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Abstract. In this paper, four new families of composite models are developed for modeling claim severity
of mixed sizes. These models are developed, considering generalized log-Moyal distribution for the tail
using Mode-Matching techniques. The proposed models are applied to fit well-known Danish fire insurance
data set. The comprehensive study of model selection suggests that the proposed composite models with
generalized log-Moyal distribution for the tail are an appropriate choice as compared to other heavy-tailed
distributions. In addition to this, the behavior of risk measures viz. Value-at-Risk and Limited expected
value, for proposed models, are assessed and compared with other existing models.

1. The first section

In real-life situations, often the random variable under study may come from either a single probability
distribution or from a set of distributions. Such a situation arises in modeling financial losses and claim
severity in insurance. Modeling such a data set becomes easy, if the underlying distributions come from
the same family, say Lognormal, Pareto, etc., but if they come from different families, the problem becomes
complex. Moreover, it is important to calculate risk measures such as Value-at-Risk (VaR) and Limited
Expectation Value (LEV) which are required in the computation of future price of the insurance product.
One key feature of such data sets is that they possess small and moderate values with high frequency and
have inevitably few large values with low frequency. Besides this, these data are unimodal and highly
positively skewed. Hence, fitting appropriate probability distribution to the loss data becomes crucial
in such modeling when the data spreads over a wide range of magnitude. This attracted researchers to
develop methods such as a mixture of two or more families (See,[13]) and method of composition of two or
more distributions and tested the adequacy of the developed models for their data sets.

For such cases the composition of the distributions is proposed at the point of composition, commonly
known as the threshold point, which could be fixed or random. [8] proposed the first generation of
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composite models using Lognormal distribution to model small and moderate claims that occur with high
frequency up to a fixed threshold and thereafter Pareto distribution to the large claims with low frequency
in the tail. As the parameters increase while the composition of distributions, [8] introduced a common
normalization constant and imposed additional constraints to ensure continuity and differentiability at
the threshold to obtain a smooth composite density. [20] suggested an improvement in the composite
Lognormal-Pareto model by taking unrestricted mixing weights and suggested mixing weights depending
on the distribution parameters give a better fit as compared to constant coefficients which as in [8]. [7],
[11], [21] considered Weibull distribution for the head instead of Lognormal distribution. [17] presented a
new R package CompLognormal for computing the probability density function (pdf), cumulative density
function (cdf), quantile function and for generating random numbers of any composite model based on the
Lognormal distribution. The use of the package is illustrated using a real dataset. Further, adopting the
methodology of [20], [16] proposed various composite models by considering Burr, Loglogistic, Paralogistic,
and Generalized Pareto distribution for the tail of the data. The R package gendist, which calculates pdf,
cdf, and quantile functions, and generates random values for numerous probability distribution models,
such as the mixture model, composite model, folded model, skewed symmetric model, and the arc tan
model is introduced by [3]. These models are commonly employed in the literature, and the R functions
included in this package offer flexibility in handling various univariate distributions available in other R
packages.

[6] introduced another composite model by matching the two families of distribution at modal value
and proposed Lognormal-Stoppa and Weibull-Stoppa models. This approach replaces the differentiability
conditions at the threshold value by matching the modal value of densities. Further, in the Mode-Matching
(MM) method, reduction in parameters can be easier as compared to obtaining second-order derivative
required to make the composite density smoother.

[10] undertook a comprehensive study of 256 different composite models by combining 16 commonly
used parametric distributions as head and tail distributions. Their findings suggest that for the celebrated
Danish fire loss data, distributions such as Weibull, Paralogistic, and Inverse Burr as the head distribution is
found to be superior for small and moderate claims while Inverse Weibull, Inverse Paralogistic, Loglogistic,
Burr, Inverse Gamma seem to be a better choice for modeling the tail. Surprisingly distributions like Pareto
and Generalized Pareto are not included among the top 20 best models based on the Bayesian Information
Criterion (BIC) value.

Recently, [4] analyzed 25 composite models generated from a foundation of 5 folded distributions for
modeling Danish fire insurance loss data set. The distributions encompass the folded Cauchy (FC), the
folded t-distribution (FT) with a scale parameter, the folded normal (FN) distribution, the folded logistic
(FL) distribution, and the folded Gumbel (FG) distribution. To date, these models represent the most
effective model in achieving a high level of goodness-of-fit according to Bayesian Information Criteria (BIC)
for Danish fire insurance loss data set.

