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Uniqueness results related to L-functions satisfying same functional
equation under sharing pre-images of range sets
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Abstract. In this article we have studied the uniqueness problem of L-functionL in extended-Selberg class
with some meromorphic function f having finitely many poles, when the pre-image of a set with respect toL
coincides with the same of another set with respect to f . We have studied the problem corresponding to two
Selberg class L-functions as well. With the new notion of sharing which is the generalization of the definition
of traditional set sharing, we have significantly improved the results of [ Houston. J. Math., 46(4)(2020),
915-923], and some of [Complex Var. Elliptic Equ., Published online (DOI: 10.1080/17476933.2022.2069759)].
In another result, we have extended a result of [Ann. Polon. Math., 126(2021), 265-278] which in turn
provid the best possible answer to a question raised in the same paper.

1. Introduction

This paper concerns the question of how L-functions can be uniquely determined by sharing of any
arbitrary finite set. The most common example of L-function is the Riemann zeta function, which was
first introduced by Riemann in 1859 as a function in complex plane. It is defined in Re(s) > 1, as ζ(s) =∑
∞

n=1
1
ns (where s = σ+ it), converges absolutely and admits analytic continuation as a meromorphic function

throughout the complex plane, having simple pole at s = 1 with residue 1. Moreover the unique factorization
theorem of natural numbers into primes helps us to express ζ(s) as a product over primes in Re(s) > 1,
as ζ(s) =

∏
p
(
1 − p−s), where p is prime, known as a Euler product. The functional equation of ζ(s) that

is ζ(s) = ζ(1 − s) plays an important role in some properties of zeta function. In addition, the Riemann
hypothesis, proposed by Riemann is a conjecture that all the non-trivial zeros of ζ(s) lies on Re(s) = 1/2,
plays a very important role in analytic number theory. So in order to understand the analytic number
theory it is important to study zeta function.

Riemann hypothesis can be generalized by replacing Riemann’s zeta function by the formally similar,
but much more general, L-function. Considering ζ(s) =

∑
∞

n=1
1
ns as a prototype in 1989, Selberg defined

a rather general class S of convergent Dirichlet series L(s) =
∑
∞

n=1
a(n)
ns which is absolutely convergent for

Re(s) > 1 In the meantime, this so-called Selberg class L-function became an important object of research
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as it plays an pivotal role in analytic number theory. An L-function in S needs to satisfy the following
axioms:(see [15]):
(i) Ramanujan hypothesis: a(n)≪ nϵ for every ϵ > 0.
(ii) Analytic continuation: There is a non-negative integer k such that (s − 1)k

L(s) is an entire function of
finite order.
(iii) Functional equation: L satisfies a functional equation of type

ΛL(s) = ωΛL(1 − s),

where

ΛL(s) = L(s)Qs
K∏

j=1

Γ(λ js + ν j)

with positive real numbers Q, λ j and complex numbers ν j, ωwith Re ν j ≥ 0 and |ω| = 1.
(iv) Euler product hypothesis: L can be written over prime as

L(s) =
∏

p

exp

 ∞∑
k=1

b(pk)/pks


with suitable coefficients b(pk) satisfying b(pk) ≪ pkθ for some θ < 1/2 where the product is taken over all
prime numbers p. The degree dL of an L-function L is defined to be

dL = 2
K∑

j=1

λ j,

where λ j and K are respectively the positive real number and the positive integer as in axiom (iii) above.
In 1999, Kaczorowski-Perelli [6] introduced the extended Selberg class S#, defined as the collection of

not identically vanishing L-functions L which satisfies the axioms (i)-(iii) above but can not be expressed
as a product over primes. Naturally a function is called L-function in Selberg class, if it satisfies the Euler
product hypothesis but in S# we can have some functions with degree zero which do not have a Euler
product and so it is worthwhile to study the extended Selberg class. We see thatS is automatically included
in S#.

In this paper we are going to discuss some results under the periphery of value distribution of L-functions
in S#. Throughout this paper, by an L function we will mean an L-function of non-zero degree with the
normalized condition a(1) = 1. On the other hand, by a meromorphic function f we mean meromorphic
function in the whole complex plane C. Let C = C ∪ {∞}, C∗ = C \ {0} and N = N ∪ {0}, where C and N
denote the set of all complex numbers and natural numbers respectively and by Z we denote the set of all
integers.

Before entering into the detail literature, let us assumeM(C) as the field of meromorphic functions over
C. The proofs of the theorems of the paper are heavily depending on Nevanlinna theory and we assume
that the readers are familiar with the standard notations like the characteristic function T(r, f ), the proximity
function m(r, f ), counting (reduced counting) function N(r, f ) (N(r, f )) that are also explained in [4], [17]. By
S(r, f ) we mean any quantity that satisfies S(r, f ) = O(log(rT(r, f ))) when r −→ ∞, except possibly on a set
of finite Lebesgue measure. When f has finite order, then S(r, f ) = O(log r) for all r.

Let us take f ∈ M(C), then the order of f is defined as

ρ( f ) := lim sup
r−→∞

log T(r, f )
log r

.

Before proceeding further, we require the following definitions.
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Definition 1.1. Let f and 1 be two non-constant meromorphic functions in M(C). For some S ⊂ C, we define
E f (S) = ∪a∈S{z : f (z) − a = 0}, where each point is counted according to its multiplicity. If we do not count the
multiplicity then the set ∪a∈S{z : f (z)− a = 0} is denoted by E f (S). If E f (S) = E1(S) then we say f and 1 share the set
S CM. On the other hand, if E f (S) = E1(S) then we say f and 1 share the set S IM. In particular, for some element
a ∈ C, if E f (a) = E1(a) (E f (a) = E1(a)) we call f , 1 share a CM (IM).

In this paper we have not dealt with the usual sharing of sets, rather we have generalized it in a much
broader perspective. The following definition is more generalized than Definition 1.1 and somehow been
inspired from the idea in Khoai-An-Ninh [7].

Definition 1.2. Let S1, S2 ⊂ C and f , 1 ∈ M(C). If E f (S1) = E1(S2) (E f (S1) = E1(S2)) holds then we say that
f , 1 have the same inverse image with respect to the sets S1 and S2 respectively, counting multiplicity (ignoring
multiplicity) and abbreviated it as IICM {(S1)( f ), (S2)(1)}
(IIIM {(S1)( f ), (S2)(1)}).

The following examples show that the Definition 1.2 actually exist and it extends the realm of Definition
1.1. In fact, the definition exists irrespective of the cases #(S1) = #(S2) or #(S1) , #(S2), where #(S) denotes
the cardinality of the set S.

