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Topological pseudo orbit tracing property, topological sensitivity and
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Abstract. We introduce and study pseudo orbit tracing property on general topological spaces termed as
topological pseudo orbit tracing property. We prove that on a compact Hausdorff space, a topologically
sensitive dynamical system having topological pseudo orbit tracing property is cofinitely topologically
sensitive and has positive topological entropy. Moreover, we also prove that such a dynamical system is
locally uncountable.

1. Introduction

The notion of pseudo orbit tracing property(also known as shadowing property) was defined by R.
Bowen in 1975 [5]. This concept can be used in computer simulations. For any map on a space to calculate
the value of the map at a point a computer takes a value near to the actual image of the point. So, any
orbit calculated by a computer is a pseudo orbit. Pseudo orbit tracing property(POTP) guarantees that any
pseudo orbit can be approximated by a real orbit in the system. Hence, it becomes natural to study about
the POTP. In this paper, we study relations among the topological version of POTP, sensitivity and entropy
on a compact Hausdorff topological space.

Looking at the importance of POTP many authors have worked on it. In particular, for any map
on a compact interval the fact that sensitivity implies cofinite sensitivity is proved in [19]. It is proved
that if a continuous map on a compact, connected metric space has POTP and has dense set of periodic
points then the map has positive entropy[4]. Relation between POTP and entropy has been studied by
many authors[1, 9, 11, 15, 17, 21]. Moothathu proved that on a compact metric space if a continuous
map has POTP then the restriction of that map to non-wandering set has POTP[20]. Moreover, he also
obtained relations between sensitive points and entropy points on compact metric spaces. S.A. Ahmadi et
al. generalized the result by Moothathu to uniform compact spaces[2]. More results on POTP can be found
in [12, 16, 23]. Some results relating sensitivity and POTP on uniform spaces are proved in [1, 3].

As mentioned in above paragraph, for a continuous map on a compact interval sensitivity implies cofinite
sensitivity, so there is a natural question that can we generalize this result to general topological spaces.
We find out that POTP plays an important role in this. We prove that on a compact Hausdorff topological
space a continuous map having topological sensitivity and topological POTP is cofinitely topologically
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sensitive, has positive topological entropy and the space is locally uncountable. In section 2, we provide
necessary prerequisites required for the remaining sections of the paper. In section 3, we prove that the
restriction of a map on a compact Hausdorff space having topological POTP to non wandering set also has
topological POTP. We also prove that on a compact Hausdorff space if a continuous map has topological
POTP then topological sensitivity of the map implies that the map is cofinitely topologically sensitive and
finally we prove that the space with such a map is locally uncountable. In section 4 we prove results relating
topological entropy and topological sensitivity in presence of topological POTP. We prove that on a compact
Hausdorff topological space if a map has topological POTP and topological sensitivity then every point is
an entropy point. We also obtain relations among various types of mixings in presence of topological POTP
for compact Hausdorff spaces. We show that on a compact Hausdorff space if a map f has topological
POTP and there is a sensitive point such that the same point belongs to the interior of the closure of the set
of recurrent points of the map f × f then that point is an entropy point.

2. Preliminaries

Throughout the paper, we denote the set of natural numbers by N, the set of real numbers by R. For
any r ∈ R, ⌈r⌉ denotes the smallest natural number greater then or equal to r. A subset A of natural numbers
is called syndetic if there exists a k ∈ N such that for any n ∈ N, {n,n + 1, . . . ,n + k} ∩ A , ∅. A subset A of
natural numbers is called cofinite ifN/A is a finite set.

Let (X, f ) be any dynamical system over a metric space X. A sequence x = (x0, x1, x2, . . . ) in X is called
a δ− pseudo orbit for f if d( f (xi), xi+1) < δ for every i ∈ N ∪ {0}. An orbit y = (y0, y1, y2, . . . ) is said to be ϵ−
traced if there exists a z ∈ X such that d( f i(z), yi) < ϵ for every i ∈N ∪ {0}. A dynamical system (X, f ) is said
to have pseudo orbit tracing property(POTP) if for every ϵ > 0 there exists a δ > 0 such that every δ− pseudo
orbit is ϵ− traced.