[5] proposed a two-parameter heavy-tailed distribution namely ”generalized log-Moyal (GlogM) distri-
bution”, which gives a better fit than many classical two-parameter heavy-tailed distributions for modeling
insurance claim/loss datasets. Moreover, actuarial measures, viz. Value-at-Risk (VaR), conditional tail ex-
pectation (CTE), and Limited Expected Value (LEV), obtained for GlogM distribution can also be expressed
in closed form which encourages the practitioner to use it for insurance losses. [14] proposed a gamma mix-
ture of the GlogM distribution and used it in analyzing the Chinese earthquake loss data set and Norwegian
fire claim data set. Its multivariate generalization with dependence function is discussed in [15]. The fact
that GlogM gives a fairly good fit at the tail when compared with the other two parameter heavy-tailed
models motivates us to explore a new class of composite distributions with GlogM distribution as a tail
distribution. Further, to make our study more exhaustive we consider Lognormal, Weibull, Paralogistic,
and Inverse Burr distributions for the head as suggested in [10]. Hence in this omnibus study of composite
models, we propose a new family of composite models using the ”Mode-Matching(MM)” technique.

The rest of the paper is structured as follows. In section 2, a brief outline of composite models generated
by CC and MM techniques and a summary of GlogM distribution are presented. Section 3 comprises of
detailed discussion of the Lognormal-GlogM, Weibull-GlogM, Inverse Burr-GlogM and Paralogistic-GlogM
composite models. Analytical expressions for actuarial risk measures of these composite distributions are
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presented in section 4. The effectiveness of the fitting of the proposed models to the insurance loss dataset
and its comparison with existing composite distributions are demonstrated in Section 5. Finally, some
concluding remarks along with future possible extensions, are drawn in section 6.

2. A general frame work of Composite Models

A general framework of composite models proposed by [2] and [6] are as follows:

2.1. Composite Model-1: CC Technique

The composite models proposed by [2] consider the right truncated and left truncated density at thresh-
old θ as Head and Tail distributions respectively. They also use unrestricted mixing weight to make the
resultant density smooth and differentiable. The probability density function (pdf) of the composite model
can be written as

fH,T(x) =

rCC
H,T f ∗H(x|Ξ1, θ) for 0 < x ≤ θ

(1 − rCC
H,T) f ∗T(x|Ξ2, θ) for θ < x < ∞

(1)

where H and T stand for the head and tail part of the composite modeling framework. CC represents
the composite models generated using the Classical Composition technique. Ξ1 and Ξ2 are the parameter
space of the head and tail part density of the composite model 1. rCC

H,T ∈ [0, 1] and θ are mixing weight
and threshold parameters of the composite model developed using the CC technique having H and T
part density respectively. The function f ∗H(x|Ξ1, θ) = fH(x|Ξ1)

FH(θ|Ξ1) and f ∗T(x|Ξ2, θ) = fT(x|Ξ2)
1−FT(θ|Ξ2) are the adequate

truncation of the pdfs fH and fT upto and after an unknown threshold value θ respectively.

• The value of weight parameter rCC
H,T is obtained by continuity condition imposed at threshold θ i.e.

rCC
H,T f ∗H(θ|Ξ1, θ) = (1 − rCC

H,T) f ∗T(θ|Ξ2, θ). Hence, we get

rCC
H,T = rCC

H,T(θ,Ξ1,Ξ2) =
fT(θ|Ξ2).FH(θ|Ξ1)

fT(θ|Ξ2).FH(θ|Ξ1) + fH(θ|Ξ1).(1 − FT(θ|Ξ2))
(2)

• Further, imposing the differentiability condition at θ makes the resulting density smooth as

rCC
H,T f ∗

′

H (θ|Ξ1, θ) = (1 − rCC
H,T) f ∗

′

T (θ|Ξ2, θ) (3)

These above conditions reduce the number of parameters and make the resulting density continuous and
differentiable. Henceforth we refer to this technique of generating composite model as CC Technique.

2.2. Composite Model-2: MM Technique

[6] gave another viewpoint on the composition of two densities. Depending on how fast the probability
decreases from the mode value, the densities at both sides of the modal value be considered. Hence, the
resulting distribution supports the data in a more balanced way. The head part density of the composite
model is used up to the modal value and thereafter the density of the tail part is considered. We refer to this
technique as the ”MM technique”. The pdf of the composite distribution obtained from the MM technique
is given as,

fH,T(x) =

rMM
H,T f ∗H(x) for 0 < x ≤ xmo

(1 − rMM
H,T ) f ∗T(x) for xmo < x < ∞

(4)
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where rMM
H,T ∈ [0, 1] and xmo are the mixing weight and threshold parameter of the composite model developed

using MM technique having H and T part density respectively, f ∗H(x) = fH(x)
FH(xmo) and f ∗T(x) = fT(x)

