematics; see for example [5, 21]. As a natural generalization of Lie algebras, Malcev algebras have
been studied extensively since Malcev’s work in the 1950s ([15]). Our primary objective is to give a
systematic study on skew-symmetric solutions of the CYBE on Malcev algebras, stemming from the point
of view of Kupershmidt in [11, Section 2] that regards solutions of the CYBE as O-operators. Our approach
exposes some interesting connections between the CYBE, O-operators, and pre-Malcev algebras.
Let A be a Malcev algebra over a field F of characteristic zero and r = ) ; x; ® y; € A ® A. The equation
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is called the classical Yang-Baxter equation on A, where
r12713 = Z XiXj ®Yi ® Yj, 11323 = Z Xi ®Xj ® YilYj, T3r12 = Z Xj® XY ® Yi.
ij i ]

Recall that for a vector space V, an element r € V ® V is called skew-symmetric if o(r) = —r, where o
denotes the twist map on V ® V. Comparing with O-operators of Lie algebras and introducing the notion
of O-operators of Malcev algebras, our first main theorem provides a sufficient and necessary condition for
a skew-symmetric element r € A ® A being a solution of the CYBE on A. To articulate this result, we write
S(A) for the set of all solutions of the CYBE on A and denote by O4(V, p) the set of all O-operators associated
to the representation p : A — End(V). For a finite-dimensional vector space V over [F, V* refers to the dual
space of V and for r € V ® V, we define T, to be the linear map from V* to V by

(& T(m) =(E@n,1) (12)
forall &,n € V*, where (-, —) : V* X V — F denotes the natural pairing.

Theorem 1.1. Let A be a finite-dimensional Malcev algebra over a field [F of characteristic zero and r be a skew-
symmetric element in A® A. Then r € S(A) if and only if T, € Oa(A*, ad”), where (A*,ad”) denotes the coadjoint
representation of A.

More significantly, specializing in non-degenerate skew-symmetric element r € A®A, we could associate
r with a bilinear form B, defined by T,! and the natural pairing. Our second major result demonstrates
that such r is a solution of the CYBE on A if and only if B, is a symplectic form on A. This result provides a
possible way to explicitly describe all non-degenerate skew-symmetric solutions in S(A) for some specific
Malcev algebras; see Example 3.5. To state this result, we recall that an element r € A® A is non-degenerate
if T, defined by Eq. (1.2) is invertible; a bilinear form $ on A is symplectic if B(xy, z) + B(yz, x) + B(zx, y) = 0
for all x,y,z € A. Given a non-degenerate element r € A ® A, we define the bilinear form B, on A by
Bi(x,y) = <T; Y(x), y> for all x, y € A. Lemma 3.4 below shows that r is skew-symmetric if and only if B, is
skew-symmetric.

Theorem 1.2. Let A be a finite-dimensional Malcev algebra over a field F of characteristic zero and r € A ® A be
skew-symmetric and non-degenerate. Then r € S(A) if and only if B, is a symplectic form on A.

Our third result provides a construction of a skew-symmetric solution of the CYBE on the semi-direct
product Malcev algebra A <, V* by an arbitrary O-operator associated to a given representation (V, p) of a
Malcev algebra A, which reveals an inverse procedure of Theorem 1.1 by loosing the restriction of coadjoint
representations; compared with the case of Lie algebra ([2, Section 2]). Using the tensor-hom adjunction,
we identify Hom(V, A) with A ® V*, and we identify an arbitrary element of A ® V* with the image in
(A® V") ® (A® V") under the tensor product of the standard embeddings A — A® V*and V' — A® V".
Hence, given a linear map T : V — A, we define an element T (see Eq. (3.2) below) in (A& V") ® (A& V)
via this two identifications. Then we define a skew-symmetric element r7 := T — o(T).

Theorem 1.3. Let (V, p) be a representation of a finite-dimensional Malcev algebra A over a field [F of characteristic
zero and T : V — A be a linear map. Then rr € S(A w, V*) if and only if T € Oa(V, p).

Moreover, invertible elements in O4(V, p) have a close relationship with compatible pre-Malcev algebra
structures on A; see [13, Section 2] for more details on pre-Malcev algebras. As pre-Lie algebras are Lie-
admissible, pre-Malcev algebras are Malcev-admissible algebras in the sense of [17]. Let A be a pre-Malcev
algebra. Then the commutator xy = x - y — y - x for all x,y € A defines a Malcev algebra [A], which is
called the subadjacent Malcev algebra of A, and we call A a compatible pre-Malcev algebra of [(A]. For
an element x € A, the left multiplication operator L, : A — A sends y € A to x - y. Then the linear map
L: [A] — End(A) with x = L, gives a representation of the Malcev algebra [A]. Now our fourth theorem
can be summarized as follows.
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Theorem 1.4. Let (V, p) be a representation of a finite-dimensional Malcev algebra A over a field [F of characteristic
zero. For an invertible element T € Oa(V, p), there exists a compatible pre-Malcev algebra structure Ay on A defined
by x -y := T(p(x)T~1(y)) for all x,y € A. Conversely, if there exists a compatible pre-Malcev algebra A on A, then
the identity map id4 belongs to O (A, L).

We also provide two applications of the existence of compatible pre-Malcev algebra structures on
Malcev algebras to construct skew-symmetric solutions of the CYBE; see Corollary 4.3. Our last several
results concerned with the CYBE on pre-Malcev algebras and O-operators can be regarded as an analogue
of the theorems mentioned above. Compared with the case of pre-Lie algebras ([3, Section 2]), these results
focus on revealing links between symmetric solutions of the CYBE, O-operators and bilinear forms on
pre-Malcev algebras; see Theorems 4.5, 4.6 and Proposition 4.8.

This paper is organized as follows. In Section 2, we present some fundamental results on representations
of Malcev algebras and O-operators, and then we develop two lemmas to prove Theorem 1.1. Section 3
contains the proofs of Theorems 1.2 and 1.3, which are both closely related to Theorem 1.1. Theorem 1.2
specializes in the case of Malcev algebras admitting a symplectic form and Theorem 1.3 extends O-operators
associated with the coadjoint representation (A*,ad”") to those associated with an arbitrary representation
(V, p). In Section 4, we establish connections between invertible O-operators and compatible pre-Malcev
structures on a Malcev algebra. We prove Theorem 1.4 and produce several results about symmetric
solutions of the CYBE on pre-Malcev algebras.

