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Abstract. LetM be a von Neumann algebra with no central summands of type I1 and Φ : M →M be a
nonlinear bijective map preserving mixed products satisfying that Φ([a • b, c]) = [Φ(a) • Φ(b),Φ(c)] for all
a, b, c ∈ M. Then there exists z ∈ ZM with z2 = I such that Φ is of the form Φ = zΨ, where Ψ : M→M is
the sum of a linear ∗-isomorphism and a conjugate linear ∗-isomorphism.

1. Introduction and preliminaries

Let A be a ∗-algebra over the complex number field C. For all a, b ∈ M, define the Lie product
[a, b] = ab − ba, the skew Lie product [a, b]∗ = ab − ba∗ and the jordan ∗-product a • b = ab + ba∗. Recently,
inspired by the question that when a multiplicative map is additive raised by Martindale [1], more and
more authors are committed to the research on product preserving problems on certain algebras, including
corresponding 2-local mappings. For example, we can refer to [2–9] on Lie product preserving problems,
[10–12] on skew Lie product preserving problems and [13, 14] on jordan ∗-products preserving problems.

Recently, nonlinear maps preserving the products of the mixture of (skew) Lie products and Jordan
∗-product have received a fair amount of attention. We can refer to [15–20]. For example, Let A and B be
two factors with dimA > 4. Zhao, Li and Chen [15] give the characterization of a bijective map Φ : A→ B
satisfyingΦ([a• b, c]) = [Φ(a)•Φ(b),Φ(c)] for all a, b, c ∈ A. They proved thatΦ is a linear ∗-isomorphism, or
a conjugate linear ∗-isomorphism, or the negative of a linear ∗-isomorphism, or the negative of a conjugate
linear ∗-isomorphism.

In the article, we shall study nonlinear maps discussed in [15] between von Neumann algebras with no
central summands of type I1. Due to the significant differences in the properties of factors and von Neumann
algebras with no central summands of type I1, we need to adopt different methods and techniques to prove
the main result. LetM be a von Neumann algebra with no central summands of type I1 and Φ :M→M
be a nonlinear bijective map preserving mixed products satisfying that Φ([a • b, c]) = [Φ(a) • Φ(b),Φ(c)] for
all a, b, c ∈ M. Then we show that there exists z ∈ ZM with z2 = I such that Φ is of the form Φ = zΨ, where
Ψ :M→M is the sum of a linear ∗-isomorphism and a conjugate linear ∗-isomorphism.

Before embarking on the proof, we need some notations and preliminaries. LetH be a complex separable
Hilbert space. We denote by B(H) the algebra of all bounded linear operators on H . Let M ⊆ B(H) be
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a von Neumann algebra. The set ZM={s ∈ M
∣∣∣st = ts for all t ∈ M} is called the center ofM. For a ∈ M,

the center carrier of a, denoted by a, is the intersection of all central projections p ∈ M such that pa = a. It
is well known that the central carrier of a is the projection with the range [Ma(H)], the closed linear span
of {ma(x)

∣∣∣m ∈ M, x ∈ H}. For each self-adjoint operator a ∈ M, we define the core of a, denoted by a, to be
sup{s ∈ ZM

∣∣∣s = s∗, s ≤ a}. If p is a projection and p = 0, we call p a core-free projection. Clearly, one has
a − a ≥ 0. Further if s ∈ ZM and a − a ≥ S ≥ 0, then s = 0. If p is a projection, it is clear that p is the largest

central projection≤ p. It is to see that p = 0 if and only if I − p = I, where I − p denotes the central carrier of
I − p. To complete the proof of the main theorem, we will use frequently several fundamental properties of
von Neumann algebras. We list them in the following proposition.

Proposition 1.1. [5, 21–23] LetM be a von Neumann algebra.
(i)If p is a projection, thenZpMp = pZM.
(ii) IfM has no central summands of type I1, then each nonzero central projection ofM is the central carrier of a

core-free projection ofM.
(iii)If p is a core-free projection inM, then pMp ∩ZM = {0}.
(iv) If t ∈ M and p is a projection inM with p = I, then tmp = 0 for all m ∈ M implies t = 0. Consequently, if

z ∈ ZM, then zp = 0 implies z = 0.
(v)IfM is a von Neumann algebra with no central summands of type I1 and c ∈ ZM such that cM ⊆ ZM, then

c = 0.