1−FT(xmo) . Instead
of using traditional differentiability conditions at threshold value, an MM technique is used to ensure the
differentiability of the resulting density. Denoting the mode of the head and the tail distribution by xH

mo and
xT

mo respectively, the MM conditions are

xH
m0 = xT

m0 (5)

rMM
H,T f ∗H(xH

m0) = (1 − rMM
H,T ) f ∗T(xT

m0). (6)

Equality in (5) allows us to drop the ′H′ and ′T′ labels. Equation (6) implies that the continuity condition
is satisfied and gives the weight parameter rMM

H,T as

rMM
H,T =

fT(xmo).FH(xmo)
fT(xmo).FH(xmo) + fH(xmo).(1 − FT(xmo))

(7)

Condition (5) surpasses the differentiability condition, as for uni-model distribution, the derivative of
density at the modal value is zero. The easy implementation of the MM condition 5 as compared to the
CC technique enables us to (i) extend the literature on the MM technique to generate composite models to
analyze the data of mixed sizes (ii) reduce the computational burden of the estimation procedure. Similar
to the traditional CC technique, this methodology includes unrestricted mixing weights. However, it
offers a more straightforward model derivation compared to the traditional method, particularly when the
distribution’s mode exhibits a closed-form expression.

2.3. The generalized log-Moyal distribution
The generalized log-Moyal (GlogM) distribution was proposed by [5] as a two-parameter heavy-tailed

distribution with parameters α and β. The pdf and cdf of GlogM distribution are given by

fGlo1M(x) =
1

√
2πxβ

(
α
x

) 1
2β

e−
1
2 ( αx )

1
β

for x > 0, α > 0, β > 0 (8)

FGlo1M(x) =erfc
[

1
√

2

(
α
x

) 1
2β
]

(9)

where erfc(.) is the complementary of the error function given by erfc(x)=
∫
∞

x e−t2 dt.
The closed-form expressions for rth moment about origin, variance, Mode, Value-at-Risk (VaR), and Limited
Expected Value (LEV) of GlogM(α,β) are

E(Xr) =
∫
∞

0
xr f (x) dx =

αr

2rβ
√
π
.γβ(r), r <

1
2β

where γβ(r) = Γ( 1
2 − rβ). By using the above equation one can easily find that

E(X) =
α

2β
√
π
.γβ(1), β <

1
2
. (10)

and

V(X) =
α2

22β
√
π
.

[
γβ(2) −

1
√
π
γ2
β(2)

]
, β <

1
4
. (11)

Mode of the GlogM(α,β) is given by

xmo =
α

(1 + 2β)β
. (12)
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Value-at-Risk for the GlogM(α,β) is

VaRγ(X) = α2−βerfc←(q)−2β. (13)

Limited Expected Value (LEV) of GlogM(α,β) is given as

LEVu(X) = u.erf


(
α
u

) 1
2β

√
2

 +
α2−βΓ

(
1
2 − β,

1
2

(
α
u

)1/β
)

√
π

, β <
1
2
. (14)

3. Composite H-generalized log-Moyal models via MM Technique

Composite H-generalized log-Moyal models make use, of generalized log-Moyal distribution beyond
the unknown threshold value and four distributions for the head (H) part of the proposed composite
models. In this section we derive the H-Composite generalized log-Moyal models by imposing the MM
technique discussed in section 2.2. We consider four different families of distributions for modeling the
head part of the composite model, these distributions are as follows

1. Lognormal (L) distribution:

fL(x) =
1

√
2πσx

exp

−1
2

(
log(x) − µ

σ

)2
 , and FL(x) = Φ

(
log(x) − µ

σ

)
,

2. Weibull (W) distribution:

fW(x) =
τ
ϕ

exp
{
−

(
x
ϕ

)τ} (
x
ϕ

)τ−1

, and FW(x) = 1 − exp
{
−

(
x
ϕ

)τ}
,

3. Inverse Burr (IB) distribution:

fIB(x) =
µσ(xτ)µσ

x [(xτ)σ + 1]µ+1 , and FIB(x) =
[
((τx)σ + 1)−µ (τx)µσ

]
,

4. Paralogistic (P) distribution:

fP(x) =
µ2(xτ)µ

x [(xτ)µ + 1]µ+1 , and FP(x) =
[
1 −

(
1

(τx)µ + 1

)µ]
.