Throughout this article we assume that the ground field [F is a field of characteristic zero and all algebras,
vector spaces and representations are finite-dimensional over F. The multiplication in a Malcev algebra A
is denoted by xy for all x, y € A, while the multiplication in a pre-Malcev algebra A is denoted by x - y for
allx,y € A

2. Malcev Algebras and O-operators

We recall some fundamental concepts on representations of Malcev algebras. Comparing with O-operators
of Lie algebras, we introduce the notion of O-operators of Malcev algebras and present concrete examples
on some specific Malcev algebras. We close this section by giving a proof of Theorem 1.1.

2.1. Representations of Malcev algebras

Recall that a nonassociative anti-commutative algebra A over a field F is called a Malcev algebra
provided that

(xy)(xz) = ((xy)z)x + ((y2)x)x + ((zx)x)y (Malcev identity)

for all x,y,z € A. Compared with the relationship between Lie algebras and Lie groups, Malcev algebras
appear as the tangent spaces of smooth Moufang loops at the identities; see for example [15] for more
backgrounds. It was proved in [18, Proposition 2.21] that Malcev identity is also equivalent to

(x2)(yt) = ((xy)2)t + ((y2)hx + ((zH)x)y + ((tV)y)z (Sagle identity)

for all x,y,z,t € A. Note that each Lie algebra is a Malcev algebra, thus all Lie-admissible algebras are
Malcev-admissible. Here we have an example of a 4-dimensional non-Lie Malcev algebra.

Example 2.1. Let A be a vector space over [F with a basis {e1, €2, €3, ¢4}. A direct calculation verifies that these
non-zero products: eje; = —ep, €163 = —€3, €184 = €4, €203 = 2¢4, give rise to a non-Lie Malcev algebra structure
on A; see [18, Section 3]. O

Let A be a Malcev algebra over [F. A pair (V, p) of a vector space V over IF and a linear map p : A — gl(V)
is called a representation of A if

p((xy)z) = p(x)p(y)p(z) — p(2)px)p(y) + p(y)p(zx) — p(yz)p(x) (2.1)



S. Ren, R. Zhang / Filomat 38:14 (2024), 5003-5019 5006

for all x,y,z € A. Note that when A is a Lie algebra, a Malcev representation of A is not necessarily a
Lie representation; see for example [22, Section 3] and [10]. Two representations (V1, p1) and (V3, p2) are
isomorphic if there exists a linear isomorphism ¢ : V, — V; such that p1(x) o ¢ = ¢ o pa(x) for all x € A.

Given a representation (V, p) of A, there exists a Malcev algebra structure on the direct sum A & V of
vector spaces given by

(x, u)(y,v) = (xy, p(x)o — p(y)u) (2.2)

forallx,y € A and u,v € V. This Malcev algebra is called the semi-direct product of A and V and denoted
by A <, V. Moreover, consider the dual space V* of V and a natural pairing (—,—) : V* XV — [F. The
dual representation (V*, p*) of (V, p) is defined by {p*(x)&,v) = — (&, p(x)v) forallx €e A,{ € V*and v e V.
See [12] for a survey on structures and representations of Malcev algebras. The following two examples of
representations are necessary to us.

Example 2.2. Let A be a Malcev algebra over F. As in the case of Lie algebras, the linear map ad : A —
End(A) sending x to ad,, where ad,(y) = xy for all y € A, together with A, forms a representation (A, ad)
of A, which is called the adjoint representation of A. The corresponding dual representation (A*,ad”) is
called the coadjoint representation of A. &

2.2. O-operators of Malcev algebras

Comparing with O-operators of Lie algebras [11, Section 2], we introduce the notion of an O-operator of
a Malcev algebra that also generalizes the concept of a Rota-Baxter operator (of weight zero) on a Malcev
algebra appeared in [13, Definition 8].

Definition 2.3. Let Abe aMalcev algebra over [Fand (V, p) be arepresentationof A. AlinearmapT:V — A
is called an O-operator of A associated to (V, p) if

T(0)T(w) = T(p(T(v))w = p(T(w))v) (2.3)

forallv,w € V. As stated previously, we write O4(V, p) for the set of all O-operators of A associated to (V, p).
In particular, Rota-Baxter operators (of weight 0) of A are nothing but O-operators associated to (4,ad). ¢

Example 2.4. Continued with Example 2.1, we consider the coadjoint representation (A*,ad”) of A. Let
{e1, €2, €3, €4} be the basis of A* dual to {ey, e, €3, e4}. With respect to the two bases, a linear map T : A* — A
corresponds to a 4 X 4-matrix. A direct verification shows that the following matrices

0 0 0 a0 0 0 O 0 0 0 a
0 0 O bl]O O 0 a 0 24%/k a b
0 0 0 «c|’10 0 0 B|’|oO 2a k ¢
—-a b —c d)J\c d e f)\-a b - d
are O-operators of A associated to (A*,ad”), wherea, b,c,d,e, f € Fand k € F \ {0}. O

Example 2.5. Consider the 3-dimensional simple Lie algebra sl,(C) spanned by {x, y,z} with nontrivial
relations [x, y] = 2y, [x,z] = —2z and [y, z] = x, which can also be viewed as a Malcev algebra. Suppose that
V is a vector space spanned by {u, v}. It was proved in [6, Section 6] that the action of sl;(C) on V given by

xu=-2u,x0=2v,yu=0,yv = —2u,zu = -2v,zv =0
makes V become an irreducible non-Lie Malcev representation of sl,(C). One can verify that
a 2b 0 q(° 0 0
b oc 0™\ 0 -2

are O-operators of sl;(C) associated to this representation, where a,b,c € C. O
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Lemma 2.6. Suppose that V is a vector space over Fandr =Y ,;x;i®y; € VOV, & € V*. Then T,(&) = X.; (&, yi) Xi.
In particular, if r is skew-symmetric, then T,(E) = = Y.; (&, xi) yi.

Proof. We have (0, T,(&)) = (1® &7 = Li(N®Ex @) = Ly (5 (& yi) = (0 (&, yyx) for all n €
V*. Thus (1, T,(&) — X.: (& viyxi) = 0. As the natural pairing is non-degenerate, it follows that T,(&) —
Y.i{& yiyxi = 0. For the second statement, recall that o(r) = —r and we see that (1, T,(&)) = (n®&,7) =
—-(n®&, o) = -X,(n®&yi®xiy = — (M, L; (& xi) yi). The same reason as before implies that T,(&) =
- Y.i (& xiy yi, as desired. [

Lemma 2.7. Let V be a vector space over Fand r = ) ;x; ® y; € V® V. Then r is skew-symmetric if and only if
(& Tm) = =, Ti(E)) forall &, € V"

Proof. (=) Since r is skew-symmetric, we see that
~ T =~ (18 &) =8 o) = Y& nex) = (& Y ) = & 7).