Let X be any topological space and f : X → X be any map. A space X is called locally uncountable if
every nonempty open set G ⊂ X is uncountable. A point z ∈ X is called a periodic point if there exists an
n ∈ N such that f n(z) = z. For any x ∈ X and any open set G, N(x,G) = {n ∈ N : f n(x) ∈ G}.A point z ∈ X is
called minimal point if for any open set G containing z, N(z,G) is syndetic. The set of minimal points of f is
denoted by M( f ). A point z ∈ X is called a recurrent point if for any open set G containing z there exists an
n ∈ N such that f n(z) ∈ G. The set of recurrent points of f is denoted by R( f ). A point z ∈ X is called a non
wandering point if for any open set G containing z there exists an n ∈N such that f n(G)∩G , ∅. The set of non
wandering points of a map f is denoted byΩ( f ). A map f is called non wondering if for any open set G ⊂ X
there exists an n ∈N such that f n(G) ∩ G , ∅. A map f is called transitive if for any pair of nonempty open
sets U,V there exists an n ∈N such that f n(U)∩V , ∅. A map f is called totally transitive if for any k ∈N, f k

is transitive. We say that f is weakly mixing if for any collection of nonempty open sets U1,U2; V1,V2 there
exists an n ∈N such that f n(U1)∩U2 , ∅ and f n(V1)∩V2 , ∅.We say that f is topologically mixing if for any
pair of nonempty open sets U,V, N(U,V) = {n ∈N : f n(U) ∩ V , ∅} is a cofinite set.

Take a family F of continuos functions from X to Y and x ∈ X. Let Nx denote the collection of all open
sets containing x. We say that F is topologically equicontinuous at (x, y) if for any O ∈ Ny there exist a U ∈ Nx
and a V ∈ Ny such that f (U) ∩ V , ∅ then f (U) ⊂ O. If F is topologically equicontinuous at (x, y) for every
y ∈ Y then we say F is topologically equicontinuous at x and if F is topologically equicontinuous at x for
every x ∈ X then we say that F is topologically equicontinuous[22].

Definition 2.1. ([8]) Let (X, f ) be any dynamical system. An open cover V of X is called a sensitivity cover
if for any open set G there exist an n ∈ N and x, y ∈ G such that ( f n(x), f n(y)) < V × V for any V ∈ V . A
dynamical system (X, f ) is called topologically sensitive if there exists a sensitivity cover.

Let D(V ,G) = {n ∈N : f n(G) 1 V for any V ∈ V }. If there exists an open cover V such that for any open
set G ⊂ X, D(V ,G) is cofinite then (X, f ) is called cofinitely topologically sensitive[7].

Take any dynamical system (X, f ) where X is a compact space and f : X → X is a continuous map.
For any open covers V and U , V is called a refinement of U if for any V ∈ V there exists a U ∈ U such
that V ⊂ U. For open covers V ,U of X, V ∨ U = {U ∩ V : U ∈ U ,V ∈ V }. For open cover U of X,
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f−1(U ) = { f−1(U) : U ∈ U } and for any n ∈ N f−(n+1)(U ) = f−1( f−n(U )). For any open cover V of X and
any n ∈N take open cover V ∨ f−1(V )∨· · ·∨ f−(n)(V ) and for any nonempty open set G ⊂ X, define N(G,V )

to be the minimum cardinality of any subcover of V . Define H(G,V ) = lim
n→∞

log N(G,V ∨ f−1(V )∨···∨ f−(n)(V ))
n+1 . We

say that entropy of f on G is h( f ,G) = sup{H(G,V ) : V is any open cover of G}. We define entropy of f as
h( f ) = sup{H(X,V ) : V is an open cover of X}. We say that x ∈ X is an entropy point if for any open set G
containing x, h( f ,G) > 0.

3. Topological sensitivity and cofinite topological sensitivity

Das et al. generalized the definitions of δ− pseudo orbit, ϵ− tracing and POTP for a dynamical system on
a metric space to a uniform space[6]. Here we provide a topological version of all these definitions and then
we will prove that on compact Hausdorff space, in presence of topological POTP, topological sensitivity
implies cofinite topological sensitivity. Moreover, the space will be locally uncountable.

Definition 3.1. Consider the dynamical system (X, f ), where X is any topological space and f : X→ X is a
continuous map.

1. Let x = (x0, x1, x2, . . . ) be a sequence in X and U be an open cover of X then we say that x is a U −pseudo
orbit if for any n ∈N ∪ {0}, ( f (xn), xn+1) ∈ U ×U for some U ∈ U .

2. Let V be any open cover of X and y = (y0, y1, y2, . . . ) be a sequence in X then we say that y is V −
traced if there exists a z ∈ X such that for any n ∈N ∪ {0}, (yn, f n(z)) ∈ V × V for some V ∈ V .

3. The dynamical system (X, f ) is said to have topological POTP, if for any open cover V , there exists an
open cover U such that every U − pseudo orbit is V − traced.

First we see that the topological POTP is preserved under restriction of the map to the non-wandering
set only. The result for compact metric spaces is proved in [20]. Here, we provide a simpler proof for
generalization of this result to compact topological spaces. First we state a lemma to be used in the next
proposition.

Lemma 3.1. ([13]) Let X be any uniform space and U be an open cover of X, then there exists an open cover s(U )
of X such that for any U1,U2 ∈ s(U ), if U1 ∩U2 , ∅ then U1 ∪U2 ⊂ U for some U ∈ U .