Proposed Composite Models with GlogM tail
Let X follow the composite density with GlogM distribution as the tail distribution developed using MM
technique having density of the form

f MM
H,Glo1M(x) =


rMM

H,Glo1M
fH(x)

FH(xmo) for 0 < x ≤ xmo

(1 − rMM
H,Glo1M)

α
1

2β exp{− 1
2 ( αx )

1
β }

√
2πβx

1
2β +1

(
1−erfc

(
1
√

2 ( α
xmo )

1
2β

)) for xmo < x < ∞ (15)

with cdf given by

FMM
H,Glo1M(x) =


rMM

H,Glo1M
FH(x)

FH(xmo) for 0 < x ≤ xmo

rMM
H,Glo1M + (1 − rMM

H,Glo1M)
erfc

(
1
√

2 ( αx )
1

2β

)
−erfc

(
1
√

2 ( α
xmo )

1
2β

)
1−erfc

(
1
√

2 ( α
xmo )

1
2β

) for xmo < x < ∞.
(16)

where rMM
H,Glo1M is the mixing weight parameter of composite distribution with Head distribution H, and

GlogM tail distribution developed using MM technique and xmo is the threshold parameter. Considering
L, W, IB, and P distributions for the head part of the composite model, the mixing weight parameter and
the parametric relation obtained from the MM technique are given in Table 1
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Table 1: Mixing weight (rMM
H,T ) and expression for reduced parameter obtained from (5) and (6) for different composite models developed

using MM technique

Head Tail rMM
H,T Reduced Parameter

Lognormal GlogM rMM
L,Glo1M =

1
√

2πxm0β

(
α

xm0

) 1
2β

e−
1
2 ( α

xm0
)

1
β
.FL(xm0)

1
√

2πxm0β

(
α

xm0

) 1
2β

e−
1
2 ( α

xm0
)

1
β
.FL(xm0)+ fL(xm0).

erf

 1
√

2

(
α

xm0

) 1
2β


σ =

√
µ − log

(
α

(1+2β)β

)

Weibull GlogM rMM
W,GLo1M =

1
√

2πxm0β

(
α

xm0

) 1
2β

e−
1
2 ( α

xm0
)

1
β
.FW(xm0)

1
√

2πxm0β

(
α

xm0

) 1
2β

e−
1
2 ( α

xm0
)

1
β
.FW(xm0)+ fW(xm0).

erf

 1
√

2

(
α

xm0

) 1
2β


ϕ = α

(1+2β)β

(
τ
τ−1

) 1
τ

Inverse Burr GlogM rMM
IB,Glo1M =

1
√

2πxm0β

(
α

xm0

) 1
2β

e−
1
2 ( α

xm0
)

1
β
.FIB(xm0)

1
√

2πxm0β

(
α

xm0

) 1
2β

e−
1
2 ( α

xm0
)

1
β
.FIB(xm0)+ fIB(xm0).

erf

 1
√

2

(
α

xm0

) 1
2β


τ =

(2β+1)β
(
µσ−1
σ+1

)1/σ

α

Paralogistic GlogM rMM
P,Glo1M =

1
√

2πxm0β

(
α

xm0

) 1
2β

e−
1
2 ( α

xm0
)

1
β
.FP(xm0)

1
√

2πxm0β

(
α

xm0

) 1
2β

e−
1
2 ( α

xm0
)

1
β
.FP(xm0)+ fP(xm0).

erf

 1
√

2

(
α

xm0

) 1
2β


τ =

(2β+1)β
(
µ−1
µ2+1

)1/µ

α

4. Actuarial Measures of composite H-GlogM models

Risk measures such as Value-at-Risk (VaR), tail value-at-risk (TVaR), and Limited Expected Value (LEV)
are used to ensure the insolvency of the business with a specified degree of certainty. The VaR, TVaR, and
LEV for the composite model are as follows:

4.1. Value-at-Risk
The Value-at-Risk (VaRγ(X)) of a rv X at level γ is the γ − th quantile of rv X and is defined as

VaRγ(X) = inf{x ∈ R : FX(x) ≥ γ}.

Hence for composite H-GlogM models the VaRγ(X) is given as

VaRγ(X) =


F←H

(
γ

rMM
H,Glo1M

FH(xmo)
)

if 0 < γ ≤ rMM
H,Glo1M,

F←Glo1M

(
γ−rMM

H,Glo1M

1−rMM
H,Glo1M

(1 − FGlo1M(xmo)) + FGlo1M(xmo)
)

if rCC
H,Glo1M < γ < 1,

(17)

where F←H and F←Glo1M are inverse cdf of Head and GlogM distribution respectively. The analytical expressions
of Value-at-Risk for different families of proposed composite models are given in Table 2.

4.2. Limited Expected Value
In deciding the reinsurance premium, one of the prime measures is the ”expected value on or below the

threshold u”, known as the limited expected value (LEV), given as

LEVu(X) := E(X ∧ u) =
∫ u

0
x f (x)dx + u(1 − F(u)) (18)
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For proposed composite models with generalized log-Moyal tail, the LEVu(X) is

LEVu(X) =



∫ u

0 x fH(x)
FH(xmo) dx + u

(
1 − rMM

H,Glo1M
FH(u)

FH(xmo)

)
if u < xmo,

rMM
H,Glo1M

∫ xmo

0 x fH(x)
FH(xmo) dx + (1 − rMM

H,Glo1M)
∫ u

xmo
x fGlo1M(x)

FGlo1M(xmo)
dx

+u
(
1 −

(
rMM

H,Glo1M + (1 − rMM
H,Glo1M)

FGlo1M(u)−FGlo1M(xmo)

FGlo1M(xmo)

))
if u > xmo.