By Proposition 1.1 (ii), ifM has no central summands of type I1, then there exists a core-free projection with
central carrier I, denoted by p1, that is p1 = I and p1 = 0. Clearly, p1 , 0, I. Throughout the article, p1 is
fixed. Denote p2 = I − p1. By the definition of core and central carrier, p2 is core-free and p2 = I. Denote
Mi j = piMp j, i, j = 1, 2. Then we may writeM =M11 +M12 +M21 +M22. And for each element t ∈ M, we
may write t =

∑2
i, j=1 ti j. In all that follows, when we write ti j, it indicates that ti j ∈ Mi j.

In addition, the following conclusion will play an important role in our proof of the main result.

Proposition 1.2. [23] LetM andN be von Neumann algebras with no central summands of type I1 or I2. Let θ be
a bijective additive mapping. If θ preserves commutativity in both directions then it is of the form

θ(x) = cφ(x) + f (x)

where c is an invertible element in ZN , φ : M → N is a jordan isomorphism of M onto N and f is an additive
mapping ofM intoZN .

By using the proof method of Proposition 1.2 in [24], we can obtain the following result.

Proposition 1.3. LetM be von Neumann algebras with no central summands of type I1. If a11b12 + b12a22 = 0 for
all b12 ∈ M12, there exists z ∈ ZM such that a11 = zp1 and a22 = −zp2.

Proposition 1.4. LetM be von Neumann algebras with no central summands of type I1. If [a, b] = z ∈ ZM for all
a, b ∈ M, then z = 0.

Throughout the article,ZA andAsa denote the center ofA and the set of self-adjoint operators of an algebra
A respectively.

2. Additivity

LetM be a von Neumann algebra with no central summands of type I1 and Φ :M→M be a nonlinear
bijective map preserving mixed products satisfying that Φ([a • b, c]) = [Φ(a) • Φ(b),Φ(c)] for all a, b, c ∈ M.
In this section, we will first consider the additivity of Φ. The main result reads as follows.
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Theorem 2.1. LetM be a von Neumann algebra with no central summands of type I1 andΦ :M→M be a nonlinear
bijective map preserving mixed products satisfying that Φ([a • b, c]) = [Φ(a) •Φ(b),Φ(c)] for all a, b, c ∈ M. Then Φ
is additive.

In the following, we will prove Theorem 2.1 by checking several Lemmas.

Lemma 2.2. Φ(0) = 0.

Proof. Since Φ is surjective, there exists a ∈ M such that Φ(a) = 0. It follows that

Φ(0) = Φ([0 • 0, a]) = [Φ(0) •Φ(0),Φ(a)] = [Φ(0) •Φ(0), 0] = 0.

Lemma 2.3. Φ(a12 + b21) = Φ(a12) + Φ(b21) for all a12 ∈ M12 and b21 ∈ M21.

Proof. Denote t = a12 + b21 − Φ
−1(Φ(a12) + Φ(b21)). It follows from [a12 • p1, p1] = [b21 • p2, p2] = 0 for all

a12 ∈ M12 and b21 ∈ M21 and Lemma 2.2 that

[Φ(a12 + b21) •Φ(p1),Φ(p1)] =Φ([a12 + b21 • p1, p1])
=Φ([a12 • p1, p1]) + Φ([b21 • p1, p1])
=[Φ(a12) + Φ(b21) •Φ(p1),Φ(p1)]

and

[Φ(a12 + b21) •Φ(p2),Φ(p2)] =Φ([a12 + b21 • p2, p2])
=Φ([a12 • p2, p2]) + Φ([b21 • p2, p2])
=[Φ(a12) + Φ(b21) •Φ(p2),Φ(p2)].