Note that the open cover s(U ) in lemma above need not be unique. We denote s(s(U )) by s2(U ) and
s(sn−1(U )) by sn(U ) for any n ∈N,n ≥ 2.

It is worth mentioning that any space is a uniform space if and only if it is completely regular(See [10]).
As any compact Hausdorff space is completely regular, so is a uniform space also.

Proposition 3.1. Let (X, f ) be a compact Hausdorff dynamical system having topological POTP. Then f |Ω( f ) :
Ω( f )→ Ω( f ) also has topological POTP.

Proof. Let V be any open cover of X and U be an open cover of X such that any U − pseudo orbit is s(V )−
traced.

Let (z0, z1, . . . , zn) be any finite U −pseudo orbit of elements ofΩ( f ). Then for any i ∈ {1, . . . ,n} there exists
a Ui ∈ U such that ( f (zi−1), zi) ∈ Ui ×Ui. As, for any i ∈ {0, 1, . . . ,n}, zi ∈ Ω( f ) and zi ∈ Ui ∩ f−1(Ui+1) (taking
Un+1 to be an open set in U containing f (zn) and U0 to be an open set in U containing z0), so there exist a
large enough ki ∈N and z′i ∈ Ui ∩ f−1(Ui+1) such that ( f ki (z′i ), z

′

i ) ∈ (Ui ∩ f−1(Ui+1))× (Ui ∩ f−1(Ui+1)). So, for
any i ∈ {1, 2, . . . ,n}, ( f ki (z′i ), f (z′i−1)) ∈ Ui×Ui and as ( f (zn), f (z′n)) ∈ Un+1×Un+1 and ( f k0 (z′0), z0) ∈ U0×U0 there-
fore, (zn, f (z′n), . . . , f kn−1(z′n), f (z′n−1), . . . , f kn−1−1(z′n−1) , . . . , f (z′1), . . . , f (k1−1)(z′1), f (z′0), . . . , f k0−1(z′0), z0) is a U −
pseudo orbit from zn to z0. Rewrite this orbit as zn = y0, y1, . . . , yk = z0. Let D = [z0, z1, . . . , zn, y1, . . . , yk−1],
then DDD . . . is a U − pseudo orbit. Let DDD . . . be s(V )− traced by y ∈ X. Then, for any t ∈ N
( f t(n+k)(y), z0) ∈ V′ × V′ for some V′ ∈ s(V ). Since X is compact, so we can take z to be a limit point of the
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sequence ( f t(n+k)(y))t∈N. Then ( f i(z), zi) ∈ V × V for some V ∈ V . As for any open set G containing z there
exist infinitely many t ∈N such that f t(n+k)(y) ∈ G, so f t′ (G) ∩ G , ∅ for some t′ ∈N. Hence, z ∈ Ω( f ).

Now, let (z′0, z
′

1, z
′

2, . . . ) be an infinite U − pseudo orbit of elements of Ω( f ). Then for any n ∈ N, let
(z′0, z

′

1, . . . , z
′
n) be s(V )− traced by y′n ∈ Ω( f ) and assume that z′ is a limit point of the sequence (y′n). As

proceeded in above paragraph, z′ ∈ Ω( f ) and the sequence (z′0, z
′

1, z
′

2, . . . ) is V − traced by z′. Hence,
f |Ω( f ) : Ω( f )→ Ω( f ) has topological POTP.

Next, we prove that topological sensitivity of (X, f ) implies cofinite topological sensitivity of (X, f ) for
a map f having topological POTP on a compact Hausdorff space X. First, we will prove that the map is
syndetically topologically sensitive and then we will prove that it is cofinitely topologically sensitive.

Theorem 3.1. Let X be any compact Hausdorff topological space and f : X → X be a continuous map having
topological POTP then topological sensitivity of f implies that f is cofinitely topologically sensitive.

Proof. Let B be a sensitivity cover for X and G be any open set. Then there exist x1
1, x

1
2 ∈ G and n ∈ N such

that ( f n(x1
1), f n(x1

2)) < B × B for any B ∈ B. For any i1 ∈ {1, 2}, define sequence A1
i1
= (x1

i1
, f (x1

i1
), . . . , f n−1(x1

i1
)).

Let V = s3(B) be an open cover of X and W , a refinement of V such that if for some W ∈ W ,
{x1

1, x
1
2} ∩W , ∅ then W ⊂ G. By definition of topological POTP, there exists an open cover U , a refinement

of W , such that any U − pseudo orbit is W − traced. . Since X is a compact space, so without loss of
generality, we can assume that U is finite and hence there exists an m ∈ N such that for any U ∈ U there
exist a t ≤ m and x, y ∈ U such that ( f t(x), f t(y)) < B × B for any B ∈ B. Note that by our construction
B < s3(B) = V < W < U .