(19)

see [19] for the proof of the above expression. The expressions for LEV obtained for proposed composite
models having various head distributions and GlogM as tail distribution are given in Table 3.

Table 2: Analytical Expression for Value-at-Risk at security level γ for proposed composite models developed using MM technique

Head Tail VaRγ(X)

Lognormal GlogM


exp

{
µ + σ

(
Φ←(( γ

rMM
L,Glo1M

)Φ( log xmo−µ
σ ))

)}
if 0 < γ ≤ rMM

L,Glo1M

(
1

AMM
L,Glo1M

)2β
if rMM

L,Glo1M < γ ≤ 1

Weibull GlogM



(
−ϕτ log

(
1 − ( γ

rMM
W,Glo1M

)(1 − e−
(

xmo
ϕ

)τ
)
)) 1

τ

if 0 < γ ≤ rMM
W,Glo1M

(
1

AMM
W,Glo1M

)2β
if rMM

W,Glo1M < γ ≤ 1

Inverse Burr GlogM



 τ−σ

1−

 γ

rMM
IB,Glo1M

−1/µ

((xmoτ)µσ((xmoτ)σ+1)−µ)−1/µ


1/σ

if 0 < γ ≤ rMM
IB,Glo1M

(
1

AMM
IB,Glo1M

)2β
if rMM

IB,Glo1M < γ ≤ 1

Paralogistic GlogM



1
τ

 11− γ

rMM
P,Glo1M

(
1− 1
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)
. The subscript H in rMM

H replaces

with L, W, IB or P for Lognormal, Weibull, Inverse Burr and Paralogistic distribution.

5. Numerical Application

We discuss the applicability of the proposed composite models on one real-world insurance data set.
The first data set, namely ”Danish Fire Losses”, is popularly used for severity modeling using composite
distribution. It contains fire insurance losses in millions of Danish kroner (Dkr) from the year 1980 to 1990
inclusively, adjusted to reflect 1985 values. The data set is available in the SMPracticals package in R
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Table 3: Analytical Expression for Limited Expected Value of Proposed Composite Models
Head Tail LEVu(X)

Lognormal GlogM
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Weibull GlogM



rMM
W,Glo1Mϕ

(
Γ( 1+τ

τ )−Γ
(

1+τ
τ ,

(
u
ϕ

)τ))
1−e

−

(
u
ϕ

)τ + u

 (1−e
−

(
xmo
ϕ

)τ
)−rMM

W,Glo1M(1−e
−

(
u
ϕ

)τ
)

(1−e
−

(
xmo
ϕ

)τ
)

 if 0 < u ≤ xmo

rMM
W,Glo1Mϕ

(
Γ( 1+τ

τ )−Γ
(

1+τ
τ ,

(
xmo
ϕ

)τ))
1−e

−

(
xmo
ϕ

)τ +
(1−rMM

W,Glo1M)α
(
Γ
(

1
2−β,

1
2 ( u

α )−1/β
)
−Γ

(
1
2−β,

1
2 ( α

xmo )1/β
))

√
π2βerf

 ( α
xmo )

1
2β

√
2


+u

[
1 − (rMM

W,Glo1M + (1 − rMM
W,Glo1M)

FGlo1M(u)−FGlo1M(xmo)
1−FGlo1M(xmo) )

]
if xmo < u ≤ ∞

Inverse Burr GlogM
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where, 2F1 (a, b, c, d) is Hypergeometric function and 2F̃1(a, b; c; d)
is Hypergeometric 2F1 Regularized functions.
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repository. Danish data set is being used extensively to demonstrate the applicability of different composite
models for loss severity modeling. The descriptive statistics for the Danish data set are given in Table
4. and it can be observed that the data set exhibits characteristics like high skewness value indicating
right-skewed data, a huge difference between Maximum to Q3 i.e. 260 for Danish data set indicating that
long tail behavior and unimodality. We use a method of maximum likelihood for estimating the parameters
of all the proposed models. As the likelihood equation for composite models is not in closed form, we use
the numerical optimization tool ”nlm()” in R programming language to optimize the likelihood and obtain
estimated parameters. The initial values of parameters are selected using the random selection method
proposed in [10]. We compare the fitting results for proposed composite distributions obtained using the
MM technique with distributions proposed in [6]. The estimated values of parameters obtained for different
composite models using the MM technique for Danish data set are given in Table 5. These results of fitting
using MM techniques for Danish data set are shown in Table 6.