Example 1.3. Set f = e3z + e2z + 5, 1 = e3z + e2z
− 1 and S1 = {1, 3}, S2 = {−3,−5} and here E f (S1) = E1(S2), i.e.,

IICM {(S1)( f ), (S2)(1)}.

Example 1.4. Set f = ez and 1 = e2z + 2ezand S1 = {−2,−1, 0}, S2 = {0,−1} and here E f (S1) = E1(S2), i.e.,
IIIM {(S1)( f ), (S2)(1)}.

Example 1.5. Set f = ez and1 = e2z
−aez and S1 = {0, a}, S2 = {0} and here E f (S1) = E1(S2), i.e., IICM {(S1)( f ), (S2)(1)}.

Example 1.6. Set f = ez
− 1 and 1 = ez(ez

− 2), and S1 = {0}, S2 = {−1} and here E f (S1) = E1(S2), i.e.,
IIIM {(S1)( f ), (S2)(1)}.

The purpose of the paper is to prove some results based on the notion introduced in Definition 1.2.
Actually, we strive to classify those sets S1, S2; with some sufficient conditions such that there do
not exist two different meromorphic functions or even L-functions, f , 1 such that IICM {(S1)( f ), (S2)(1)}
(IIIM {(S1)( f ), (S2)(1)}).

We are not going to explain the well known definitions of N(r, a; f ≥ m) (N(r, a; f ≤ m)) and N∗(r, a; f , 1),
NL(r, a; f ), NL(r, a; 1), as one can easily find the same in [8], [1]. When f and 1 share the value a, then by
N1)

E (r, a; f ) we mean the counting function of all the simple zeros of f − a and 1 − a.
Recently the value distribution of L-function has been studied exhaustively by so many researchers ([5],

[10], [11], [16] etc). The value distribution of L-function is all about the roots of L(s) = c.
In 2007, regarding uniqueness problem of two L functions, Steuding (p. 152, [16]) proved that the

number of shared values can be reduced significantly than that happens in case of ordinary meromorphic
function. Below we invoke the result.

Theorem 1.7. Let L1 and L2 be two non-constant L-functions with a(1) = 1 and c ∈ C. If EL1 (c) = EL2 (c) holds,
then L1 = L2.

Providing a counterexample with a zero degree L-function, Hu-Li [5] pointed out that Theorem 1.7 is not
true when c = 1. Since L-functions possess meromorphic continuations, it is quite natural to investigate up
to which extent an L-function can share a set and value with an arbitrary meromorphic function.

Inspired by the question of Gross [3] for meromorphic functions, Yuan-Li-Yi [19] proposed the analogous
question for a meromorphic function f and an L-function L sharing one or two finite sets. Yuan-Li-Yi [19]
answered the question by themselves by proving the following uniqueness result.
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Theorem 1.8. [19] Let f be a meromorphic function having finitely many poles inC and letL ∈ S be a non-constant
L-function. Let us consider the set S = {w : wn + awm + b = 0}, where (n,m) = 1, n > 2m + 4. If E f (S) = EL(S),
then we will have f = L.

Recently there are a number of results in the direction of value distribution of L-functions under sharing
of one or two sets. We have already mentioned that it was Khoai-An-Ninh [7] who explored the sharing of
set in a different angle. In their paper [7] the following question was posed.

Question 1.1. [7]
(i) What can be said about the relationship between L-functions L1 and L2, if EL1 (S) = EL2 (T):
or more generally, between a non-constant meromorphic function f and a non-constant L-function, i.e.,
(ii) What happens if E f (S) = EL(T), where S,T ⊂ C?

In connection to deal with Question 1.1 (ii), considering the zero set of more generalized form of Yi’s
polynomial [18], Khoai-An-Ninh [7] obtained the following result.

Theorem 1.9. [7]Let n, m be positive integers, n ≥ 2m+8, a, b, d,u, v, t ∈ C∗ and let S = {z : PH(z) = azn+bzm+d =
0}, T = {z : QH(z) = uzn + vzm + t = 0} be two sets respectively. Suppose EL(S) = E f (T) for a non-constant
meromorphic function f with finitely many poles in the complex plane, and a non-constant L-function L. Then we
have:
(i) There exists a non-zero constant h, such that f = hL.
(ii) In particular, if for some L-functions L1, L2 we have EL1 (S) = EL2 (T), then L1 = L2 and PH = QH.

Clearly in the above question if S = T then the sharing is same with the usual sharing as in Theorem 1.8
and hence the approach of Khoai-An-Ninh is unique and much more generalized than the usual sharing.
So it will be quite interesting to investigate the uniqueness problems of L-functions together with the
meromorphic function under sharing of set, not in usual way but following the approach resorted by
Khoai-An-Ninh in [7].

Motivated by the approach of Khoai-An-Ninh in [7], in this paper we have tried to re-investigate the
situation of Theorem 1.9 considering a different gap polynomials. Here first let us introduce the following
two polynomials, having no multiple zeros, of the forms

P(z) = zn + az2m + bzm + c, (1.1)

Q(z) = zn + a1z2m + b1zm + c1, (1.2)

where n,m are positive integers such that (n,m) = 1 and a, a1, b, b1, c, c1 ∈ C∗.
The possible answer of Question 1.1 for the case if a = 0 = a1, were already investigated in detail in [7].

So here we will investigate the situation when a · a1 , 0. This is the prime motivation of writing this article.

Theorem 1.10. Let L be a non-constant L-function and f be a non-constant meromorphic function having finitely
many poles. Also let us consider two sets SP = {w : P(w) = 0}, SQ = {w : Q(w) = 0}; where P, Q are the polynomials
defined as in (1.1), (1.2). Now suppose E f (SP) = EL(SQ) and b2 = 4ac, b2

1 = 4a1c1. Then for n with n > 4m+ 7, there
exists a non-zero constant h such that f = hL.

Corollary 1.11. Under the condition of Theorem 1.10, if we choose f = L1 and L = L2, where L1,L2 are two
non-constant L-functions, then we will get, L1 = L2.

Recently considering the set sharing of L-functions Li-Wu-Yi [12] obtained the following results.

Theorem 1.12. [12] Suppose that two L-function L1,L2 ∈ S
# satisfy the same functional equation. If EL1 (S) =

EL2 (S) for a finite set S = {w : w5 + 5
2 w4 + 5

3 w3 + c = 0}, where c is a distinct complex numbers, then L1 = L2.