Then we have Φ([t • p1, p1]) = [Φ(t) • Φ(p1),Φ(p1)] = 0 and Φ([t • p2, p2]) = [Φ(t) • Φ(p2),Φ(p2)] = 0. Thus
[t • p1, p1] = [t • p2, p2] = 0 and then t12 = t21 = 0.

For every ckl ∈ Mkl for 1 ≤ k , l ≤ 2,we have from [ckl • a12, pk] = [ckl • b21, pk] = 0 that

[Φ(ckl) •Φ(a12 + b21),Φ(pk)] =Φ([ckl • (a12 + b21), pk])
=Φ([ckl • a12, pk]) + Φ([ckl • b21, pk])
=[Φ(ckl) • (Φ(a12) + Φ(b21)),Φ(pk)].

Thus Φ([ckl • t, pk]) = [Φ(ckl) • Φ(t),Φ(pk)] = 0 and then [ckl • t, pk] = 0, which implies that ckltll = 0 for all
ckl ∈ Mkl. It follows from Proposition 1.1 (iv) that tll = 0 for l = 1, 2. Therefore, we have t = 0. The proof is
completed.

Lemma 2.4. For all a11 ∈ M11, b12 ∈ M12, c21 ∈ M21 and d22 ∈ M22, we have

Φ(a11 + b12 + c21 + d22) = Φ(a11) + Φ(b12) + Φ(c21) + Φ(d22).

Proof. Denote t = a11 + b12 + c21 + d22 −Φ
−1(Φ(a11)+Φ(b12)+Φ(c21)+Φ(d22)). Noticing that Φ([p1 • a11, p2]) =

Φ([p1 • d22, p2]) = 0, it follows from Lemmas 2.1 and 2.3 that

[Φ(p1) •Φ(a11 + b12 + c21 + d22),Φ(p2)]
=Φ([p1 • (a11 + b12 + c21 + d22), p2])
=Φ([p1 • (b12 + c21), p2])
=Φ([p1 • (b12 + c21), p2]) + Φ([p1 • a11, p2]) + Φ([p1 • d22, p2])
=[Φ(p1) • (Φ(a11) + Φ(b12) + Φ(c21) + Φ(d22)),Φ(p2)],
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which implies that [p1 • t, p2] = 0 and then p1tp2 = p2tp1 = 0.
On the other hand, for all ei j ∈ Mi j with i , j, we obtain that

[Φ(e12) •Φ(a11 + b12 + c21 + d22),Φ(p1)]
=Φ([e12 • (a11 + b12 + c21 + d22), p1])
=Φ([e12 • d22, p1])
=Φ([e12 • d22, p1]) + Φ([e12 • a11, p1]) + Φ([e12 • b12, p1]) + Φ([e12 • c21, p1])
=[Φ(e12) • (Φ(a11) + Φ(b12) + Φ(c21) + Φ(d22)),Φ(p1)]

and

[Φ(e21) •Φ(a11 + b12 + c21 + d22),Φ(p2)]
=Φ([e21 • (a11 + b12 + c21 + d22), p2])
=Φ([e21 • a11, p2])
=Φ([e21 • d22, p2]) + Φ([e21 • a11, p2]) + Φ([e21 • b12, p1]) + Φ([e21 • c21, p2])
=[Φ(e21) • (Φ(a11) + Φ(b12) + Φ(c21) + Φ(d22)),Φ(p2)].

Then [ei j • t, pi] = 0. Thus ei jtp j = 0 for all ei j ∈ Mi j with i , j. It follows from pi = I and Proposition 1.1(iv)
that p jtp j = 0 for j = 1, 2. In all, we have t = 0. The proof is completed.

Lemma 2.5. Φ(ai j + bi j) = Φ(ai j) + Φ(bi j) for all ai j, bi j ∈ Mi j with i , j.