The last equation follows from Lemma 2.6.
(&) Note that

N®& o)y +(n®E, 1)
= (ET)+ ) (nx)(Ey)  (by Lemma2s6)

N®&,a(r)+r)

= —(n,T(&))+ Z (n,xiy (&, yiy (by the assumption)
= =Y Eylnxd+ Y () (E )
i i
= 0.
As the natural pairing is non-degenerate, o(r) + r = 0, i.e., r is skew-symmetric. O
We are ready to prove Theorem 1.1.

Proof. We first assume that r = Y, x; ® y; € A ® A is skew-symmetric. Note that (A®®)* = (A*)®® when A is
finite dimensional. For arbitrarily chosen &, 1, C € A*, we consider the natural pairing on A®3 and see that

(E®n® L, rar3) Z<5®U®Crxixj®yi®yj>

i,j

Z <cf, xixj> n, yi) <Cr yj>

i,

Y (& €y ((Cy) )

i,j

On the other hand, it follows from Lemma 2.6 that (&, T,(0)T,(C)) = Zi/j <5, n, yiy xi) ((C, yj> xj>>. Thus
(E@N®C, rar13) = (&, Tr(MTHO)) .
Similarly, we have (£ ® N ® , r13723) = (C, T/(&)T,(1)) and (£ ® n ® {, rasr12) = {1, T+(£)T(0)). Hence,

(E®N®C, riari3 + t13tas — raariz) = (&, Tr(MTHQ)) + (T, TH(E)TH(n)) — {n, TH(E)TH(D)) . (24)



S. Ren, R. Zhang / Filomat 38:14 (2024), 5003-5019 5008

This key equation involves the CYBE. To establish links between this equation and O-operators, we consider
the coadjoint representation (A*,ad") of A and note that

(& Toady ) (@) = —(ady )0, Ti&))  (by Lemma 2.7)

(C adrm(TH()
= (G TANT9)
~(C TUOTA).

Similarly, <5, T,(ad}y(c)(q))> = —{(n, T(&)T,(Q)) . Hence,
(& T,(NTAQ) - Tr(ady, ) (0)) + Tr(ady, ()
(& T (MTHQ)) +(C, TAETHm) — {n, TAE)THT)) (25)

(E®@N®C, r1ar13 + 113t — 23l12) -

Here the last equation follows from Eq. (2.4).
Now we are in a position to complete the proof. In fact, if r € S(A), then 12713 + 113723 — 123712 = 0. Thus

it follows from Eq. (2.5) that <§, T,(nT,(C) — Tr(ad}y(q)(C)) + Tr(ad},(c)(n)» = (. Since ¢ is arbitrary, we see
that T,(n)T(C) — T,(ad}y(n)(C)) + Ty(ady, (M) = O foralln,C € A", ie, T, € Oa(A”,ad’). Conversely, assume
that T, € Oa(A*,ad"). By Eq. (2.5), we see that (¢ ® N ® , r1at13 + 113723 — r23t12) = 0. Therefore, we have
12713 + 113723 — 123712 = 0, showing that r is a solution of the CYBEon A. [0

3. Bilinear Forms, the CYBE and Semi-direct Products

Specializing in Malcev algebras admitting non-degenerate invariant bilinear forms, we establish an ana-
logue of Theorem 1.1 in which O-operators could be replaced by Rota-Baxter operators of weight zero; see
Corollary 3.3. We also give detailed proofs of Theorems 1.2 and 1.3. Throughout this section we let A be a
Malcev algebra over FF.

3.1. Invariant bilinear forms
A bilinear form B : A x A — F is called invariant if B(xy, z) = B(x, yz) forall x, y,z € A.

Proposition 3.1. Let A be a Malcev algebra over IF. Then the adjoint representation (A,ad) and the coadjoint
representation (A*, ad”) of A are isomorphic if and only if A admits a non-degenerate invariant bilinear form.

Proof. (=) Suppose ¢ : A — A" is a linear isomorphism such that ad; op = ¢ o ad, for arbitrary x € A.
Thus @(ad.(y)) = ad,(¢(y)) for all y € A. We define a bilinear form B, : A X A — F by (x,y) = {(p(x), y).

To see that B, is invariant, we take z € A, then B, (xy,2) = —B,(yx,2) = —B,(ad,(x),2) = - (p(ad,(v)),z) =
- <ad;((p(x)), z> = <(p(x), ady(z)> = B,(x, yz), which means B, is invariant. As ¢ is bijective and the natural

pairing on A is non-degenerate, it follows that B,, is also non-degenerate.
(&) Assume that there exists a non-degenerate invariant bilinear form 8 on A. We define

pg:A— A'byx - B, (3.1)

where B,(y) := B(x,y) for all y € A. We first note that ¢g is linear as 8 is bilinear. To see that ¢g is
bijective, assume that x1, x, € A are two elements such that 8,, = 8B,,. Then B(x1,y) = B(xo, y) forall y € A,
ie., B(x; —x2,y) = 0. As B is non-degenerate, we have x; = x;. Thus @g is injective. This fact, together
with dim(A) = dim(A*), implies that @g is surjective. Hence, ¢g is a linear isomorphism. Moreover,
we choose a natural pairing on A such that (B,,y) = B(x,y) for all x,y € A as B is non-degenerate.
Since B is invariant, for all x, y,z € A, we see that (pg(ad.(y)) — ad;(ps(y)),z) = <Bxy, z> - <ad;(By),z> =

<Bxy, z>+<8y,adx(z)> = <Bxy, z>+<8y,xz> = B(xy, 2)+B(y, xz) = —B(yx, 2)+B(y, xz) = —-B(y, x2)+B(y, xz) = 0.
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Hence, pg(ad.(y)) = adi(ps(y)) for all y € A, i.e., pg o ady = ad}, opg. Therefore, g is an isomorphism
between (4, ad) and (A*,ad’). O

Proposition 3.2. Let ¢ : (V1,p1) — (V2, p2) be an isomorphism of two representations of a Malcev algebra A
over . Then for each T € Oa(Va, p2), the composition T o ¢ € Oa(V1,p1). In particular, there is a one-to-one
correspondence between Ox(V1, p1) and Oa(Va, p2) when the representations (V1, p1) and (Va, p2) are isomorphic.