Let U1
1,U

1
2 ∈ U be two open sets such that f n(x1

1) ∈ U1
1 and f n(x1

2) ∈ U1
2. Hence, there exist n2

1,n
2
2 ∈ N,

n2
1,n

2
2 ≤ m and x2

1, x
2
2 ∈ U1

1, x2
3, x

2
4 ∈ U1

2 such that ( f n2
1 (x2

1), f n2
1 (x2

2)) < B×B for any B ∈ B and ( f n2
2 (x2

3), f n2
2 (x2

4)) <

B × B for any B ∈ B. So, for every i2 ∈ {1, 2, 3, 4}, we get the sequence A2
i2
= (x2

i2
, f (x2

i2
), . . . , f n2

⌈i2/2⌉
−1(x2

i2
)) such

that ( f n(x1
⌈i2/2⌉

), x2
i2

) ∈ U ×U for some U ∈ U and ( f n2
i1 (x2

2i1−1), f n2
i1 (x2

2i1
)) < B × B for any B ∈ B and i1 ∈ {1, 2}.

Inductively, for any k ∈ N, k ≥ 2 and any ik ∈ {1, 2, . . . , 2k
} we can find finite sequences Ak

ik
=

(xk
ik
, f (xk

ik
), . . . , f nk

⌈ik/2⌉
−1(xk

ik
)) such that for any k ∈ N and ik ∈ {1, 2, . . . , 2k

} there exists nk
ik
≤ m such that

for any ik ∈ {2ik−1 − 1, 2ik−1}, ( f nk−1
⌈ik−1/2⌉ (xk−1

ik−1
), xk

ik
) ∈ U × U for some U ∈ U and for any ik−1 ∈ {1, 2, . . . , 2k−1

},

( f nk
ik−1 (xk

2ik−1−1), f nk
ik−1 (xk

2ik−1
)) < B × B for any B ∈ B.

Note that (Ak
ik

)k∈N, ik ∈ {2ik−1 − 1, 2ik−1} for any k > 1 and i1 ∈ {1, 2} forms a U − pseudo orbit. Consider
two different U − pseudo orbits, (Ak

ik
)k∈N, (Bk

ik
)k∈N satisfying above conditions. We will show that these

orbits are W − traced by two different points.
Let (Ak

ik
)k∈N be W − traced by y and (Bk

ik
)k∈N be W − traced by z. If A1

i1
, B1

i1
then without loss of generality,

we can assume that A1
i1
= (x1

1, f (x1
1), . . . , f n−1(x1

1)) and B1
i1
= (x1

2, f (x1
2), . . . , f n−1(x1

2)). As ( f n(x1
1), f n(x1

2)) < B × B
for any B ∈ B, ( f n(x1

1), x2
2) ∈ U ×U for some U ∈ U , (x2

2, f n(y)) ∈ V × V for some V ∈ V (this is true because
W is a refinement of V ), ( f n(x1

2), x2
4) ∈ U′ × U′ for some U′ ∈ U , (x2

4, f n(z)) ∈ V′ × V′ for some V ∈ V and
V = s3(B) (note that there is no loss of generality in taking x2

2, x
2
4 here). So, ( f n(y), f n(z)) < V × V for any

V ∈ V . Hence, y , z.
Now, assume that Ak

ik
= Bk

ik
for k ∈ {1, 2, . . . , k′} and Ak′+1

ik′+1
, Bk′+1

ik′+1
. Let Ak′

ik′
= Bk′

ik′
= (xk′

ik′
, f (xk′

i′k
),

. . . , f nk′
⌈ik′ /2⌉

−1(xk′
ik′

)). Again, we can assume that Ak′+1
ik′+1
= (xk′+1

2ik′−1, f (xk′+1
2ik′−1), . . . , f nk′+1

ik′
−1(xk′+1

2ik′−1)) and Bk′+1
ik′+1
=

(xk′+1
2ik′
, f (xk′+1

2ik′
), . . . , f nk′+1

ik′
−1(xk′+1

2ik′
)). As ( f nk′+1

ik′ (xk′+1
2ik′−1), f nk′+1

ik′ (xk′+1
2ik′

)) < B × B for any B ∈ B, for t = n +
k′+1∑
t′=2

nt′
⌈it′ /2⌉

( f nk′+1
ik′ (xk′+1

2ik′−1), xk′+2
2(2ik′−1)) ∈ U×U for some U ∈ U , (xk′+2

2(2ik′−1), f t(y)) ∈ V×V for some V ∈ V , ( f nk′+1
ik′ (xk′+1

2ik′
), xk′+2

4ik′
) ∈

U′ × U′ for some U′ ∈ U , (xk′+2
4ik′
, f t(z)) ∈ V′ × V′ for some V′ ∈ V and V = s3(B), so ( f t(y), f t(z)) < V × V