Proof. It follows from Lemma 2.4 that

Φ(ai j + bi j) = Φ([
I
2
• (pi + ai j), p j + bi j])

=[Φ(
I
2

) •Φ(pi + ai j),Φ(p j + bi j)]

=[Φ(
I
2

) •Φ(pi) + Φ(ai j),Φ(p j) + Φ(bi j)]

=Φ([
I
2
• pi, p j]) + Φ([

I
2
• pi, bi j]) + Φ([

I
2
• ai j, p j]) + Φ([

I
2
• ai j, bi j])

=Φ(ai j) + Φ(bi j).

Lemma 2.6. Φ(aii + bii) = Φ(aii) + Φ(bii) for all aii, bii ∈ Mii.

Proof. Denote t = aii + bii −Φ
−1(Φ(aii) + Φ(bii)). It follows from Lemmas 2.4 and 2.5 that

[Φ(c ji) •Φ(aii + bii),Φ(pi)]
=Φ([c ji • (aii + bii), pi])
=Φ(c jiaii) + Φ(c jibii) −Φ(aiic∗ji) −Φ(biic ji

∗)

=Φ([c ji • aii, pi]) + Φ([c ji • bii, pi])
=[Φ(c ji) •Φ(aii),Φ(pi)] + [Φ(c ji) •Φ(bii),Φ(pi)]
=[Φ(c ji) • (Φ(aii) + Φ(bii)),Φ(pi)]

for any c ji ∈ M ji with i , j. It follows that [c ji • t, pi] = 0 . That is c jitpi − pitc∗ji = 0. Thus c jitpi = 0 for any
c ji ∈ M ji with i , j. It follows from p j = I and Proposition 1.1(iv) that pitpi = 0 for i = 1, 2.
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On the other hand, it is obvious that

[Φ(pi) •Φ(aii + bii),Φ(pi)]
=Φ([pi • (aii + bii), pi])
=Φ([pi • aii, pi]) + Φ([pi • bii, pi])
=[Φ(pi) • (Φ(aii) + Φ(bii)),Φ(pi)]).

Thus [pi • t, pi] = 0, which implies that t12 = t21 = 0 . In all, we have t = 0. The proof is completed.

Up to now, we give the proof of Theorem 2.1 in the following.

Proof. For any a =
∑2

i, j=1 ai j and b =
∑2

i, j=1 bi j, where ai j, bi j ∈ Mi j, it follows from Lemmas 2.4, 2.5 and 2.6
that

Φ(a + b) =Φ(
2∑

i, j=1

ai j +

2∑
i, j=1

bi j) = Φ(
2∑

i, j=1

(ai j + bi j))

=

2∑
i, j=1

Φ(ai j + bi j) =
2∑

i, j=1

(Φ(ai j) + Φ(bi j))

=Φ(
2∑

i, j=1

ai j) + Φ(
2∑

i, j=1

bi j) = Φ(a) + Φ(b).

3. Structure

In this section, we shall study the characterization of Φ mentioned in Theorem 2.1. The main result
reads as follows.

Theorem 3.1. LetM be a von Neumann algebra with no central summands of type I1 andΦ :M→M be a nonlinear
bijective map preserving mixed products satisfying that Φ([a • b, c]) = [Φ(a) • Φ(b),Φ(c)] for all a, b, c ∈ M. Then
there exists z ∈ ZM with z2 = I such that Φ is of the form Φ = zΨ, where Ψ : M → M is the sum of a linear
∗-isomorphism and a conjugate linear ∗-isomorphism.

In the following, we will prove Theorem 3.1 by checking several lemmas.

Lemma 3.2. Φ(ZM) = ZM.

Proof. Since Φ is surjective, there exists b ∈ M such that Φ(b) = I. Then for all z ∈ ZM, we have

0 = Φ([b • c, z]) = [Φ(b) •Φ(c),Φ(z)] = 2[Φ(c),Φ(z)]

for all c ∈ M. It follows from the surjectivity of Φ that Φ(z) ∈ ZM, which means that Φ(ZM) ⊆ ZM. By
considering Φ−1, we can obtain that Φ(ZM) = ZM.

Lemma 3.3. There exists an element z ∈ ZM with z2 = I such that

Φ([a, b]) = z[Φ(a),Φ(b)]

for all a, b ∈ M.