Proof. Suppose T € Oa(V>, p2) and v, w € V; are arbitrary elements. Since @ is an isomorphism of represen-
tations, we have

(T o @)(p1((T ° @)(©)w — p1((T © )(w))v)

= T(p(p1(T(p@))w) — p(p1(T(p(w)))v))

= T(p2(T(p())p(w) — p2(T(p(w)))p(v))

= T(e@)T(pw)) = (T o )O)T o p)(w),
which implies that T o ¢ € O4(V1,p1). Similarly, for each S € Oa(V1, p1), one can show that S o (p‘1 €
Oa(V3, p2). We define a map @ : Oa(Vy, p1) — Oa(V2, p2) by sending each S to S o ¢! and another map
W : 0a(V2, p2) — Oa(V1, p1) by sending every T to T o ¢. Clearly, W o @ = 1g,(v, ;) and @ o W = 19, (v, -
Thus W is a bijection and the proof is completed. [J

Together with Theorem 1.1, Propositions 3.1 and 3.2, imply the following result.

Corollary 3.3. Let A be a Malcev algebra admitting a non-degenerate invariant bilinear form B and r be a skew-
symmetric element in A® A. Then r € S(A) if and only if T, o @g is a Rota-Baxter operator of weight zero on A,
where T, and @g are defined as in Egs. (1.2) and (3.1) respectively.

3.2. Symplectic forms

A non-degenerate skew-symmetric bilinear form 8 : A x A — F is said to be symplectic if B(xy, z) +
B(yz,x) + B(zx,y) =0forallx, y,z € A.

Lemma 3.4. Let V be a vector space over F and r € V ® V be non-degenerate. Then r is skew-symmetric if and only
if the bilinear form B, : V x V. — F defined by (x,y) — <T,‘ L), y> is skew-symmetric, where T, is defined as in
Egq. (1.2).

Proof. Note that r is non-degenerate, thus for any x, y € V, there exist unique &, € V* such that x = T,(&)
and y = T,(n). Now we assume that r is skew-symmetric. Then B,(x, y) + B,(y, x) = <T,‘ L(x), y> + <T,‘ Yy, x> =
(&, T,(n) + (1, T,(&)) = 0, where the last equality follows from Lemma 2.7. Hence, B, is skew-symmetric.
Conversely, by Lemma 2.7, it suffices to show that (&, T,(n)) + (1, T,(£)) = 0 for all £,n € V*. In fact,

(& T+ (0, THE)) = (T HTHE), Tom)) + (T, (To(m), TH(E)) = BUTHE), o) + BUT (1), TH(E)) = Bolx, y) +

B,(y, x) = 0, since B, is skew-symmetric. [
We can prove Theorem 1.2 as follows.

Proof. Suppose that x, y,z € A are arbitrary elements. Note that r is non-degenerate, thus there exist unique
&,n € A”such that x = T,(&) and y = T, (7).
(=) Asr € S(A) is skew-symmetric, it follows from Theorem 1.1 that

(T @) z) = (T TOT), 2)
(T \(To(adi, o (n) = ad, ) (), 2)
= <ad},(g)(n) - ad},(n)(é)r Z>
(ads, (), 2) = (ady ) (©),2)

B, (xy,2)
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Note that
(ady, (), 2) = = (n.adre)(2) = = (0, TAE)2) = = (T, (1), 2) = =By(y, x2).

Similarly, (adj. (<), z) = —B,(x, y2). Thus B,(xy, z) = B,(x, y2) - By, x2) = B,(x, yz) + By(y, 2%). Lemma 3.4
asserts that B, is skew-symmetric. Hence 8,(xy, z) + 8,(yz, x) + B,(zx, y) = 0, that is, B, is a symplectic form.
(&) Now we assume that 8B, is a symplectic form. By Theorem 1.1, it suffices to show that T, €

Ou(A*,ad”). We have seen from the previous proof that B,(xy,z) = < xy), > = < “WT(&)T, (n)),z),
Bi(yz, x) = =B, (x,yz) = (ad}y(q)(é), z> and B,(zx, y) = =8B,(xz,y) = B,(y, xz) = <adT( )(r]) z> Thus

0

B (xy, z) + Br(yz, x) + B,(zx, y)

(T T ), )+ (adk (&), 2) = (a1, 2)

(TUTAOT ) + ady ) (€) — ad}, (), 2)

for all z € A. As the natural pairing on A is non-degenerate, it follows that T, (T,(&)T,(n)) + ad}r(,])(é) -
ady () =0,ie., T, YT/(&)T,(n)) = ad}. (g)(q) ady (n(€)- Multiplying the two sides of this equation with T},

we see that T,(&)T,(n) = T,(ad}r(é)(n) dr o) )(€)). This means that T} € 04(A*,ad”), and therefore, r € S(A),
as desired. O

Example 3.5. Let A be the 4-dimensional Malcev algebra with the basis {ey, ..., e4} defined in Example 2.1.
With respect to this basis, a direct calculation shows that any symplectic form 8 on A has the following
form

0 a b ¢
—-a 0 - d
-b ¢ 0 el
- —-d —-e 0

where a,b,c,d,e € Fand ¢ —ae + bd # 0. By Theorem 1.2, one can construct all non-degenerate skew-
symmetric solutions of the CYBE on A. For instance, if we set c = 1 anda = b = d = e = 0, then
r=e;1®e;—es®e — e, ®e3 + €3 ® ey is a non-degenerate skew-symmetric solution. o

3.3. The CYBE and semi-direct products

To give a proof of Theorem 1.3, we use notations appeared in Introduction. The identification of A ® V*
with Hom(V, A) can be realized via the linear isomorphism 7 defined by sending x ® & to 74gs, where
x €A, & eV and Tye:(v) := E(w)x forall v € V. Let {vy,...,v,} be a basis of V and {&;,...,&,} be the dual
basis of V*. Then we can identify an element T € Hom(V, A) with the element