Theorem 1.13. [12] Suppose that two L-function L1,L2 ∈ S
# satisfy the same functional equation. If for some

S = {c1, c2} , where c1, c2 distinct finite complex numbers, EL1 (S) = EL2 (S) holds, then L1 = L2.



A. Banerjee, A. Kundu / Filomat 38:15 (2024), 5223–5238 5227

Considering an arbitrary set of three elements Li-Du-Yi [13] obtained the following result.

Theorem 1.14. [13] Suppose that two L-function L1,L2 ∈ S
# satisfy the same functional equation. If for some

S = {c1, c2, c3} , where c1, c2 and c3 are three distinct finite complex numbers, EL1 (S) = EL2 (S) holds, then L1 = L2.

Now in view of Definition 1.2, it will be interesting to re-investigate Theorems 1.12, 1.13 and 1.14. In this
respect the following question is inevitable,

Question 1.2. What can be said about the relationship between L-functions L1 and L2 if EL1 (S1) = EL2 (S2) holds,
for some S1, S2 ⊂ C ?

In order to provide the answer of Question 1.2, here we have generalized the sharing in Theorems 1.12, 1.13,
1.14 and obtained the following results.

Theorem 1.15. If two non-constant L-functionL1,L2 inS#, satisfy the same functional equation, S1 = {α1, α2, . . . , αn},
S2 = {β1, β2, . . . , βn} ⊂ C and EL1 (S1) = EL2 (S2), then we will have L1 = L2, also we will get S1 = S2

Remark 1.1. From Theorem 1.15, it is clear there can not be two distinct L-functions with positive degree and same
functional equation, sharing any arbitrary set in C CM.

Remark 1.2. If in Theorem 1.15, S = S1 = S2 a set with two and three elements then it is actually Theorems 1.13,
1.14 respectively, so it is a huge extension as well as improvement of Theorems 1.13, 1.14. Also since S1, S2 both
are arbitrary, for the case S = S1 = S2, Theorem 1.15 is a drastic improvement of Theorem 1.12. In fact for the case
S = S1 = S2 Theorem 1.15 is independent of cardinality and irrespective of choice of sets, it is a two fold improvement
of Theorem 1.12.

In the following example we will show, first leading coefficient a(1) of L-function must be one, otherwise
Theorem 1.15 cease to hold.

Definition 1.16. ζ and cζ for some non-zero real number c satisfy same functional equation and EL1 ({0, 1}) =
EL2 ({0, c}) but still ζ , cζ.

Now considering arbitrary set we have tried to provide answer to the Question 1.1 (i). Here before
stating the next result, let us consider the polynomials P1(z), P2(z) having the set S1, S2 it’s simple zeros.

P1(z) = (z − α1)(z − α2) . . . (z − αn) (1.3)

= zn
− (

∑
αi)zn−1 + . . . + (−1)n−1(

∑
αi1αi2 . . . αin−1 )z − (−1)n+1α1α2 . . . αn,

P2(z) = (z − β1)(z − β2) . . . (z − βn) (1.4)

= zn
− (

∑
βi)zn−1 + . . . + (−1)n−1(

∑
βi1βi2 . . . βin−1 )z − (−1)n+1β1β2 . . . βn.

Let ki, i = 1, 2 denote the number of distinct zeros of P′i (z), i = 1, 2.

Theorem 1.17. LetL1, L2 and S1, S2 be defined same as in Theorem 1.15 and here n > 2k+5 where k = max{k1, k2}.
Now if EL1 (S1) = EL2 (S2), then we will have L1 = L2. Also we will get S1 = S2

2. Lemma

Next, we present some lemmas that will be needed in the sequel. Henceforth, we denote by H, the
following function :

H =
(F′′

F′
−

2F′

F − 1

)
−

(G′′

G′
−

2G′

G − 1

)
,

Lemma 2.1. [2] Let F and G be non-constant meromorphic functions and let F, G share 1 IM. Then,

N1)
E (r, 1; F) ≤ N(r,∞; H) + S(r,F) + S(r,G).
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Lemma 2.2. [9] Let F and G be non-constant meromorphic functions and let F, G share 1 IM (i.e., EF(1) = EG(1)).
Then,

N(r,∞; H) ≤ N∗(r, 1; F,G) +N(r,∞; F |≥ 2) +N(r,∞; G |≥ 2) +N(r, 0; F |≥ 2)
+N(r, 0; G |≥ 2) +N0(r, 0; F′) +N0(r, 0; G′) + S(r,F) + S(r,G),

where N0(r, 0; F′) is the reduced counting function of those zeros of F′ where F(F− 1) , 0 and N0(r, 0; G′) is similarly
defined.

Lemma 2.3. [1] Let F and G be non-constant meromorphic functions and let F, G share 1 IM. Then,

N(r, 1; F) +N(r, 1; G) −N1)
E (r, 1; F) −

1
2

N∗(r, 1; F,G) ≤
1
2

[N(r, 1; F) +N(r, 1; G)].

Lemma 2.4. [14] Let f be a non-constant meromorphic function and let

R( f ) =

n∑
k=0

ak f k

m∑
j=0

b j f j
,

be an irreducible rational function in f with constant coefficients {ak} and {b j}, where an , 0 and bm , 0. Then

T(r,R( f )) = dT(r, f ) + S(r, f ),

where d = max{n,m}.

Lemma 2.5. (see Theorem 1.14, [17]) Let f (z), 1(z) ∈ M(C) and let ρ( f ), and ρ(1) be the order of f and 1,
respectively. Then

ρ( f .1) ≤ max{ρ( f ), ρ(1)}.

Lemma 2.6. Let F = − f n

a f 2m+b f m+c and G = − L
n

a1L
2m+b1L

m+c1
, then for n > 4, FG , 1.

Proof. If not let us assume,
f n

a f 2m + b f m + c
·

L
n

a1L
2m + b1L

m + c1
= 1,

we have from Lemma 2.4,

T(r, f ) + S(r, f ) = T(r,L) + S(r,L), (2.1)

and clearly S(r, f ) = S(r,L).
Now we have

L
n

a1L
2m + b1L

m + c1
=

a f 2m + b f m + c
f n .

From the given condition b2 = 4ac, b2
1 = 4a1c1 we have a f 2m + b f m + c = a( f m + δ)2 = a

∏m
i=1( f − δi)2

and a1L
2m + b1L

m + c1 = a1(Lm + η)2 = a1
∏m

i=1(L − ηi)2 for some δi, ηi are distinct roots of the equation
aw2m + bwm + c and a1w2m + b1wm + c1 respectively.