M. L. Gao et al. / Filomat 38:15 (2024), 5387–5397 5392

Proof. For all a, b ∈ M, we have from Lemma 3.2 and the additivity of Φ that

2Φ([a, b]) =Φ(2[a, b]) = Φ([I • a, b])
=[Φ(I) •Φ(a),Φ(b)]
=(Φ(I) + Φ(I)∗)[Φ(a),Φ(b)]. (1)

Then Φ([a, b]) = Φ(I)+Φ(I)∗

2 [Φ(a),Φ(b)]. Denote z = Φ(I)+Φ(I)∗

2 ∈ ZM by Lemma 3.2. In the following, we will
prove that z2 = I, which implies that z is invertible.

For each a ∈ Mwith a = −a∗, we have from Equation (1) that

[Φ(a) •Φ(b),Φ(c)] = Φ([a • b, c]) = Φ([[a, b], c]) = z2[[Φ(a),Φ(b)],Φ(c)] (2)

for all b, c ∈ M. Thus we have

(I − z2)Φ(a)Φ(b) + Φ(b)(z2Φ(a) + Φ(a)∗) ∈ ZM (3)

for all b ∈ M and a ∈ M with a = −a∗. For for convenience, denote s = (I − z2)Φ(a), t = Φ(b) and
r = z2Φ(a) + Φ(a)∗. Then st + tr ∈ ZM. Since Φ is surjective and b is arbitrary inM, Φ(b) can retrieve all the
elements inM. In the following, we will prove Φ(a∗) = −Φ(a)∗ for all a ∈ Mwith a = −a∗ by taking different
values of Φ.

(1) Take t = p1. Then sp1 + p1r ∈ ZM and thus p2sp1 = p1rp2 = 0.
(2) Take t = p2. Then sp2 + p2r ∈ ZM and thus p1sp2 = p2rp1 = 0.

Therefore s = s11 + s22, r = r11 + r22.
(3) For any a12 ∈ M12, take t = a12. Then s11a12 + a12r22 ∈ ZM and thus s11a12 + a12r22 = 0. By Proposition

1.3, there exists z1 ∈ ZM such that s11 = z1p1 and r22 = −z1p2.
(4) For any a21 ∈ M21, take t as a21. Then s22a21 + a21r11 ∈ ZM and thus s22a21 + a21r11 = 0. By Proposition

1.3, there exists z2 ∈ ZM such that s22 = z2p2 and r11 = −z2p1. Therefore we have from Equation (2) that

st + tr = z1p1t + z2p2t − tz1p2 − tz2p1 ∈ ZM. (4)

Multiplying Equation (4) on both sides by p1, we have from Proposition 1.1 (i) that

(z1 − z2)p1tp1 ∈ p1ZM = Zp1Mp1

for all t ∈ M. Thus
(z1 − z2)p1Mp1 ⊆ p1ZM = Zp1Mp1 .

Noting that p1Mp1 is also von Neumann algebra with no central summands of type I1, it follows from
Proposition 1.1(iv) that z1 = z2. For convenience, denote z0 = z1 = z2 ∈ ZM. Then s = s11 + s22 =
z0p1 + z0p2 = z0 ∈ ZM. Thus

(I − z2)Φ(a) = z0. (5)

Similarly, we can obtain

z2Φ(a) + Φ(a)∗ = −z0. (6)

Then adding Equations (5) and (6) yields

Φ(a∗) = −Φ(a) (7)

for any a ∈ M with a = −a∗. Let A = {a|a∗ = −a}. Thus Φ(A) ⊆ A. Since Φ is bijective, Φ(A) = A. Then
combining this with Equation (2), we have

[Φ(a) •Φ(b),Φ(c)] = [[Φ(a),Φ(b)],Φ(c)] = z2[[Φ(a),Φ(b)],Φ(c)]
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for any a ∈ Mwith a = −a∗ and all b, c ∈ M. Since Φ is bijective and c is arbitrary, we have