T=) T)®& ARV C(ABV)Q(AB V). (32)
i=1
We define
rro=T —o(T) = Z(T(v,-) ®&E-E®T()) €(AD V)R (AD V). (3.3)

i=1
To analyze equivalent conditions of rr being a solution of the CYBE on A ;. V", we first note that

n

D0 = ) (TE)TE) 8 &® & - p'(TE)E ® & T(w) (34)

i,j=1
+0(T(©)))& ® T(v;) ® &)).
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As p*(T(v)))&; € V™ foralli, j € {1,...,n}, we assume that p*(T(v;))&; = a1(ij)&1 +- - - +a,(ij)éq, where ag(if) € IF.
For any k € {1,...,n}, we have a(if) = (1 a:(ij)s, vy = (p"(T(@))E), vi) = = (&}, p(T(@1)vy ) . Thus

n

p(T@)E ==Y (& p(T@))0k) & (35)

k=1
Similarly, we observe that

n

p(T@))o; = Y (& p(T()07) Vi (36)

k=1

Hence, it follows from Egs. (3.5) and (3.6) that

Y PTE)EESTE) = Y (=) (& p(TE)o) &) ® & ® T(o)

=1 ij=1 k=1
= =Y ae&eT() (& pTw@)0)0)
ik=1 j=1

=), E58&RT(QY (& p(Tw))0;) w0
k=1

ij=1

- ) &0 & @ T(p(T@)))).

ij=1
Further, a similar calculation shows that
Y P TE)EeTE)®E ==Y &@T(p(T@)0) ®&;.
ij=1 ij=1

Taking the previous two equations back to Eq. (3.4), we see that

(rrha(rr)is = Z((T(vi)T(Uj) ®&i® &+ @& T(p(T(0)v)) — & @ T(p(T(0))vi) ® &j).

ij=1
We proceed in this way on (r7)13(r1)23 and (r1)23(r1)12 and eventually derive

(rr)2(rr)iz + (rr)13(rr)2s — (r7)23(rr)12

= Z(T(Uz‘)T(U}‘) = T(p(T(@))vj) + T(p(T(v)))v:) ® &i ® & (B.7)

i,j=1

+ ) &® (TE)T@) = T(p(T(0))o) + T(p(T@:)v) ® &

ij=1
+ Z &E®&i® (T(0)T(vj) — T(p(T(v;))vj) + T(p(T(v}))v1)).
ij=1
Now we are ready to give a proof to Theorem 1.3.

Proof. (=) Assume that T € O4(V, p) is an O-operator. Then T(v;)T(v;) — T(p(T(v))v;) + T(p(T(v))v;) = 0 for
all7,j € {1,...,n}. Thus the right-hand side of Eq. (3.7) is zero. This implies that (r7)12(r7)13 + (*7)13(r1)23 —
(r7)23(rr)12 = 0, i.e., r7 is a solution of the CYBE on A <. V*.
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(<=) Suppose that rr € S(A > V*) is a solution, that is (rT)12(rT)13 + (7‘]")13(1’1")23 - (TT)23(7‘T)12 = 0.
Thus the right-hand side of Eq. (3.7) is equal to zero. Let {x,...,x,} be a basis of A. Assume that
T()T(v;) = T((p(T(0:))vj — p(T(v))v;) = c1(ifj)x1 + - -+ + cu(ij)xy for some c1(ij), . .., cu(ij) € F. Hence,

0=) Y it ®E®E +E@XBE +E B @),

i,j=1 k=1

Since X, ® & ®E;,E @ ®E;,E®E ®xk |1 <1i,j<n1<k< m}isasubsetof a basis of (A x, V)%, its
elements are linearly independent over [F. Hence, ¢,(ij) = O for all k, i and j, which means that

T(vi)T(v;) = T(p(T(vi))v; — p(T(v)))vi),
foralli,je{l1,...,n}. Therefore, T € Ox(V, p) and the proof is completed. [

Example 3.6. We consider the 4-dimensional Malcev algebra A with the basis {ei, ..., e} and the skew-
symmetric solution 7 = e; ® es —es ® 61 — €2 ® €3 + €3 ® €2 of the CYBE on A described in Example 3.5. By
Theorem 1.1, we see that the linear map T : A* — A defined by

T(e1) = —es, T(e2) = €3, T(e3) = —e2, T(ea) = & (3.8)

is an O-operator of A associated to the coadjoint representation (A", ad”), where {¢1, &, €3, €4} is the dual
basis of A*.

Let (A*)" be the dual space of A* with a basis {x1,...,x4}. We identify (A*)" with A and thus {xq,..., x4}
could be viewed as another basis of A. Take the O-operator T in Theorem 1.3 as in Eq. (3.8). We note that
all non-zero products in Malcev algebra A x4+ (A*)" = A x,q A are given by

€18y = —€,0163 = —€3,0184 = €4,€3€3 = 284,€1Xp = —X2,€1X3 = —X3,
€1X4 = X4,€2X3 = 2X4,€2X1 = X2,€3X1 = X3,€4X1 = —X4,€3Xp = —2X4.

It follows from Theorem 1.3 thatrr = —e4, ® X1 + X1 Qe4 + €3 QXp — X0 ®e3 — €2 QX3+ X3®€r + €1 ®Xg — X4 R €1
is a skew-symmetric solution of CYBE on A x,q A. O

4. O-operators and the CYBE on Pre-Malcev Algebras

After recalling basic facts on bimodules of pre-Malcev algebras, we study connections between O-operators
and compatible pre-Malcev structures on a Malcev algebra, giving a proof of Theorem 1.4 with two ap-
plications. Comparing with Theorems 1.1 and 1.3, we also derive several analogous results on symmetric
solutions of the CYBE on pre-Malcev algebras.

4.1. O-operators of Malcev algebras and Pre-Malcev algebras

Recall in [13, Definition 4] that a pre-Malcev algebra A is a vector space over [F endowed with a binary
product - satisfying an identity Py(x, y,z,t) = 0, where

Pu(x,y,2,t)
= 2 @)-@Ey @H+(x-y 2 t=y2) 2 t+z(y-x)t
—E ey try- (-2 -y (Ex)- Dtz (y-H)—x-(y (z-F) 4.1)

for all x,y,z,t € A. As Malcev-admissible algebras, pre-Malcev algebras extend the notion of pre-Lie
algebras (or left-symmetric algebras) which have been studied extensively; see for example [1, 16, 19].