Using the Second Fundamental Theorem and (2.1), we have,

mT(r, f ) ≤

m∑
i=1

N(r, δi; f ) +N(r, 0; f ) +N(r,∞; f ) + S(r, f )

≤
2m
n

T(r, f ) +N(r,∞;L) +
m∑

i=1

N(r, ηi;L) + S(r, f )

≤
4m
n

T(r, f ) + S(r, f ),
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for n > 4 we arrived at a contradiction.

Lemma 2.7. [11] Let L be a non-constant L-function and α ∈ C. Then L − α has infinitely many zeros in C.

Lemma 2.8. Let L1, L2 be two non-constant L-functions, satisfy same functional equation and α, β be two non-
zero constants in C and αLn

1 + βL
n
2 , 0. There exist a large positive k0 > 0 such that L1, L2, αLn

1 + βL
n
2

and
∏K

j=1(Γ(λ js + ν j))−1 have the same zeros (irrespective of their multiplicities) in the region {s ∈ C : Re(s) <
−k0, and |Im(s)| < k}. Here k, k0 > 0 is a large constant such that no one of the three functionsL1,L2 and αLn

1 +βL
n
2

vanishes in the the positive half plane Re(s) > k0.

Proof.

Li(s) = χ(s)Li(1 − s), i = 1, 2 (2.2)

where χ(s) =
ωQ1−2s ∏K

j=1 Γ(λ j(1−s)+ν j)∏K
j=1 Γ(λ js+ν j)

.

Now clearly from (2.2) we have,

L
n
i = (χ(s))n(Li(1 − s))n, for i = 1, 2.

Now from above we have

αLn
1(s) + βLn

2(s) = (χ(s))n(αL1(1 − s)
n
+ βL2(1 − s)

n
) (2.3)

= α · (χ(s))n
(
L1(1 − s)

n
+
β

α
L2(1 − s)

n
)

= α · (χ(s))n
n∏

i=1

(
L1(1 − s) + xiL2(1 − s)

)
= α ·

ωnQn(1−2s)
(∏K

j=1 Γ(λ j(1 − s) + ν j)
)n(∏K

j=1 Γ(λ js + ν j)
)n

n∏
i=1

(L1(1 − s) + xiL2(1 − s)),

where xi, 1 ≤ i ≤ n be distinct roots of the equation xn + β/α.
Here each of the L1 + xiL2 is a convergent Dirichlet series and hence zero free in some positive half

plane. So it is possible to find a large k0 > 0 such that no one of L1(1 − s) + xiL2(1 − s), 1 ≤ i ≤ n and
Lk(1 − s), k = 1, 2 vanishes in the half plane Re(s) < −k0. In this negative half plane Re(s) < −k0 the zeros
of αLn

1(s) + βLn
2(s) and L1(s), L2(s) actually come from the zeros of χ(s) which are actually the poles of the

Gamma factors in their functional equation, i.e., in this negative half plane the zeros of αLn
1(s) + βLn

2(s) are
actually zeros of

∏K
j=1(Γ(λ js + ν j))−1 which are also trivial zeros of L1(s), L2(s). Now it is possible to find a

positive large k such that
∏K

j=1 Γ(λ js + ν j) has no pole in |Im(s)| > k.
Therefore in {s : Re(s) < −k0, |Im(s)| < k} L1(s), L2(s) and αLn

1(s) + βLn
2(s) and χ(s) have same zeros

(irrespective of their multiplicities) which are actually poles of
∏K

j=1 Γ(λ js + ν j).

Lemma 2.9. Let L1, L2 be two non-constant L-functions, satisfy same functional equation and Q1, Q2 be any two
arbitrary polynomials over C, of degree n, then Q1(L1) = Q2(L2) =⇒ L1 = L2 and Q1 = Q2.

Proof. Let us assume the polynomials Q1(z) = a0zn + a1zn−1 + a2zn−2 + . . . + an−1z + an and Q2(z) = b0zn +
b1zn−1 + b2zn−2 + . . . + bn−1z + bn, where ai, bi i = 0, 1, . . . ,n and bi, ai are constants in C and a0 · b0 , 0. Now
from the given condition we have,

a0L1
n + a1L1

n−1 + a2L1
n−2 + . . . + an−1L1 + an = b0L2

n + b1L2
n−1 + b2L2

n−2 (2.4)
+ . . . + bn−1L2 + bn.
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L1 and L2 satisfy same functional type equation and hence they have same set of trivial zeros in the
negative half plane. Now let s0 be a trivial zero of L1, L2, then from (2.4) we have an = bn.

Now from above we get,

(a0L
n
1 − b0L

n
2) + (a1L

n−1
1 − b1L

n−1
2 ) + . . . + (an−2L

2
1 − bn−2L

2
2) + (an−1L1 − bn−1L2)

= 0
(a0L

n
1 − b0L

n
2) + (a1L

n−1
1 − b0L

n−1
2 ) + . . . + (an−2L

2
1 − bn−2L

2
2) = −(an−1L1 − bn−1L2). (2.5)

Now let for some large k, in Re(s) < −k, s1 be a trivial zero of L1 and L2 of order p, then from Lemma 2.8,
s1 will be also a zero of an−iL

i
1 − bn−iL

i
2 of order ip, 1 ≤ i ≤ n. Now clearly from the above (2.5) we have

s1 is the zero of the left side of multiplicity at least 2p, whereas the right part has multiplicity p, hence a
contradiction.

Therefore we must have, an−1L1 − bn−1L2 = 0, and letting σ −→ +∞, we have an−1 = bn−1. Now doing
similarly we will have, an−i = bn−i, for i = 1, 2, . . . ,n − 1 and finally we will have a0L

n
1 = b0L

n
2 and a0 = b0

and then from Ln
1 = L

n
2 , we have L1 = L2.

3. Proofs of the theorems

Proof. [Proof of Theorem 1.15] As it is given to us that, EL1 (S1) = EL2 (S2), where S1 = {αi; 1 ≤ i ≤ n},
S2 = {βi; 1 ≤ i ≤ n} and #(S1) = #(S2). Therefore here

∏n
i=1(L1 − αi) and

∏n
i=1(L2 − βi) share 0 CM.