for any V ∈ V . Hence, y , z. Therefore, for any two different U − pseudo orbits, there exist two different
points V − tracing those orbits.
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For any k ∈ N, take finite orbits (A j
i j
) j∈{1,2,...,k} and (B j

i j
) j∈{1,2,...,k} such that A j

i j
= B j

i j
for j ∈ {1, 2, . . . , k − 1}

and Ak
ik
, Bk

ik
. Then there exist y, z ∈ G such that (A j

i j
) j∈{1,2,...,k} is W − traced by y and (B j

i j
) j∈{1,2,...,k} is W −

traced by z and for t = n +
k∑

t′=2
nt′
⌈it′ /2⌉

, ( f t(y), f t(z)) < V × V for any V ∈ V . Hence, for any t ∈ {n +
k∑

t′=2
nt′
⌈it′ /2⌉

:

it′+1 ∈ {2it′ , 2it′−1}, k ∈ N}, there exist y, z ∈ G, y , z such that ( f t(y), f t(z)) < V × V for any V ∈ V . Since,

{n +
k∑

t′=2
nt′
⌈it′ /2⌉

: it′+1 ∈ {2it′ , 2it′−1}, k ∈N} is a syndetic set. So, (X, f ) is syndetically topologically sensitive.

Take open cover B′ such that for any B ∈ B′ and any i ∈ {1, 2, . . . ,m}, f i(B) ⊂ V for some V ∈ V . Then

as {n +
k∑

t′=2
nt′
⌈it′ /2⌉

: it′+1 ∈ {2it′ , 2it′−1}} is syndetic with nt′
⌈it′ /2⌉

≤ m, so for every t > n there exist x, y ∈ G such

that ( f t(x), f t(y)) < B × B for any B ∈ B′. Hence, (X, f ) is cofinitely topologically sensitive.

From above theorem, we can deduce that if a dynamical system on a compact Hausdorff space is
topologically sensitive but not cofinitely topologically sensitive then the dynamical system cannot have
topological POTP (See [18, 19] for examples).

Theorem 3.2. Let (X, f ) be a topologically sensitive dynamical system having topological POTP with X being a
completely regular space. Then X is locally uncountable.

Proof. Using notations same as used in proof of Theorem 3.1, let B be a sensitivity cover and take any open
set G. Let x1

1, x
1
2 ∈ G,n ∈ N be such that ( f n(x1

1), f n(x1
2)) < B × B for any B ∈ B. Take open covers W ,U as

in Theorem 3.1 such that every U − pseudo orbit is W − traced(Any open cover need not be finite here).
Then there exists sequences (Ak

ik
)k∈N such that {(Ak

ik
)k ∈ N : ik ∈ {2ik−1, 2ik−1} for k > 1} forms a U − pseudo

orbit and hence, as done in Theorem 3.1 for different such U − pseudo orbit there exist different z1, z2 ∈ G
such that the orbits are W − traced by z1, z2. Note that the set {(Ak

ik
)k∈N : ik ∈ {2ik−1 − 1, 2ik−1} for k > 1} is an

uncountable set. Hence, G is uncountable.

Example 3.1. Let X = Q∩ [0, 1] with usual topology and define f : X→ X by f (x) = {2x : 0 ≤ x < 1/2, 2−2x :
1/2 ≤ x ≤ 1}. It is well known that f is sensitive. Since our space is countable so, from above theorem, (X, f )
cannot have topological POTP.

4. Topological entropy

We start with defining a localized version of topological sensitivity and topological entropy.

Definition 4.1. Let (X, f ) be any dynamical system.

1. A point z ∈ X is called a topologically sensitive point if there exists an open cover U such that for any
open set G containing z there exist an n ∈ N and x, y ∈ G such that ( f n(x), f n(y)) < U × U for any
U ∈ U . The set of topologically sensitive points of f is denoted by Sen(1).

2. A point z ∈ X is called a topological entropy point if for any open set G containing z, h( f ,G) > 0. The set
of topological entropy points of f is denoted by Ent( f ).

First, we will show that any topologically sensitive map on a compact Hausdorff space having topological
POTP has positive topological entropy.

T. Arai and N. Chinen showed that a dynamical system on a compact, connected metric space having
dense set of periodic points and POTP has positive entropy[4]. Moothathu showed that on an infinite
compact, connected metric space if a non-wandering map having POTP has sensitivity as well then every
point is an entropy point[20]. Here, we will show that for the above result the condition and property of
the non-wandering map and connectedness of the space or denseness of periodic points is not required for
a dynamical system on compact Hausdorff topological spaces.
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Theorem 4.1. Let (X, f ) be a dynamical system over compact Hausdorff topological space having topological POTP
then topological sensitivity of (X, f ) implies that every point is a topological entropy point and hence (X, f ) has nonzero
topological entropy.