Example 4.1. Let A be the 4-dimensional Malcev algebra appeared in Example 2.1 with the basis {e1, e>, €3, e4}.
A direct calculation verifies that the following non-zero noncommutative products:

€1+ = —€,01 €3 = —€3,01 - €4 = €4,€) - €3 = 284,

give rise to a compatible pre-Malcev algebra structure A on A. In other words, [A] = A. <o
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Let (A, -) be a pre-Malcev algebra over [F. A triple (V, £, 1) of a vector space V over [F and two linear maps
t,x: A— End(V)(x = £, x = 1) is called a bimodule of A if the following four equations hold:

Uty by — Uyl — 0yt + 0l — Yoy + Oylon + oyt = Oyt — Gxily + Ly, = 0, (4.2)
Uyl — 0yt — 0ly by + 0y — Oty + Gy lory + vonty — Ty — Yyzpa + e = 0, (4.3)

Ulyy = Ueloy = Ualyz + Uty — Cylote + Vyery + Tyuly — 1ty — Grry + L0l = 0, (4.4)
Cicyyz = bynyz = Cogoy) + Loy — Clyle + COL, + €yl — Oyl — Cylon + 0yl = 0, (4.5)

where x,y,z € A. Equivalently, a triple (V,{,1) is an A-bimodule if and only if the direct sum A& V of
vector spaces is turned into a pre-Malcev algebra, called the semi-direct product of A and V via (¢, 1), by
defining the binary product on A® V as

(x,u) - (y,0) == (x -y, £x(0) + v, (1)) (4.6)

for all x, y € A and u,v € V. We denote this pre-Malcev algebra by A<, V.
Suppose that ¢ and r are two linear maps from A to End(V). Consider the dual space V* of V and
End(V*). We define two linear maps ¢*,v* : A — End(V") by

<£;(£)/ U) = <é/ €¥(0)> ’ <r;(é)/ U> == <é/ rx(v» ’ (47)

respectively, where x € A, £ € V* and v € V. Moreover, if (V, £, 1) is an A-bimodule, then one can show via
a direct check that (V*, £* — ¥, —1*) is also an A-bimodule.

Let (A, -) be a pre-Malcev algebra. For elements x, y € A, the left multiplication operator L, is defined
in the Introduction and we also define the right multiplication operator R,(y) := y-x. Let L : A — End(A)
with x = Ly and R : A — End(A) with x — R, for all x € A be two linear maps. Then (A, L, R) is an
A-bimodule and hence (A", L* — R*, —R") is also an A-bimodule.

A bimodule of a pre-Malcev algebra can be used to construct representations of the subadjacent Malcev
algebra. In fact, if (V, ¢, r) is a bimodule of a pre-Malcev algebra A, then it can be checked directly that (V, {)
and (V, ¢ — r) are both representations of the Malcev algebra [A].

Before giving a proof of Theorem 1.4, we first reveal a general connection between O-operators of
Malcev algebras and pre-Malcev algebras, generalizing a link between Rota-Baxter operators and pre-
Malcev algebras ([13, Proposition 9]); also see [2, Section 3] for the case of Lie algebras.

Proposition 4.2. Let (V, p) be a representation of a Malcev algebra A. Given a T € Oa(V, p), we define a binary
product on V by v+ w := p(T(v))w for all v,w € V. Then the following results hold.

(1) (V,*) is a pre-Malcev algebra.

(2) The binary product

T() - T(w) :=T(v*w) (4.8)

gives rise to a pre-Malcev algebra structure on T(V) := {T(v) |v € V} C A.
(3) In particular, if T is surjective, then there exists a compatible pre-Malcev algebra structure Ar on A.

Proof. (1) A direct verification on Eq. (4.1) applies to a proof of the first statement.
(2) We first show that Eq. (4.8) is well-defined. We only need to verify that, if T(v) = 0, then T(v * w) =
T(w*v) =0 for all w € V. In fact, if T(v)=0, then for all w € W, we have

T+w) = T(p(T()w) =0,
Twxv) = T(p(T(w))v) = T(p(T(w))v - p(T(v))w) = T(w)T(v) = 0.
Hence Eq. (4.8) is well-defined. Then it is direct to verify Eq. (4.1) on T(V).

(3) By the second statement, we obtain that A = T(V) has a pre-Malcev algebra structure Ar. It is
sufficient to show that the pre-Malcev algebra Ar is compatible with A. In fact, T(v) - T(w) — T(w) - T(v) =
T(w+w)—Tw=+v) = T(p(T(v))w) — T(p(T(w))v) = T(p(T(v))w — p(T(w))v) = T(v)T(w), where the last equation
follows from the assumption that T € O4(V, p). Hence, [Ar] = A, i.e., Ar is a compatible pre-Malcev algebra
structureon A. 0O
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Now we come to the proof of Theorem 1.4.

Proof. Since T € Ox(V, p) is invertible, for x,y € A, there exist unique v,w € V such that x = T(v) and
y = T(w). By the third statement of Proposition 4.2, there exists a compatible pre-Malcev algebra on A
defined by

x-y = T() - Tw) = T = w) = T(p(T@)w) = T(@T ().
Conversely, we have ida(Liq,x)Y — Lids(»X) = ida(Lx(y) — Ly(x)) = ida(x -y — y - x) = ida(xy) = xy =
ida(x)ida(y) for all x, y € A, which means idy € Oa(A,L). O
Theorem 1.4 has the following two direct applications for which the first one gives a way to construct a
skew-symmetric solution of the CYBE on the semi-direct product of a Malcev algebra A and its representa-

tion (A", L*); and the second one shows that a Malcev algebra admitting a non-degenerate symplectic form
8 must have a compatible pre-Malcev algebra structure; compared with [4] for the case of Lie algebras.

Corollary 4.3. Let A be a pre-Malcev algebra with a basis {ey, ..., e,} and {e1,..., &,} be the basis of A* dual to
{e1,...,en}. Then the element

ri= Z(Ei R & — & ®€i)
i=1
is a skew-symmetric solution of the CYBE on the Malcev algebra [(A] w<;» A".

Proof. Consider the identity map id4. By Theorem 1.4, we see that id, is an O-operator of [A] associated to

(A, L). It follows from Eq. (3.2) thatids = Y./, ida(e;) ® € = Y-, €; ® €;. Thus it follows from Theorem 1.3
thatr = )i (e; ® € — €; ®¢;) is a skew-symmetric solution of the CYBE on the Malcev algebra [A] <. A", as
desired. O

Proposition 4.4. Let A be a Malcev algebra admitting a non-degenerate symplectic form B. Then there exists a
compatible pre-Malcev algebra (A, -) on A such that B(x - y,z) = =B(y, xz) forall x, y,z € A.