We can write it as

G0 =
(L1 − α1)(L1 − α2) . . . (L1 − αn)
(L2 − β1)(L2 − β2) . . . (L2 − βn)

= (s − 1)kep, (3.1)

for some integer k. Since here the non-zero degree L-function is of order one then from Lemma 2.5, p is a
polynomial of degree at most one. Let us consider p(s) = as + b, where a, b are some complex constants.
Next we will show (s − 1)keas+b = c, for some constant c ∈ C∗. To do this let us consider the following cases.
Case-1. First let us assume 1 < S = S1 ∪ S2.

Now taking σ −→ +∞we get from (3.1)

lim
σ−→+∞

(L1 − α1)(L1 − α2) . . . (L1 − αn)
(L2 − β1)(L2 − β2) . . . (L2 − βn)

=
(1 − α1) . . . (1 − αn)
(1 − β1) . . . (1 − βn)

= lim
σ−→+∞

(s − 1)keas+b,

Now limσ−→+∞(s − 1)keas+b = ∞ or 0 according as Re(a) > or < 0, so we must have Re(a) = 0. Also
the limit is independent of t, so it can be shown that a = 0. Similarly we will have k = 0 otherwise
limσ−→+∞(s − 1)keb = ∞ or 0 according as k > 0 or < 0. Hence we have,

lim
σ−→+∞

(L1 − α1)(L1 − α2) . . . (L1 − αn)
(L2 − β1)(L2 − β2) . . . (L2 − βn)

=
(1 − α1)(1 − α2) . . . (1 − αn)
(1 − β1)(1 − β2) . . . (1 − βn)

= lim
σ−→+∞

eb,

hence we have eb =
(1−α1)(1−α2)...(1−αn)
(1−β1)(1−β2)...(1−βn) = C (constant).

Therefore we have,

(L1 − α1)(L1 − α2) . . . (L1 − αn) = C(L2 − β1)(L2 − β2) . . . (L2 − βn).

Now using Lemma 2.9 we will have L1 = L2 and also we will get S1 = S2.
Case-2. 1 ∈ S = S1 ∪ S2 but 0 < S. Therefore at least one of Si, i = 1, 2 contains 1.
Case-2.1. Let us assume 1 lie in both Si for i = 1, 2. Without loss of generality let us assume α1 = β1 = 1.

Again Li can be represented by a Dirichlet series, i.e., Li(s) =
∑
∞

n=1
ai(n)

ns , i = 1, 2, absolutely convergent
for σ > 1 where ai(1) = 1. Also let n1,n2 be two integers such that ni = min{n (≥ 2) : ai(n) , 0, i = 1, 2}.
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Now we clearly have,

L1 − 1
L2 − 1

=

1
ns

1

(
a1(n1) +

∑
∞

n>n1
a1(n)( n1

n )s
)

1
ns

2

(
a2(n2) +

∑
∞

n>n2
a2(n)( n2

n )s
) (3.2)

=
(n2

n1

)s
G(s),

where,

G(s) =
a1(n1) +

∑
∞

n>n1
a1(n)( n1

n )s

a2(n2) +
∑
∞

n>n2
a2(n)( n2

n )s
.

By the construction of G(s) we note that limσ−→+∞ G(s) = a1(n1)
a2(n2) .

Then by (3.2) we have,

G(s) =
a1(n1) +

∑
∞

n>n1
a1(n)( n1

n )s

a2(n2) +
∑
∞

n>nb
a2(n)( n2

n )s
=

(n1

n2

)s
·
L1 − 1
L2 − 1

. (3.3)

In view of (3.1), let us consider the following function

G1 = G(s) ·
(L1 − α2) . . . (L1 − αn)
(L2 − β2) . . . (L2 − βn)

(3.4)

=
L1 − 1
L2 − 1

· qs
·

(L1 − α2) . . . (L1 − αn)
(L2 − β2) . . . (L2 − βn)

= qs (L1 − 1)(L1 − α2) . . . (L1 − αn)
(L2 − 1)(L2 − β2) . . . (L2 − βn)

= qs
G0 = qs(s − 1)keas+b,

for some q = n1
n2

(∈ Q+). We can write q = elog q = eq′ , then we can write it as, qs(s − 1)keas+b = (s − 1)ke(q′+a)s+b̂ =

(s − 1)kea′s+b̂ where a′ = q′ + a. Let us consider a′ = a1 + ia2 and b = b1 + ib2.
With respect to the first equality of (3.4), taking limit σ −→ +∞, we have limσ−→+∞G1 = C1, for some

constant in C1 ∈ C∗. Next from the second and last equality of (3.4), taking limit σ −→ +∞, we have

lim
σ−→+∞

∣∣∣∣∣qs (L1 − 1)
(L2 − 1)

·
(L1 − α2) . . . (L1 − αn)
(L2 − β2) . . . (L2 − βn)

∣∣∣∣∣ = |C1| = lim
σ−→+∞

|(s − 1)kea′s+b̂
|

= constant = lim
σ−→+∞

|σ − 1 + it|kea1σ−a2t+b1 .

Therefore we must have a1 = 0 = k, other wise limσ−→+∞ |σ − 1 + it|kea1σ−a2t+b1 = ∞ or 0 according as
a1 > or < 0 and with the same argument it can be shown that k = 0.

Also,

lim
σ−→+∞

e−a2t+b1 = constant, ∀t ∈ R,

implies a2 = 0. Hence we have a = a1 + ia2 = 0 and k = 0.
Therefore, G1 = eb and from the last equality of (3.4) G0 = q−seb, i.e.,

(L1 − 1)
(L2 − 1)

·
(L1 − α2) . . . (L1 − βn)
(L2 − β2) . . . (L2 − βn)

= q−seb. (3.5)

From Lemma 2.8, we know for some sufficiently large constant κ(> 0) and large κ0(> 0), L1, L2 and the
Gamma function

∏K
j=1(Γ(λ js + ν j))−1, in their functional equation have same zeros in the region Re s < −κ0

and |Im s| < κ and have no zero in Re s ≥ κ0.
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Again Gamma function Γ(s) has simple poles at s = −1,−2, . . . ,−n, . . .. Therefore∏K
j=1(Γ(λ js + ν j))−1 has zeros at s = −n−ν j

λ j
for n = 1, 2, . . . and j = 1, 2, . . . ,K. Since it is assumed that

dL > 0, we must have K > 0. Here for some j or fixing some j it is possible to get a infinite sequence{
sn =

−N−ν j

λ j

}∞
n=1

of common zeros of L1, L2 and
∏K

j=1(Γ(λ js + ν j))−1 in Re s < −κ0 and |Im s| < κ, where

N = n + large constant. Since here Re(sn) = −N−Re(ν j)
λ j

< −κ0 < 0, we have n −→ ∞ =⇒ N −→ ∞ and
Re(sn) −→ −∞, it implies −Re(sn) −→ +∞.