We also compute Negative loglikelihood value (NLL), Akaike information criterion (AIC) given as
2×NLL+2k, where k is a number of parameters and Bayesian information criterion (BIC) computed as
2×NLL+k × log n for the model assessment. Note that for all these above information criteria, smaller
values indicate a better fit of the model to the data. The models are presented in order of BIC value as it
accommodates both the number of observations (n) as well as a number of parameters (k).

Table 4: Descriptive statistics of Danish Dataset

Measures Danish

n 2492
Mean 3.06
Std.Dev 7.98
Min 0.31
Mode 0.89
Q1 1.16
Median 1.63
Q3 2.65
CV 2.60
Max. 263.25
Skewness 19.88

Table 5: Parameter estimates obtained for the top 15 best fitting composite models developed using MM techniques for Danish dataset
(arranged according to the ascending values BIC).

Head Tail µ̂ σ̂ τ̂ α̂ β̂ γ̂ δ̂ ψ̂ x̂0
ˆrMM

H,T ˆxmo

Weibull GlogM – – 16.314 1.121 0.338 - - 0.944 - 0.076 0.940
Inverse Burr GlogM 0.24 60.000 1.056 1.103 0.342 - - - - 0.064 0.923
Paralogistic GlogM 16.401 - 0.892 1.121 0.338 - - - - 0.077 0.941
Weibull Burr 0.330 4.320 16.188 – 1.141 - - 0.946 - 0.077 0.943
Inverse Burr Burr 0.116 127.266 1.080 0.366 3.916 1.150 - 0.055 0.910
Paralogistic Burr 0.329 4.3283 16.268 – 1.141 - - 0.889 - 0.078 0.943
Weibull Stoppa - - 16.171 - - 1.730 1.495 0.942 0.741 0.081 0.945
Weibull Lomax 0.969 – 15.345 0.561 0.971 – – – 0.139 0.991
Inverse Burr Inverse Weibull 1.52 x 10−2 1.04 x 103 1.118 1.715 - 1.163 – – - 0.043 0.8903
Weibull Inverse Weibull - 1.198 17.150 1.751 - - - 0.929 - 0.065 0.9259
Paralogistic Inverse Weibull 17.206 1.199 0.911 1.752 – - - - - 0.065 0.926
Inverse Burr Stoppa 0.238 64.999 1.078 – – 54.998 1.722 – 0.114 0.053 0.905
Paralogistic Stoppa 17.133 – 0.909 – – 54.996 1.744 – 0.120 0.066 0.927
Inverse Burr Inverse Paralogistic 4.36 x 10−4 3.53 x 104 1.130 1.952 1.099 - - - - 0.039 0.887
Weibull Inverse Paralogistic 1.974 1.082 18.154 - - - - 0.914 - 0.056 0.911

Table 6 shows that the top three ranked models developed using the MM technique for Danish dataset
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Table 6: Results for the top 15 best fitting composite models developed using MM technique for Danish dataset (arranged in the
ascending order of BIC).

Head Tail Parameter NLL AIC BIC Estimated Mode
Weibull GlogM 3 3818.42 7642.84 7660.31 0.9407
Inverse Burr GlogM 4 3814.62 7637.23 7660.52 0.9230
Paralogistic GlogM 3 3818.58 7643.16 7660.63 0.9413
Weibull Burr 4 3817.89 7643.78 7667.06 0.9422
Inverse Burr Burr 5 3814.12 7638.24 7667.34 0.9100
Paralogistic Burr 4 3818.04 7644.08 7667.36 0.9429
Weibull Stoppa 4 3818.82 7645.64 7668.92 0.9647
Weibull Lomax 4 3823.70 7655.40 7676.68 0.9913
Inverse Burr Inverse Weibull 4 3823.96 7655.92 7679.20 0.8902
Weibull Inverse Weibull 3 3832.77 7671.54 7689.00 0.9258
Paralogistic Inverse Weibull 3 3832.99 7671.98 7689.44 0.9267
Inverse Burr Stoppa 5 3825.44 7660.89 7689.99 0.9055
Paralogistic Stoppa 4 3832.24 7672.49 7695.77 0.9276
Inverse Burr Inverse Paralogistic 4 3847.08 7702.16 7725.44 0.8873
Weibull Inverse Paralogistic 3 3858.65 7723.30 7740.76 0.9118

based on the BIC values are having GlogM distribution at the tail and Weibull, Inverse Burr and Paralogis-
tic at the head with BIC values 7660.31, 7660.52 and 7660.63 respectively. It is worth highlighting that the
difference between the BIC value of third rank model and fourth rank model is significant, which suggests
that modeling the tail part of Danish data with GlogM distribution is a good option to reduce the penalty
associated with number of parameters of the model. It is noted that, for the Danish data set, the three
composite models reported in [4] namely FC-FC, FC-FT, FL-FT have the smallest BIC values i.e. 7642.491,
7620.623, and 7651.295 respectively which are lower than the BIC values of the proposed models. However,
the estimates of risk measures for the Danish data set of the models proposed by [4] are far away from their
empirical counterparts as can be seen in 5.2.