(I − z2)[Φ(a),Φ(b)] ∈ ZM

for all b ∈ M and a ∈ Mwith a = −a∗. Then by Proposition 1.4,

(I − z2)[Φ(a),Φ(b)] = 0

for all b ∈ M and a ∈ M with a = −a∗. For any a ∈ M with a = −a∗, we have from Equation (7) that
(iΦ(a))∗ = −iΦ(a)∗ = iΦ(a),which implies that iΦ(a) ∈ Msa for any a ∈ Mwith a = −a∗. Then

(I − z2)[iΦ(a),Φ(b)] = 0

for all b ∈ M and a ∈ Mwith a = −a∗. Since Φ(A) = A, we have

(I − z2)[m,Φ(b)] = 0

for all b,m ∈ M. Take Φ(b) = p1 and then we have

(I − z2)mp1 − (I − z2)p1m = 0 (8)

for all m ∈ M. Multiplying on the left by p2 and on the right by p1 of Equation (8), it concludes that
(I− z2)p2Mp1 = {0}. Then it follows from Proposition 1.1(iv) that (I− z2)p2 = 0. Since I− z2

∈ ZM and p2 = I,
we have from Proposition 1.1(iv) that I − z2 = 0, which implies that z2 = I. The proof is finished.

Remark 3.4. Let z be as above and define Ψ = zΦ. It follows from Lemma 3.3 that Ψ([a, b]) = [Ψ(a),Ψ(b)] for all
a, b ∈ M. It is clear thatΨ :M→M is an additive bijection that preserves commutativity in both directions. There
by Proposition 1.2, there exists an invertible element z0 ∈ ZM such thatΨ(a) = z0θ(a) + f (a) for any a ∈ M, where
θ :M→M is an additive Jordan isomorphism and f :M→ZM is an additive map.

Lemma 3.5. z0 = I.

Proof. For all a, b ∈ M, it follows from Remark 3.4 that

z0θ([a, b]) + f ([a, b]) = z2
0[θ(a), θ(b)]. (9)

Since θ :M→M is an additive Jordan isomorphism, θ can be decomposed as the direct sum of an additive
isomorphism and an additive anti-isomorphim fromM toM. That is θ = θ1

⊕
θ2, where θ1 :M→M is

an additive isomorphism and θ2 : M→M is an additive anti-isomorphism. It follows from Equation (9)
that

z0θ1(ab − ba) + z0θ2(ab − ba) + f ([a, b]) = z2
0[θ1(a) + θ2(a), θ1(b) + θ2(b)].

By simple calculation, we have

(z0 − z2
0)(θ1(a)θ1(b) − θ1(b)θ1(a)) + (z0 + z2

0)(θ2(b)θ2(a) − θ2(a)θ2(b)) ∈ ZM (10)

for all a, b ∈ M. Since θ1 is surjective, there exists s ∈ M such that θ1(s) = p1 and then θ1(I − s) = p2. Taking
a = s in Equation (10), we obtain

(z0 − z2
0)(p1θ1(b) − θ1(b)p1) + (z0 + z2

0)(θ2(b)θ2(p1) − θ2(p1)θ2(b)) ∈ ZM (11)

for all b ∈ M. Multiplying on the left by θ1(s) = p1 and on the right by θ1(I − s) = p2 of Equation (11), it
concludes that (z0 − z2

0)p1θ1(b)p2 = 0. Since z0 − z2
0 ∈ ZM and p2 = I, we have from Proposition 1.1(iv) that

(z0 − z2
0)p1 = 0 and thus z0 − z2

0 = z0(z0 − I) = 0 by Proposition 1.1(iv). Therefore z0 = I for z0 is invertible.
The proof is completed.