From (3.5) we have,∣∣∣∣∣ (L1(sn) − 1)(L1(sn) − α2) . . . (L1(sn) − αn)
(L2(sn) − 1)(L2(sn) − α2) . . . (L2(sn) − αn)

∣∣∣∣∣ = |α1α2 . . . αn|

|β1β2 . . . βn|
= eRe(b)q−Re(sn). (3.6)

So from (3.6) letting n −→ +∞we get

lim
n−→+∞

eRe(b)q−Re(sn) = non-zero constant,

but eRe(b)q−Re(sn)
−→ +∞ or 0 as n −→ ∞ according as q > 1 or < 1 but {eRe(b)qRe(−sn)

}
∞

n=1 is a constant sequence.
Hence we must have q = 1 and then eb = α1α2...αn

β1β2...βn
= C2, and then from (3.5), with the help of Lemma 2.9, we

will have L1 = L2.
Sub case-2.2. Now let exactly one of Si, i = 1, 2 contains 1, say S1 and α1 = 1. Then following the
same procedure as done in (3.2) we can have, L1 − 1 = 1

ns
1

(
a1(n1) +

∑
∞

n>n1
a1(n)( n1

n )s
)
= 1

ns
1
G1(s), where

G1(s) = a1(n1) +
∑
∞

n>n1
a1(n)( n1

n )s and limσ−→+∞ G1 = a1(n1).

Now, G0 =
(L1−1)(L1−α2)...(L1−αn)
(L2−β1)(L2−β2)...(L2−βn) = eas+b.

Let us set a function

G2 = ns
1G0 = ns

1
(L1 − 1)(L1 − α2) . . . (L1 − αn)
(L2 − β1)(L2 − β2) . . . (L2 − βn)

= G1
(L1 − α2) . . . (L1 − αn)

(L2 − β1)(L2 − β2) . . . (L2 − βn)
= (s − 1)kns

1eas+b,

therefore we can write, G2 = (s − 1)kea′′seb, where a′′ = a + log n1.
Now limσ−→+∞G2 = constant but limσ−→+∞ ea′′s+b(s − 1)k = 0 or ∞ according as Re(a′′) < or > 0. Since

the limit is independent of t, we will have a′′ = 0. With similar arguments we will have k = 0. Therefore we
will have,

G2 = eb =⇒ G0 = n−s
1 eb

i.e.,
(L1 − 1)(L1 − α2) . . . (L1 − αn)
(L2 − β1)(L2 − β2) . . . (L2 − βn)

= n−s
1 eb.

Proceeding similarly as in (3.6) we will have, n1 = 1 and then with the help of Lemma 2.9 we will have
L1 = L2.
Case-3. Let us assume 1, 0 ∈ S = S1 ∪ S2. Now since L1, L2 satisfy same functional equation then clearly
0 ∈ S1 =⇒ 0 ∈ S2, also 0 ∈ S2 =⇒ 0 ∈ S1. Therefore at least one of Si, i = 1, 2 contains both 1, 0.
Sub case-3.1. First assume 0, 1 ∈ S1 ∩ S2. Without loss of generality let us assume α1 = 1 = β1, α2 = 0 = β2.
Now dealing exactly in the same way as done in Case-2.1 we will have,

(L1 − 1)
(L2 − 1)

·
L1(L1 − α3) . . . (L1 − βn)
L2(L2 − β3) . . . (L2 − βn)

= q̂−seb, (3.7)

for some q̂ ∈ Q+.
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On the other hand, by noting thatL1,L2 satisfy same functional equation with degree equal to dL (, 0),
therefore we have

L1(s)
L2(s)

=
L1(1 − s)

L2(1 − s)
,

using this in (3.7) we have,

L1(1 − s)

L2(1 − s)
·

(L1 − 1)(L1 − α3) . . . (L1 − βn)
(L2 − 1)(L2 − β3) . . . (L2 − βn)

= q̂−seb. (3.8)

Using the sequence of trivial zeros {sn}
∞

n=1 in some negative half plane Re(s) < −k0, putting s = sn we have
from (3.8) we have,∣∣∣∣∣L1(1 − sn)

L2(1 − sn)

∣∣∣∣∣ · |α3α4 . . . αn|

|β3β4 . . . βn|
= q̂−Re(sn)eRe(b).

Letting n −→ +∞, we have from above, limn−→+∞ q̂−Re(sn)eRe(b) = non-zero constant, but q̂−Re(sn)
−→ ∞ or 0

as n −→ ∞ according as q̂ > 1 or < 1, hence we must have q̂ = 1.
From (3.7) we have,

L1(L1 − 1)(L1 − α3) . . . (L1 − βn) = eb
L2(L2 − 1)(L2 − β3) . . . (L2 − βn),

and then from Lemma 2.9 we have, L1 = L2.
Case-3.2. Let us assume exactly one of Si, i = 1, 2 contain 1, say S1. So, here 0 ∈ S and 1 ∈ S1. Now
proceeding in same manner as done in Sub case-2.2., Sub case-3.1. we will have L1 = L2.

Proof. [Proof of Theorem 1.17] Here, it is given that EL1 (S1) = EL2 (S2). First let us considerL1 , L2 and two
non-constant meromorphic functions as follows,

F1 = P1(L1) and G1 = P2(L2),

P1, P2 are given same as in (1.3), (1.4). Clearly here F1 and G1 share 0 IM.
Now we know L-function can have only one pole at z = 1, hence N(r,∞;L1) = N(r,∞;L2) = O(log r).

Again, F′1 = (P1(L1))′ = P′1(L1)L′1, G′1 = P′2(L2)L′2. Also T(r,F1) = nT(r,L1) + O(log r) and T(r,G1) =
nT(r,L2) +O(log r).

Next letαi1 , i = 1, 2, . . . , k1 be the distinct zeros of P′1(z) andαi2 , i = 1, 2, . . . , k2 be the distinct zeros of P′2(z).

First let us take F − 1 = F1 and G − 1 = G1 in H and then consider H , 0. Now using the same method
as adopted in from Lemma 2.2 we can have,

N(r,∞; H) ≤ N∗(r, 0; F1,G1) +
k1∑

i=1

N(r, αi1 ;L1) +
k2∑

i=1

N(r, αi2 ;L2) +N(r,∞;L1) (3.9)

+N(r,∞;L2) +No1 (r, 0;L′1) +No2 (r, 0;L′2) +O(log r),

where No1 (r, 0;L′1) is the reduced counting function of those zeros ofL′1 which are not zeros of P1(L1)
∏k1

i=1(L−
αi1 ), similarly No2 (r, 0;L′2) can be defined.