5.1. Goodness-of-fit test
We use the following three Goodness-of-fit (GoF) tests based on the empirical df, which measures

the ‘distance’ between the distribution function of the fitted model and empirical df obtained from the
data. Denote the cdf of the fitted model by F̂, and arrange the data in increasing order of magnitude
by x(1), · · · , x(n). Then we have: (i) Kolmogorov–Smirnov test statistic (KSn), KSn = max{D+,D−}, where
D+ = max j=1,··· ,n

(
j/n − F(X( j); σ̂n)

)
and D− = max j=1,··· ,n

(
F(X( j); σ̂n) − ( j − 1)/n

)
, (ii) the Cramér-von Mises test

statistic (CvMn), CvMn =
1

12n +
∑n

j=1

(
F(X( j); σ̂n) − 2 j−1

2n

)2
, and the (iii) Anderson–Darling test (ADn) ADn=−n −

1
n
∑n

j=1 log
(
F(2 j−1)(X( j); σ̂n)F̄(2n−2 j+1)(X( j); σ̂n)

)
. For all the GoF measures mentioned above, smaller values

indicate a better fit of the model to the data. These values are indicated in Table 7. To perform the goodness-
of-fit tests, it is required that the proposed models are specified completely. However, in the case where
parameters are estimated from data, the critical values of GoF tests produced using the standard procedure
are no longer valid (see, [1]). Hence we obtain bootstrap p-value (see [6]) for acceptance and rejection of GoF
of the models. In Figure 5.1, we organize the top 15 composite models on the x-axis and p-values on the y-
axis. Each bubble on this plot represents the size of the individual model weight, wi. The model weights are
computed based on the approximate calculation of the posterior probability of each model, assuming equal
prior model weights. Specifically, the formula wi = e−

∆BICi
2 /

∑15
i=1 e−

∆BICi
2 where ∆BICi = BICi −min1≤i≤15(BICi),

is used in determining the posterior model weights. Readers may refer [12] for how to determine posterior
model weights. The bubble with a large diameter indicates the minimum value of BIC.
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Table 7: KS Test, CvM Test, and AD test statistics values for Danish data set for different composite models obtained using MM
techniques.

3*S.No. Danish Data
Head Tail MM-Technique

KS CvM AD
1 Weibull GlogM 0.017 0.104 0.848
2 Paralogistic GlogM 0.017 0.104 0.852
3 Inverse Burr GlogM 0.016 0.095 0.736
4 Weibull Inverse Weibull 0.034 0.798 4.700
5 Paralogistic Inverse Weibull 0.034 0.806 4.747
6 Inverse Burr Inverse Weibull 0.032 0.537 3.207
7 Weibull Inverse Paralogistic 0.046 1.822 10.835
8 Inverse Burr Inverse Paralogistic 0.044 1.594 9.524
9 Weibull Burr 0.013 0.084 0.720
10 Paralogistic Burr 0.014 0.084 0.721
11 Inverse Burr Burr 0.014 0.082 0.649
12 Weibull Stoppa 0.017 0.126 0.882
13 Weibull Lomax 0.026 0.338 1.910
14 Inverse Burr Stoppa 0.032 0.592 3.517
15 Paralogistic Stoppa 0.034 0.775 4.575

5.2. Estimation of VaR and LEV

Table 8 provides a summary of VaR at 0.95 and 0.99 security levels for the top 15 best fitting models
developed using MM technique for Danishdata set. Using the values from Table 8, the percentage difference