Proof. Using notations used in proof of the Theorem 3.1, take collection of finite orbits {(Ak
ik

) j
k=1 : i1 ∈

{1, 2}, ik ∈ {2ik−1, 2ik−1 − 1} for every k ∈ {2, 3, . . . , j}}. Then these orbits are W − traced by different points, say
{z1, z2, . . . , z2 j }.

Take two different points z′, z′′ ∈ {z1, z2, . . . , z2 j }. We will show that there exists a t ∈ {n} ∪ {n+
j′∑

t′=2
nt′
⌈it′ /2⌉

:

it′+1 ∈ {2it′ , 2it′ − 1}, j′ ≤ j} such that ( f t(z′), f t(z′′)) < V ×V for any V ∈ V . Let ((Ak
ik

) j
k=1), (Bk

ik
) j
k=1 be V − traced

by z′, z′′ respectively. If A1
i1
, B1

i1
then for t = n, we have ( f t(z′), f t(z′′)) < V×V for any V ∈ V . Now, suppose

that Ak′
ik′
= Bk′

ik′
for every k′ < k′′ and Bk′′

ik′′
, Ak′′

ik′′
. Then for t = n +

k′′∑
t′=2

nt′
⌈it′ /2⌉

, we have ( f t(z′), f t(z′′)) < V × V

for any V ∈ V . Hence, we have that for any two different points z′, z′′ ∈ {z1, z2, . . . , z2 j } there exists a

t ∈ {n +
j′∑

t′=2
nt′
⌈it′ /2⌉

: it′+1 ∈ {2it′ , 2it′ − 1}, j′ ≤ j} such that ( f t(z′), f t(z′′)) < V × V for any V ∈ V .

Now, let t j = max{n+
j∑

t′=2
nt′

it′
: it′+1 ∈ {2it′ , 2it′−1}, j′ ≤ j} then as nt′

it′
≤ m for every t′ ∈N so t j ≤ n+( j−1)m.

Now, for open cover V , cardinality of a subcover of V ∨ f−1(V ) ∨ · · · ∨ f−(t j)(V ) covering G is at least 2 j,

so H(G,V ) ≥ lim
j→∞

log 2 j

t j+1 ≥ lim
j→∞

log 2 j

n+( j−1)m+1 =
log 2

m . Hence, x is a topological entropy point implying that

Ent( f ) > 0.

Theorem 4.2. Let X be a compact Hausdorff topological space with topological POTP then we have

1. f is weakly mixing implies f is topologically mixing.

2. f is totally transitive implies f is weakly mixing.

3. X is connected and f is non wandering implies f is totally transitive.

Proof. If X contains only one element then each part is obvious. Next, we prove the lemma assuming X
contains more than one element.

1. Let a, b ∈ X and a , b. Now, let U,V be any pair of nonempty disjoint open sets in X containing a, b
respectively, then there exist open sets U1,V1 such that a ∈ U1 ⊂ U1 ⊂ U and b ∈ V1 ⊂ V1 ⊂ V. Define open
cover V = {U,V,X/(U1 ∪ V1)}. Note that for V , there exists an open cover U such that any U − pseudo
orbit is V − traced. Since X is compact, we can assume that U is finite, say U = {W1,W2, . . . ,Wk}. Without
loss of generality, we can assume that b ∈ Wk. As (X, f ) is weakly mixing, so there exists a p ∈ N such that
f p(Wi) ∩Wk , ∅ for all i ∈ {1, 2, . . . , k}. Now, for any j ∈ N take i ∈ {1, 2, . . . , k} such that f j(a) ∈ Wi and
consider U − pseudo orbit z = (a, f (a), . . . , f j−1(a), zi, f (zi), . . . , f p−1(zi), b), where zi ∈ Wi ∩ f−p(Wk). Assume
that z is V − traced by a′. Since a < V,X/(U1 ∪ V1). So (a, a′) ∈ U × U and similarly ( f p+ j(a′), b) ∈ V × V.
Therefore, f j+p(U) ∩ V , ∅ for any j ∈N. Hence, (X, f ) is topologically mixing.

2. Suppose f is totally transitive and let U′, V′ be nonempty open sets and U1,U2 be nonempty open
sets such that U2 ⊂ U2 ⊂ U1 ⊂ U1 ⊂ U′. Take open cover V = {U′,X/U1} and let U , a refinement of
{U1,X/U2}, be an open cover such that any U − pseudo orbit is V − traced. Then there exists an n ∈N such
that f n(U) ∩ U , ∅ where U ∈ U is an open set contained in U1. Let t ∈ N be such that f nt(U) ∩ V′ , ∅.
Take a ∈ U ∩ f−n(U) and say, a = (a, f (a), f 2(a), . . . , f n−1(a)) then a a . . . aa (a is repeated t times) is a U −

pseudo orbit and hence is V − traced by some y ∈ X. As a ∈ U1 that is a < X/U1 so, (a, y) ∈ U′ × U′ and
(a, f nt(y)) ∈ U′ ×U′ therefore f nt(U′) ∩U′ , ∅ and as U ⊂ U1 ⊂ U′ and f nt(U) ∩ V′ , ∅ so, f nt(U′) ∩ V′ , ∅.
Therefore, (X, f ) is weakly mixing.