Applying the Second Fundamental Theorem to L1 and L2 we have,

(n − 1)(T(r,L1) + T(r,L2)) + k1T(r,L1) + k2T(r,L2)

≤ N(r,∞;L1) +N(r,∞;L2) +N(r, 0; F1) +N(r, 0; G1) +
k1∑

i=1

N(r, αi1 ;L1) +
k2∑

i=1

N(r, αi2 ;L2)

−No1 (r, 0;L′1) −No2 (r, 0;L′2) + S(r,L1) + S(r,L2).
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i.e.,

(n − 1)T(r) ≤ N(r, 0; F1) +N(r, 0; G1) −No1 (r, 0;L′1) (3.10)
−No2 (r, 0;L′2) + S(r),

where T(r) = T(r,L1) + T(r,L2) and S(r) = S(r,L1) + S(r,L2) = O(log r).
Applying Lemmas 2.3, 2.4 from (3.10) we have,

(n − 1)T(r) ≤ N1)
E (r, 0; F1) +

1
2

N∗(r, 0; F1,G1) +
1
2

[N(r, 0; F1) +N(r, 0; G1)]

−No1 (r, 0;L′1) −No2 (r, 0;L′2) + S(r)

≤ N(r,∞; H) +
1
2

N∗(r, 0; F1,G1) +
1
2

(T(r,F1) + T(r,G1)) −No1 (r, 0;L′1)

−No2 (r, 0;L′2) +O(log r)

≤ (n/2 + k)T(r) +
3
2

N∗(r, 0; F1,G1) +O(log r)

≤ (n/2 + k)T(r) +
3
2

(NL(r, 0; F1) +NL(r, 0; G1)) +O(log r)

≤ (n/2 + k)T(r) +
3
2

(N(r, 0; F1 |≥ 2) +N(r, 0; G1 |≥ 2)) +O(log r)

≤ (n/2 + k)T(r) +
3
2

(N(r, 0;L′1 | F1 = 1) +N(r, 0;L′2 | G1 = 1)) +O(log r)

≤ (n/2 + k)T(r) +
3
2

(N(r, 0;L1) +N(r, 0;L2)) +O(log r),

for n > 2k + 5, where, k = max{k1, k2}, hence we arrive at a contradiction.
Therefore, H = 0. Then integrating we have,

1
P1(L1)

=
A

P2(L2)
+ B, (3.11)

where A(, 0),B are two constants.
Next we will show that B = 0. If B , 0 then we have from (3.11),

P2(L2)
P1(L1)

= A + BP2(L2),

and here now P1(L1), P2(L2) share 0 CM, then the zeros of P2(L2) + A/B can not be zeros of P2(L2). Hence
the zeros of P2(L2) + A/B will be poles of P1(L1) i.e., N(r, 0; A/B + P2(L2)) = O(log r). This implies L2 has
some generalized Picard exceptional value, which contradicts Lemma 2.7.

Therefore B = 0 and then from (3.11), using Lemma 2.9 we will have L1 = L2 and S1 = S2.

Proof. [Proof of Theorem 1.10] Let f be a non-constant meromorphic function and L be a non-constant
L-function and E f (SP) = EL(SQ) and assume

F = −
f n

a f 2m + b f m + c
and G = −

L
n

a1L
2m + b1L

m + c1
.
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Clearly here F and G share 1 IM. First assume that H , 0. Now using the Second Fundamental Theorem
and Lemmas 2.3, 2.1, 2.2 and then Lemma 2.4 we have,

nT1(r) + S1(r) = T(r,F) + T(r,G) + S(r,F) + S(r,G) (3.12)
≤ N(r, 1; F) +N(r, 0; F) +N(r,∞; F) +N(r, 1; G) +N(r, 0; G) +N(r,∞; G)
−N0(r, 0; F′) −N0(r, 0; G′) + S(r,F) + S(r,G)

≤
n
2

T1(r) +
1
2

N∗(r, 1; F,G) +N1)
E (r, 1; F) +N(r, 0; F) +N(r,∞; F)

+N(r, 0; G) +N(r,∞; G) −N0(r, 0; F′) −N0(r, 0; G′) + S1(r)
n
2

T1(r) ≤ N2(r, 0; F) +N2(r,∞; F) +N2(r, 0; G) +N2(r,∞; G) +
3
2

N∗(r, 1; F,G) + S1(r)

≤ 2N(r, 0; f ) + 2N(r, 0;L) +N2(r, 0; a f 2m + b f m + c) +N2(r, 0; a1L
2m + b1L

m + c1)

+
3
2

(NL(r, 1; F) +NL(r, 1; G)) + S1(r)

≤ (2m + 2)T1(r) +
3
2

(N(r, 0; G − 1 |≥ 2) +N(r, 0; F − 1 |≥ 2)) + S1(r)

≤ (2m +
7
2

)T1(r) + S1(r),

where T1(r) = T(r, f ) + T(r,L) and S1(r) = S(r,L) + S(r, f ). Clearly for n > 4m + 7 we have a contradiction.
Therefore H = 0 and so integrating both sides we get,

1
G − 1

=
A

F − 1
+ B, (3.13)

where A, B are two constants, A , 0.
Now from Lemma 2.4 we have,

T(r,L) = T(r, f ) +O(1). (3.14)

Case-1. At first let B , 0.
Then

G − 1 =
F − 1

A + B(F − 1)
. (3.15)

Sub case-1.1. If A − B , 0 then zeros of F + (A − B)/B are poles of G − 1.
Now using the Second Fundamental Theorem we have,

nT(r, f ) + S(r, f ) = T(r,F) ≤ N(r, 0; F) +N(r,∞; F) +N(r, 0; F + (A − B)/B) + S(r,F)
≤ (1 +m +m)T(r) + S(r),

a contradiction.
Sub case-1.2. When A − B = 0. From (3.15) we have, G = (B+1)F−1

BF and let B + 1 , 0, hence N(r, 0; F − 1
B+1 ) =

N(r, 0; G). Using the Second Fundamental Theorem and Lemma 2.4, (3.14) we have,

nT(r, f ) + S(r, f ) = T(r,F) ≤ N(r, 0; F) +N(r,∞; F) +N(r, 0; F − 1/(B + 1))
≤ (1 +m + 1)T(r, f ) + S(r, f ),

a contradiction. Therefore we have B + 1 = 0.