between estimated VaR and empirical VaR can be calculated as |
̂VaRγ(X)−VaRγ(X)|

VaRγ(X) × 100. Where ̂VaRγ(X) is the
estimated VaR of the various composite models and VaRγ(X) is the empirical VaR of the Danish data set
at security level γ. One can observe that, for the proposed model, the value of VaR for Weibull-Burr,
Inverse-Burr, and Paralogistic-Burr have VaR closer to empirical VaR at security level 0.95 as compared to
composite models with GlogM tail. The estimated VaR of the GlogM distribution for Danish data set at
security level 0.95 and 0.99 are 8.55 and 21.82 respectively (see, [5]) which in turn shows that the single
density of the GlogM distribution for the Danish data set underestimates the extreme quantile (security
level 0.99). Among the proposed composite models, the composite Inverse-Burr model with GlogM tail
gives the closest estimates of the VaR for security level 0.95 & 0.99 for the Danish data set i.e. the percentage
difference between the estimated VaR based on composite Inverse Burr-GlogM model and the empirical
VaR at security level 0.95 & 0.99 are 2.7% and 2.8% respectively. For the composite models, FC-FC, FC-FT,
and FL-FT proposed by [4], the estimated VaR at 0.95 security level is 8.45, 7.52, and 7.53 respectively,
and 42.30, 34.16, and 34.23 for the 0.99 security level. The percentage difference between estimated VaR
and empirical VaR for the models given in [4] is 0.5%, 10.6% and 10.5% for security level 0.95 and 71.9%,
38.8% and 39.1% for the security level 0.99. The LEV for various composite models with GlogM tail have
been obtained using MM technique at different levels u and the results are shown in Table 9 for Danish
data set. Table 9 shows that the GlogM distribution underestimates the limited expected value when the
losses exceed 110 million Danish Kroner. It can be seen that the proposed composite models demonstrate
a better fit to the data in the high quantiles, likewise suggesting that the proposed composite models are
favorable models for the Danish data set as compared to fitting a single GlogM density to the Danish data
set. Composite Inverse-Burr distribution with GlogM tail provides the nearest estimates of the LEV for the
extreme values of u that is u = 110, 170, 260.
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Table 8: Results of VaR at the 0.95 and 0.99 security level for the top 15 best fitting composite models developed using MM technique
for Danish data set (arranged in the ascending order of BIC).

VaR0.95 VaR0.99
Empirical Estimates 8.41 24.61
Head Tail
Weibull GlogM 8.07 23.35
Inverse Burr GlogM 8.18 23.93
Paralogistic GlogM 8.07 23.34
Weibull Burr 8.26 25.54
Inverse Burr Burr 8.23 25.24
Paralogistic Burr 8.26 25.55
Weibull Stoppa 8.21 24.22
Weibull Lomax 8.20 22.65
Inverse Burr Inverse Weibull 7.34 18.93
Weibull Inverse Weibull 7.20 18.22
Paralogistic Inverse Weibull 7.19 18.20
Inverse Burr Stoppa 7.31 18.78
Paralogistic Stoppa 7.22 18.33
Inverse Burr Inverse Paralogistic 6.62 15.29
Weibull Inverse Paralogistic 6.57 15.04

Table 9: Results of LEV for the proposed composite models developed using MMtechnique for Danish data set.

u Lognormal-GlogM Weibull-GlogM Paralogistic-GlogM Inverse Burr-GlogM GlogM Empirical
1 0.928 0.988 0.988 0.988 0.983 0.935
2 1.547 1.569 1.569 1.566 1.585 1.551
3 1.830 1.851 1.851 1.848 1.877 1.839
5 2.114 2.141 2.141 2.140 2.166 2.155
8 2.315 2.353 2.353 2.355 2.374 2.387

10 2.394 2.438 2.438 2.442 2.454 2.483
15 2.516 2.572 2.572 2.578 2.576 2.653
21 2.599 2.665 2.665 2.674 2.658 2.762
40 2.722 2.806 2.806 2.820 2.780 2.919
70 2.798 2.899 2.898 2.916 2.854 2.997

110 2.846 2.957 2.957 2.977 2.900 3.045
170 2.882 3.003 3.002 3.025 2.934 3.093
260 2.909 3.039 3.038 3.064 2.940 3.111
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6. Conclusions

In this paper, new families of composite models are proposed considering the MM technique having
generalized log-Moyal distribution in the tail and Lognormal, Weibull, Paralogistic, and Inverse Burr as
head distributions. The simple form of generalized log-Moyal distribution allows one to get closed-form
expressions for actuarial measures such as VaR and LEV. These measures have been calculated for the
proposed models. The exhaustive study of the proposed four families of composite distributions was
conducted using one real-world insurance data set namely Danish fire insurance data set. Further, to
examine the risk behavior, two actuarial risk measures such as VaR, TVaR and LEV were studied and
compared. [10] suggested that the Paralogistic and Inverse Burr are also suitable distributions for modeling
the head part of the composite model. Our findings lie on the line of [10]. Weibull, Paralogistic, and Inverse
Burr distributions in the head with generalized log-Moyal in the tail are found to be ideal for modeling the
small and moderate-size claims. A comparison of the proposed models with the models given in [3] shows
that the proposed composite models provide a good fit for the tail of the Danish fire insurance data set.
Along similar lines to [9], one can use the proposed composite models for fitting the insurance data having
a heavy-tailed response in the presence of covariate information for future investigation.
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