3. Let a, b ∈ X, U and V be nonempty disjoint open sets in X such that a ∈ U, b ∈ V. Let U1,V1 be nonempty
open sets such that a ∈ U1 ⊂ U1 ⊂ U and b ∈ V1 ⊂ V1 ⊂ V and take open cover V = {U,V,X/(U1∪V1)}. Let U
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be an open cover such that any U − pseudo orbit is V − traced. Since X is connected, therefore we can find a
sequence a = a0, a1, . . . , an−1, an = b such that for every i ∈ {0, 1, . . . ,n−1}, (ai, ai+1) ∈ U′i×U′i for some U′i ∈ s(U ).
Now, for every i ∈ {0, 1, . . . ,n−1}we can find out a ki ∈N such that (ai, f ki (ai)) ∈ U′×U′ for some U′ ∈ s(U ).
Consider Ai = (ai, f (ai), f 2(ai), . . . , f ki−1(ai)) for every i ∈ {0, 1, . . . ,n − 1}. Note that (ai, f ki (ai)) ∈ U′ × U′ for
some U′ ∈ s(U ) and (ai, ai+1) ∈ U′i × U′i for some U′i ∈ s(U ). Hence, ( f ki (ai), ai+1) ∈ U × U for some U ∈ U .
So, for any p ∈N, (A0A0 . . .A0A1 . . .A1 . . .An−1 . . .An−1b) (where each Ai is repeated p times) is a U − pseudo
orbit. So, there exists a y ∈ U such that f kp(y) ∈ V, where k = k0 + k1 + · · · + kn−1, implying that f p is a
transitive map and hence f is totally transitive.

From above Theorem, Theorem 3.1 and Theorem 4.1, we can deduce that on a compact Hausdorff space
any totally transitive map having topological POTP or when the space is connected, a non wandering map
having topological POTP is cofinitely topologically sensitive and has positive topological entropy.

Proposition 4.1. Let (X, f ) be a compact, Hausdorff dynamical system having topological POTP. Then we have

1. If z ∈ R( f ) then (z, z) ∈ R( f × f ).

2. If z ∈ R( f )/M( f ) then z ∈ Sen( f ).

Proof. 1. Let U and V be any open sets containing z, then z ∈ U ∩ V and hence there exists an n ∈ N such
that f n(z) ∈ U ∩ V implying that ( f × f )n(z, z) ∈ (U × V). Hence, (z, z) ∈ R( f × f ).

2. Since z < M( f ) so there exists an open set G containing z such that for any n ∈ N there exists some
k′ ∈N such that {k′, k′ + 1, . . . , k′ + n} ∩N(z,G) = ∅.

Let G1,G2 be nonempty open sets such that z ∈ G1 ⊂ G1 ⊂ G2 ⊂ G2 ⊂ G. We show that open
cover V = {G,X/G2} is a sensitivity cover for z. Let U , a refinement of V ′ = {G2,X/G1}, be an open
cover such that any U − pseudo orbit is V ′− traced. Let U ∈ U be an open set such that z ∈ U.
As z ∈ R( f ) so there exists an n ∈ N such that f n(z) ∈ U. Now consider U − pseudo orbit, z =
(z, f (z), f 2(z), . . . , f n−1(z), z, f (z), f 2(z), . . . , f n−1(z), . . . ) and let y ∈ G2 be an element such that z is V ′− traced
by y. So for any k ∈ N f nk(y) ∈ G2. Since for every n ∈ N there exists a k′ such that {k′, k′,+1, . . . , k′ +
n} ∩ N(z,G) = ∅, therefore we can find a k ∈ N such that f kn(z) < G. Hence, there exist y, z ∈ G1 such that
( f nk(y), f nk(z)) < V × V for any V ∈ V . Thus, z ∈ Sen( f ).

In Theorem 4.1 we proved that if a dynamical system having topological POTP is topologically sensitive
then every point is an entropy point. So, the question is whether every sensitive point is an entropy point.
In the next theorem, we find required condition for a sensitive point to be an entropy point in a dynamical
system having topological POTP. The metric version of this theorem for compact spaces is proved in [20].

Theorem 4.3. Let X be a compact Hausdorff space and f : X → X be a continuous map having topological POTP.
Let Y ⊂ X be a closed and invariant subset of X and 1 = f |Y. If there exists a point z ∈ Y such that z ∈ Sen(1) and
(z, z) ∈ int(R(1 × 1)) then z ∈ Ent(f) and hence h( f ) > 0.