A. Banerjee, A. Kundu / Filomat 38:15 (2024), 5223–5238 5236

Therefore we have FG = 1. But from Lemma 2.6 we arrive at a contradiction.
Case-2. Suppose, B = 0. Now we have from (3.13),

G − 1 =
1
A

(F − 1) (3.16)

G =
1
A

(F + A − 1),

Sub case-2.1. Let A − 1 , 0, then using the Second Fundamental Theorem we have,

nT(r, f ) + S(r, f ) = T(r,F) ≤ N(r, 0; F) +N(r,∞; F) +N(r, 0; F + A − 1)
≤ (1 +m + 1)T(r, f ) + S(r, f ),

a contradiction.
Sub case-2.2. Now for A = 1, we have from (3.16) we must have, F = G, i.e.,

f n

a f 2m + b f m + c
=

L
n

a1L
2m + b1L

m + c1
(3.17)

a1 f n
L

2m + b1 f n
L

m + c1 f n = aLn f 2m + bLn f m + cLn

i.e.,

(a1 f n
L

2m
− aLn f 2m) + (b1 f n

L
m
− bLn f m) + (c1 f n

− cLn) = 0
L

n f 2m(a1hn−2m
− a) +Ln f m(b1hn−m

− b) +Ln(c1hn
− c) = 0

f 2m(a1hn−2m
− a) + f m(b1hn−m

− b) + (c1hn
− c) = 0, (3.18)

where h = f
L

.
Let us assume h is a non-constant meromorphic function, from above we get

f 2m + f m b1hn−m
− b

a1hn−2m − a
+

c1hn
− c

a1hn−2m − a
= 0

i.e., (
f m +

b1hn−m
− b

2(a1hn−2m − a)

)2

=
(b1hn−m

− b)2
− 4(a1hn−2m

− a)(c1hn
− c)

4(a1hn−2m − a)2

=
ac1hn−2m(hm

−
bb1
4ac1

)2

(a1hn−2m − a)2 . (3.19)

Sub case-2.2.1.
Now if n is even, let n = 2p, then from above we have,(

f m +
b1hn−m

− b
2(a1hn−2m − a)

)
= ± (c1a)

1
2

hp−m
(
hm
−

bb1
4ac1

)
a1hn−2m − a

f m = −
b1hn−m

− b
2(a1hn−2m − a)

± (c1a)
1
2

hp−m
(
hm
−

bb1
4ac1

)
a1hn−2m − a

=
−(b1hn−m

− b) ± 2(c1a)
1
2 hp−m

(
hm
−

bb1
4ac1

)
2(a1hn−2m − a)

. (3.20)

Clearly from above we have, S(r, h) = S(r, f ).
Now for each cases in (3.20), if the numerator −(b1hn−m

−b)±2(c1a)
1
2 hp−m

(
hm
−

bb1
4ac1

)
and the denominator

a1hn−2m
− a have any common factor h − x then x will be a zero of −( b1a

a1
wm
− b) ± 2(c1a)

1
2 wp−m

(
wm
−

bb1
4ac1

)
.
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Hence the numerator and denominator can have at most p = n
2 common factors. Hence a1hn−2m

− a has at
least n − 2m − n

2 =
n
2 − 2m factors h − µi, say (i = 1, 2, . . . ., n

2 − 2m) which are not factors of the numerator.
Again,(n

2
− 2m − 2

)
T(r, h) ≤

n/2−2m∑
i=1

N(r, µi; h) ≤ N(r,∞; f ) = O(log r) = S(r, h),

a contradiction for n > 4m + 4.
Therefore h must be a constant satisfying (3.18).

Sub case-2.2.2.
Let n is odd and n = 2p + 1 (say). Then from (3.17) we have,

hn =
a f 2m + b f m + c

a1L
2m + b1L

m + c1

=
a
(

f m + b
2a

)2

a1

(
Lm + b1

2a1

)2

h =
a∗

(
f m + b

2a

)2

h2p
(
Lm + b1

2a1

)2 = κ
2, (3.21)

where, a∗ = a
a1

and κ = (a∗)
1
2 ( f m+ b

2a )

hp(Lm+
b1
2a )
, a meromorphic function.

Putting h = κ2 we have from (3.19),(
f m +

b1κ2n−2m
− b

2(a1κ2n−4m − a)

)
= ± (c1a)

1
2
κn−2m

(
κ2m
−

bb1
4ac1

)
a1κ2n−4m − a

i.e., f m = −
b1κ2n−2m

− b
2(a1κ2n−4m − a)

± (c1a)
1
2
κn−2m

(
κ2m
−

bb1
4ac1

)
a1κ2n−4m − a

=
−(b1κ2n−2m

− b) ± 2(c1a)
1
2κn−2m

(
κ2m
−

bb1
4ac1

)
2(a1κ2n−4m − a)

. (3.22)

Now for each cases in (3.22), if the numerator−(b1κ2n−4m
−b)±2(c1a)

1
2 a2κn−2m

(
κ2m
−

bb1
4ac1

)
and the denomi-

nator a1κ2n−4m
−a have any common factorκ−y then y will be a zero of−( b1a

a1
z2m
−b)±2(c1a)

1
2 a2zn−2m

(
z2m
−

bb1
4ac1

)
.

Hence the numerator and denominator can have at most n common factors. Hence a1κ2n−4m
− a has at least

2n − 4m − n = n − 4m factors κ − νi, (i = 1, 2, . . . ,n − 4m) which are not factors of numerator.
Again,

(n − 4m − 2)T(r, κ) ≤
n−4m∑

i=1

N(r, νi;κ) ≤ N(r,∞; f ) = O(log r) = S(r, κ),

a contradiction for n > 4m + 2.
Therefore h must be a constant satisfying (3.17). Hence from the above cases finally we have hn−2m =

a
a1
, hn−m = b

b1
and hn = c

c1
.

In particular, if (a, a1), (b, b1) or (b, b1), (c, c1) are identical then we will automatically have f = L also
P = Q =⇒ SP = SQ.

Now if a
a1
= b

b1
= c

c1
= k then we have, f = ωLwhere ω is mth root of unity.
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Proof. [Proof of Corollary 1.1] Adopting the same procedure as done in Theorem 1.10, we will haveL1 = hL2.
Then taking σ −→ +∞we will have, h = 1 and hence we get L1 = L2.
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