Lemma 3.6. θ :M→M in Remark 3.4 must be an additive isomorphism.
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Proof. From the above, θ = θ1
⊕
θ2, where θ1 :M→M is an additive isomorphism and θ2 :M→M is an

additive anti-isomorphism. Therefore we need to show that θ2 ≡ 0. Otherwise, assume that θ :M→M is
an additive anti-isomorphism for convenience. Then by Lemma 3.5, we haveΨ = θ+ f , where θ :M→M
is an additive anti-isomorphism and f :M→ZM is an additive map. Then there exists z1 ∈ ZM such that

Ψ([a • b, c]) = θ([a • b, c]) + z1 = [θ(c), θ(b)θ(a) + θ(a∗)θ(b)] + z1 (12)

for all a, b, c ∈ M. On the other hand,

Ψ([a • b, c]) =[Ψ(a) •Ψ(b),Ψ(c)]
=[(θ(a) + f (a)) • (θ(b) + f (b)), θ(c)]
=[θ(a) • θ(b) + θ(a) • f (b) + f (a) • θ(b), θ(c)] (13)

for all a, b, c ∈ M.
Combing Equations (12) and (13), we have from Proposition 1.4 that z1 = 0 and then

(θ(a∗) + θ(a))θ(b) + (θ(b) + f (b))(θ(a)∗ + θ(a)) + ( f (a) + f (a)∗)θ(b) ∈ ZM (14)

for all a, b ∈ M. Taking b = p1 in Equation (14) and multiplying Equation (3.14) on the left side by θ(p1) and
on the right side by θ(p2), we can obtain

(I + f (p1))θ(p1)(θ(a)∗ + θ(a))θ(p2) = 0 (15)

for all a ∈ M. Replacing θ(a) by iθ(a) in Equation (15), we have

(I + f (p1))θ(p1)(θ(a)∗ − θ(a))θ(p2) = 0 (16)

for all a ∈ M. Then we have from Equations (15) and (16) that

(I + f (p1))θ(p1)θ(a)θ(p2) = 0

for all a ∈ M. Thus

θ−1(I + f (p1))p2ap1 = 0

for all a ∈ M. It follows from Proposition 1.1(iv) that θ−1(I+ f (p1)) = 0 and then f (p1) = −I. Now take b = p1
in Equation (14) and multiplying Equation (14) on the right side by θ(p2), we have

θ(p2)(θ(a)∗ + θ(a))θ(p2) ∈ ZMθ(p2) = θ(ZMp2) (17)

for all a ∈ M. Replacing θ(a) by iθ(a) in Equation (17), it follows that

θ(p2ap2) = θ(p2)θ(a)θ(p2) ∈ θ(ZMp2)

for all a ∈ M. Thus p2Mp2 = ZMp2. Similarly, p1Mp1 = ZMp1. SinceZM ⊆ Zp1Mp1 = ZMp1 by Proposition
1.1(i), we have ZM ⊆ p1Mp1. It follows from Proposition 1.1(iii) that ZM = {0}, which is a contradiction.
Therefore θ2 ≡ 0. The proof is completed.

Lemma 3.7. θ is an additive ∗-isomorphism and f (a) = 0 for all a ∈ M.

Proof. By Lemma 3.6, we have obtained thatΨ = θ+ f , where θ :M→M is an additive isomorphism and
f :M→ZM is an additive map. Thus there exists z ∈ ZM such that

Ψ([a • b, c]) = θ([a • b, c]) + z = [θ(a)θ(b) + θ(b)θ(a∗), θ(c)] + z
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for all a, b, c ∈ M. On the other hand, we have

Ψ([a • b, c]) =([Ψ(a) •Ψ(b),Ψ(c)])
=[(θ(a) + f (a)) • (θ(b) + f (b)), θ(c)]
=[θ(a) • θ(b) + f (a) • θ(b) + θ(a) • f (b), θ(c)]

for all a, b, c ∈ M. It follows from Proposition 1.4 that z = 0. Thus we have from the surjectivity of θ that

θ(b)(θ(a)∗ − θ(a∗)) + θ(b)( f (a)∗ + f (a)) + f (b)(θ(a)∗ + θ(a)) ∈ ZM (18)

for all a, b ∈ M. Take b ∈ p1 in Equation (18) and multiplying Equation (18) on the left side by θ(p2) and on
the right side by θ(p1), we have

f (p1)θ(p2)θ(a)θ(p1) = 0

for all a ∈ M. It follows that
θ−1( f (p1))p2ap1 = 0

for all a ∈ M. Thus we have from Proposition 1.1(iv) that θ−1( f (p1)) = 0 and then f (p1) = 0. Similarly,
f (p2) = 0 and then f (I) = 0. Take b = I in Equation (18) and then we have