Proof. Since 8 is a non-degenerate symplectic form, we define an invertible linear map T : A* — A by
<T’1(x), y> = B(x,y) for x,y € A. A similar argument as in the proof of Theorem 1.2 shows that T €

Ou(A*,ad”). By Theorem 1.4, there exists a compatible pre-Malcev algebra A given by x - y = T(ady (T~ (y)))
for all x, y € A. Hence we derive

Bx-y,2) = B(T@dy(T(y)),2) = (adi (T~ (), z) = = (T~ (y), xz) = —B(y, x2)
for all x, y,z € A. This completes the proof. [

4.2. The CYBE on pre-Malcev algebras
Let (A, ) be a pre-Malcev algebra over F and (V, £, 1) be an A-bimodule. A linearmap T :V — Ais
called an O-operator of A associated to (V, ¢, 1) if

T(v) - T(w) = T(lr)(w) + t160)(0)) (4.9)

for all v, w € V. We write O#(V, ¢, 1) for the set of all O-operators of A associated to (V, ¢, r). We say that an
elementr =) x; ® y; € A® Ais a solution of the CYBE on A if —ryp - 113 + 112 - 123 + 113723 = 0, where

r12'r13=in'xj®yi®yj,r12'rz3=zxi®yi'xj®yj,
i i

13123 = sz‘®xj®yiyj = in®xj®(]/i “Yi— Y Vi)
ij ij
denote the images of r under the three standard embeddings from A ® A to A respectively. We use S(A)
to denote the set of all solutions of the CYBE on A. We first obtain an analogue of Theorem 1.1 in the case
of pre-Malcev algebras and symmetric solutions of the CYBE.
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Theorem 4.5. Let A be a finite-dimensional pre-Malcev algebra over a field IF of characteristic zero and r be a
symmetric element in AQ A. Then r € S(A) if and only if T, € Ox(A*,L* — R*, -R").

Proof. Suppose thatr =) ;x;® y; € A® Ais symmetric. Forall &, 1, € A*, we consider the natural pairing
on A%, and obtain

(E®N®Cm2-113) Z<5®TI®C1xi'xj®]/i®yj>

ij

Y (& xi) n v ()
L]

Z (& myyxi-(Cyj)x)
)

(& Tr(n) - THO))-

Similarly, we have (6 @ 1® C, 112 - 123) = (1, T/(&) - T/(0)) and (£ ® n @ {, 13723y = {C, TH(&E)T,(17)). We observe
that

(& Ty, ) = Ry )©) = ((Lr) = Ry )©), THE)

—(C Lr,p(T&) + (C R (TH(9)))
(C, T(E) - Ty(n) = T(n) - TH(E))
L TOTm),

and an analogous argument shows that <5, Tr(_R},(c)(n))> ={(n, Tx(&) - T,(C)) . Hence

(& T TAQ) = Ti(Ly ) = Ry ()O) = TH=Ry, (1))
= <£/ Tr(n) . Tr(C)) - <Cr Tr(é)Tr(n» - <77r Tr(‘g) : Tr(C» (4~10)

—(E®N® L, —r1p - 113 + 112 - 23 + F13723) .

(=) Now we suppose r € S(A), that is, =112 - 113 + 112 - 123 + 113723 = 0. Thus it follows from Eq. (4.10) that

(&, T.(m) - THO) - T (L, ) = Ry (O = T,(-R}, (1)) = 0. Since & is arbitrary, we see that T,(n) - TH(C) -
T’((L},(rz) —R*Tr(n))(C)) —T,(—R}y(c)(q)) =0,ie. T, € Oz4(A", L' —R*, -R"). (&) Conversely, the assumption that
T, € O4(A",L* — R*,—R"), together with Eq. (4.10), implies that (¢ ® 1 ® (, =712 - 113 + 112 - 123 + F13t23) = 0.

Thus —r1p - 113 + 112 - 723 + 113723 = 0, i.e., ¥ € S(A). The proof is completed. [
The following result is a symmetric element version of Theorem 1.3 for pre-Malcev algebras.

Theorem 4.6. Let (V, ¢, 1) be a representation of a finite-dimensional pre-Malcev algebra A over a field IF of charac-
teristic zero and T : V. — A be a linear map. Suppose that {vq,...,v,} is a basis of V and {1, ..., &} is the dual
basis of V*. Define

T = ZT(@@& EAQV C(AdV)® (A V). (4.11)
i=1

Then T € Ox(V, ¢, v) if and only if sp = T +o(T) € S(A Mgy e V).

Proof. Note that

n

=(sp)iz- (573 = Z(_T(Ui) T) ® & ®Ej = (b = 76,))(E) ® & @ T(v)) (4.12)
ij=1

~(~T7)(€) ® T(0:) ® &)).
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As (Z;"(v,) - r*T(vi))(éj) € V*foralli,je{l,...,n}, we assume that (Z*T(U‘) - r*T(vi))(éj) =m(i)ér + - + a,(ij)En,

where 4,(ij) € F. For any k € {1,...,n}, we have

n

a(if) = <Z as<z'j>5s,vk> = (G = o) &) 6) = = (&), (Criwy = Y1) (@0))

=
Thus
(Crwy = 1)) (&) = ~ kZ‘ (&5, (b = 116))(@0) &- (4.13)
=
Similarly,
Uy (&f) = = ki (&), 170)(@0) ) & (4.14)
=

Hence, it follows from Egs. (4.13) and (4.14) that

Z(f}(y,.) — )N ®ER®T(v)) = Z [— Z <5j, (re) — rT(v[))(Uk)> Ek] ®<&i®T(v))

i1 i\ =
= - Z &®&ERT [Z <5j, (1) — rT(v,-))(vk)> Uj]

k=1 =1
= - i Ei®&ET [i <5k, (brwy — rT(vi))(Uj)> Uk]