Proof. Let G1 ⊂ X be any open set containing z and G2 be an open set such that z ∈ G2 ⊂ G2 ⊂ G1.
Then W = {G1,X/G2} is an open cover of X. Let V , a refinement of W , be an open cover of X such that
V ′ = {V ∩ Y|V ∈ V } is a sensitivity cover for z.

As (X, f ) has topological POTP so let U , a refinement of s(s(V )), be an open cover such that any U −
pseudo orbit can be s(s(V ))− traced. Let G ⊂ U∩G1, for some U ∈ U , be an open set containing z such that
(G∩Y)×(G∩Y) ⊂ int(R(1 × 1)). Take n ∈N and (a, b) ∈ R(1×1)∩(G∩Y×G∩Y) such that ( f n(a), f n(b)) < V×V
for any V ∈ V and since (a, b) ∈ R(1 × 1), so there exists a k > n such that ( f k(a), f k(b)) ∈ G × G.

Let A = (a, f (a), f 2(a), . . . , f k−1(a)) and B = (b, f (b), f 2(b), . . . , f k−1(b)). Now, for any n ∈ N, let S be the set
of finite sequences constructed by n permutations of A,B that is S = {A,B}n. Then S contains 2n elements
and every sequence in S is a U − pseudo orbit. Let C and D be two different sequences in S. Assume
C and D are s(s(V ))-traced by xC and xD, then for every t ∈ {0, 1, . . . , k − 1} there exists pt ≤ nk − 1 such
that ( f pt (xC), f t(a)) ∈ V′′1 × V′′1 for some V′′1 ∈ s(s(V )) and ( f pt (xD), f t(b)) ∈ V′′2 × V′′2 for some V′′2 ∈ s(s(V ))
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(If ( f pt (xD), f t(a)) ∈ V′′1 × V′′1 and ( f pt (xC), f t(b)) ∈ V′′2 × V′′2 then we will have a similar case). As for
t′ = n ∈ {0, 1, . . . , k − 1} we have ( f t′ (a), f t′ (b)) < V × V for any V ∈ V and ( f p′t (xD), f t′ (b)) ∈ V′′2 × V′′2 ,
( f pt′ (xD), f t′ (b)) ∈ V′′2 × V′′2 for some V′′1 ,V

′′

2 ∈ s(V ) so, ( f pt′ (xC), f pt′ (xD)) < V′′ × V′′ for any V′′ ∈ s(s(V )).
Hence, xC , xD.

Now, we will show that xC, xD ∈ G1. Without loss of generality, we can assume that the U − pseudo
orbit s(s(V )) traced by xC starts with a. Then a, xC ∈ V′′1 for some V′′1 ∈ s(s(V )). Note that a, z ∈ G ⊂ U for
some U ∈ U and U is a refinement of s(s(V )). So, a, z ∈ V′′ for some V′′ ∈ s(s(V )). Therefore, (z, xC) ∈ V′ for
some V′ ∈ s(V ). Since V is a refinement of W = {G1,X/G2} and z < X/G2, so xC ∈ G1 and similarly xD ∈ G1
for any C,D ∈ S.

As for every sequence in S, there exists a different tracing point and there are 2n sequences in S, so
minimum cardinality of s(s(V )) ∨ f−1(s(s(V ))) ∨ · · · ∨ f−nk−1(s(s(V ))) that covers G1 is at least 2n. Therefore,
N(G1, s(s(V )) ∨ f−1(s(s(V ))) ∨ · · · ∨ f−nk−1(s(s(V )))) ≥ 2n and so h( f ,G1) ≥ lim

n→∞

log 2n

nk =
log 2

k . Hence, z ∈ Ent( f )

and h( f ) > 0.

Kumar & Das proved that any minimal non topologically equicontinuous dynamical system is topolog-
ically sensitive[14]. We use this fact in next corollary.

Corollary 4.1. Let (X, f ) be a dynamical system having topological POTP with X being a compact Hausdorff space.
If there exists a z ∈ R( f )/M( f ) or z belonging to a minimal non-topologically equicontinuous subsystem of (X, f ) then
h( f ) > 0.

Proof. For the first part, since z ∈ R( f )/M( f ), so by Proposition 4.1, z ∈ Sen( f ). Take Y = O f (z) and 1 = f |O f (z).

Then (Y, 1) is transitive and hence 1 × 1 is non wandering. So, (z, z) ∈ int(R(1 × 1)). Hence, by Theorem 4.3,
h( f ) > 0.

For the second part, let z ∈ (Y, 1) where (Y, 1) is a minimal non-topologically equicontinuous subsystem
of (X, f ). Since (Y, 1) is minimal and non-topologically equicontinuous so (Y, 1) is sensitive and as 1 is
transitive so 1 × 1 is non wandering and hence, z ∈ Sen(1) and (z, z) ∈ int(R(1 × 1). Therefore, again by
Theorem 4.3 h( f ) > 0.
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