θ(a)∗ − θ(a∗) ∈ ZM (19)

for all a ∈ M. In the following, we show f (a) = 0. Take b = x11 in Equation (3.18) and multiplying Equation
(18) on the left side by θ(p2) and on the right side by θ(p1), we have

θ(p2) f (x11)(θ(a) + θ(a)∗)θ(p1) = 0

for all a ∈ M. Noticing that θ(a) + θ(a)∗ ∈ Msa and θ is surjective, we have

θ(p2) f (x11)θ(a)θ(p1) = 0

for all a ∈ M. Then
p2θ

−1( f (x11))ap1 = 0

for all a ∈ M. It follows from Proposition 1.1(iv) that θ−1( f (x11)) = 0 and then f (x11) = 0. Repeating the
similar process, we can show that f (xi j) = 0 for 1 ≤ i, j ≤ 2. Since f is additive, it follows that f (a) = 0 for all
a ∈ M. Combining this with Equation (18), we have

θ(b)(θ(a)∗ − θ(a∗)) ∈ ZM

for all a ∈ M. Then by Proposition 1.1(v) and Equation (19), we have θ(a)∗ = θ(a∗) for all a ∈ M. The proof
is finished.

Remark 3.8. It follows from Remark 3.4 and Lemma 3.7 thatΨ is an additive ∗-isomorphism.

Lemma 3.9. There exists a central projection e ∈ M such that the restriction of Ψ toMe is a linear ∗-isomorphism
and the restriction ofΨ toM(I − e) is a conjugate linear ∗-isomorphism.

Proof. For each rational number q, we have Ψ(qI) = qΨ(I). In fact, since q is a rational number, there exists
two integers r and s such that q = r

s . SinceΨ(I) = I andΨ is additive, it follows that

Ψ(qI) = Ψ(
r
s

I) = rΨ(
1
s

) =
r
s
Ψ(I) = qI.

Now we show that Ψ is real linear. Let a ∈ M be a positive element and then a = b2 for some self-adjoint
element b ∈ M. ThusΨ(a) = Ψ(b)2. SinceΨ(b) ∈ Msa by Remark 3.8, we haveΨ(a) is a positive element in
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M, which shows thatΨ preserves positive elements. Let λ ∈ R. Choose sequences {an} and {bn} of rational
numbers such that an ≤ λ ≤ bn for all n and limn→∞an =limn→∞bn = λ. It follows from

anI ≤ λI ≤ bnI

that
anI ≤ Ψ(λI) ≤ bnI.

Taking the limit, we haveΨ(λI) = λI. Hence for all a ∈ M, it follows that

Ψ(λa) = Ψ((λI)a) = Ψ(λI)Ψ(a) = λΨ(a).

ThereforeΨ is real linear.
Let f = I−iΨ(iI)

2 . It is easy to verify that f is a central projection inM for Ψ is an additive isomorphism
andΨ(ZM) = ZM. SinceΨ(iI) = i(2 f − I), we have

fθ(iI) = i f , (I − f )Ψ(iI) = i( f − I).

Let e = Ψ−1( f ). Then e is also a central projection inM. Therefore, for all a ∈ M, we have

Ψ(iae) = Ψ(a)Ψ(e)Ψ(iI) = iΨ(a) f = iΨ(ae)

and
Ψ(ia(I − e)) = Ψ(a)Ψ(I − e)Ψ(iI) = −iΨ(a)(I − f ) = −iΨ(a(I − e)).

Therefore, the restriction of Ψ toMe is linear and the restriction of Ψ toM(I − e) is conjugate linear. The
proof is finished.

Finally, we give the proof of Theorem 3.1.

Proof. Obviously, Theorem 3.1 can be easily obtained by Remark 3.4 and 3.8, and 3.9.
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