=1 =1

- Z Ei®&E®T((brw) — 1()(©))),

i,j=1

and

Y @) 8T ® &= = ) &® Tlrre () © &5

i,j=1 ij=1
Now Eq. (4.12) reads

—(st)12 - (s17)13

= Z(_T(Uz’) T)®&ER®E+ & &R T((Urw) — 10))(07) — &i ® T(17(0,)(01)) ® &5).
i1

We do similar calculations on (st)12 - (S7)23 and (s7)13(sT7)23 and conclude

—(s7)12 - (57)13 + (5T)12 - (5T)23 + (57)13(5T)23

= Y (=T@) - T(0)) + T(lro)(7)) + T(ero () @ & @ (4.15)
ij=1

+ ) E®(T@) - T@)) = T(braoy(07)) = T(er) @) ® &,

ij=1

+ Z &® & @ (T()T(v)) = T((brwy — r1w))(©))) + T((Cr(w)) — ¥107))(©1)))-
ij=1
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We are ready to complete the proof. (=) We assume that T € O4(V, {,1), that is, T(v;) - T(v}) — T(€r)(v))) —
T(YT(v,»)(Ui)) =0forallije{l,...,n. Thus the right-hand side of Eq. (4.15) must be zero. This implies
that —(s7)12 - (57)13 + (57)12 - (5T)23 + (ST)13(ST)23 = O, i.€., 5T is a solution of the CYBE on the pre-Malcev
algebra A w<p__ V*. (&) Suppose that st € S(A wp_+ V*) is a solution of the CYBE. Thus the
left-hand side of Eq. (4.15) is equal to zero. We write {xy,...,x,} for a basis of A and assume that
T(v:) - T(v)) = T(rwy(©)) + Y10 (©i)) = a1(ij)x1 + - - - + aw(ij)x for some a1(ij), . .., am(ij) € F. Hence,

0=)" ) (~axlij)xe ® & ® &+ ax(if)E; © i ® & + (ax(if) — ax(ji))E; ® & ® ).

ij=1 k=1

The fact that {; ®&;®&;, £i®@x®E;, E;®E®x; | 1 < i, j <n,1 <k <mj}isasubset of abasis of (A V)8
implies that these elements are linearly independent over F. Hence, ax(ij) = O for all k,i and j. Hence,
T(vi)-T(v;) = T((€rw)(0}) — 1) (vi)) foralli, j € {1,...,n}. This shows that T € Oz(V,{,v) and we aredone. [

Corollary 4.7. Let A be a pre-Malcev algebra with a basis {ey, ..., e,} and {e1, ..., &y} be the basis of A* dual to
{e1,...,e,}. Then the element

n
s:= Z(e,- ®¢+&®e)

i=1

is a symmetric solution of the CYBE on the pre-Malcev algebra A = o A”.

Proof. Since id # is an O-operator of A associated to the bimodule (A, L, 0), we have i:i;[ =Yl idale)®e =
Y.iLiei ® €. Thus it follows from Theorem 4.6 that s = Y./, (¢; ® €; + €; ® ¢;) is a symmetric solution of the
CYBE on the pre-Malcev algebra A <o A*. [

We close this subsection by establishing connections between invertible O-operators and bilinear forms
on a given pre-Malcev algebra A.

Proposition 4.8. Let A be a pre-Malcev algebra and T : A* — A be an invertible linear map. Suppose B :
A X A — Fis a bilinear form defined by B(x,y) = <T’1(x), y>. Forall x,y,z € A, we have the following results:
(1) T € Oa(A",L* = R*,0) ifand only if B(x - y,z) = =B(y,x -z —z - x).
(2) TeOa(A,L* =R, —R") ifand only if B(x - y,z) = =By, x - 2) + B(y,z - x) + B(x,z - y).
(3) T € Oy (A", L*) if and only if B(xy,z) = B(x, y - z) — By, x - 2).

Proof. We first note that T is invertible, thus for x, y € A, there exist unique &, n € A" such that x = T() and
y =T(n). (1) Assume that T is an O-operator of A associated to the bimodule (A*,L* — R*,0). We note that

Bx-y,z)+By,x-z—z-x) <T‘1(x . y),z> + <T‘1(y),x “z—z- x>
T(T(E) - T(), 2) + (0, L(2) = Re(2))
TUTE) - T() — (L - RY)(1), z)
T(T(E) - T() - T(L; - (), 2)

T™HTE) - T() = T((Liyey = Riye) ), 2)

<
<
<
;

Hence, B(x - y,z) = =B(y,x - z — z - x). Conversely, suppose that B(x - y,z) = -B(y,x -z —z - x). Then

0=8Bx-y,2)+B(y,x-z-z-x)= <T_1(T(£) “T(n) = T((Lye) — R}(g))(ﬂ)))12>- Since z is arbitrary, we see that

T-YT(&) - T(n) - T((L*T(é) - R}(g))(n))) = 0. Therefore, T, € O4(A*,L* — R*,0).
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(2) Suppose that T € Oz(A*,L* —R*,—R*), thenx -y = T(&) - T(n)) = T((L*T(é) - R*T(é))(n) - R*T(q)(é)). We
obtain that

B(X Y, Z)

(T 9),2) = (L) = Rie))n) = R (€), 2)
((L; = RYT () - Ry(T™ (), 2) (4.16)

—(T7 W), (L = R)@) + (T (), Ry(2))
= -By,x-z2)+8B8(y,z-x)+Bxz-y).

Conversely, assume that B(x - y,z) = =B(y, x-z) + B(y, z- x) + B(x, z - y). By a discussion similar to Eq. (4.16),
we see that T(E) - T(n) = T((L}(g) - R*T(é))(n) - R*T(n)(cf)), thatis, T € Ox(A*,L* — R*, —R"), as desired.
(3) Assume that T € Op#(A*, L"), then T(£)T(n) = T(L*T(é)n - L*T(n)é). Hence we have
B(xy,z) - Bx,y-z)+ By, x - 2)
<T‘1(xy), z> - <T‘1 (x),y- z> + <T‘1(y),x - z>
(T (xy), z) = (T (@), Ly(@) + (T (y), L(2))
(THTETM),2) + Ly (), 2) = Ly ), 2)
(THTET) = Ty (M) = Ly (E)),2) = 0.
For the converse statement, we suppose that B(xy,z) = B(x,y - z) — B(y,x - z). Thus 0 = B(xy,z) — B(x, y -

2)+ By, x-z) = <T’1 (T(E)T(n) - T(L*T( g)(77) - L*T(q)(é))),z>. For the non-degeneration of the natural pairing,

we see that T(E)T(n) = T(L}(g)(ﬂ) - L*T(q)(é)), ie,TeOgn(A, L) O

Remark 4.9. Note that besides Malcev algebras, there are some other nonassociative algebras that contain
Lie algebras as a subclass and have attracted many researchers’ attention; such as Hom-Lie algebras [8, 14]
and w-Lie algebras [7, 9, 23]. The method of our article might be applied to a study of the CYBE on
these nonassociative algebras; see [20] for the study on O-operators of Hom-Lie algebras and the classical
Hom-Yang-Baxter equation. &
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