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Abstract. Let P be a collection of prime numbers and let M(G,n) be the Moore space of type (G,n), where
G is a finitely generated abelian group and n is a positive integer. This paper focuses on the homotopy
commutative comultiplication structures on the localization XP of a wedge X := Sm

∨M(G,n) of the m-
spheres and Moore spaces for 2 ≤ m < n. A list of examples is provided for examination of the phenomena
of commutative comultiplications on XP up to homotopy.

1. Introduction

1.1. Co-Hopf spaces and Moore spaces
A co-Hopf space [2] with a homotopy comultiplication and a Hopf space with a homotopy multiplication

are the pivotal object classes in the pointed homotopy category and they are Eckmann-Hilton duals [11, 29]
with one another in classical homotopy theory. In general terms, a co-Hopf space is composed of many
distinctive homotopy comultiplications as well as a number of different properties. In addition, calculation
of the cardinality of the set of homotopy (or algebraic) comultiplications is complicated, involving a complex
process; see [4–6, 22] and [26] regarding the wedge sum of spheres.

Studies on homotopy comultiplications and same n-types based on various co-Hopf spaces with stan-
dard homotopy comultiplications have been reported by several authors to date; see [2] regarding co-Hopf
spaces, [18–21] regarding the same n-types of suspension spaces, [14] regarding the local cohomology spec-
tral sequence from the theoretical equivariant homotopy point of view, and [8–10, 24, 27] for digital Hopf
spaces and digital Pontryagin algebras.

In classical homotopy theory, a Moore space M(G,n) is the homology analogue of the Eilenberg-MacLane
space K(G,n), where G is an abelian group and n is a positive integer. In general, calculation of the cardinal
number of the set (or group) C(X) of homotopy classes of all homotopy comultiplications on a co-Hopf
space X is not easy. Pertaining to a special case, as demonstrated in [3], a set-theoretic bijection exists
between the set (or group) of homotopy comultiplications C(M(G, 2)) and the group Ext(G,G ⊗ G), and if
n ≥ 3, then C(M(G,n)) is the set consisting of a single class of homotopy as the standard comultiplication
up to homotopy; see also [12] regarding a wedge sum of two Moore spaces.
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1.2. Localizations

The localization of a space or a topological (equivariant) spectrum at a collection of prime numbers
is similar to the localization of a commutative ring or a module at a collection of prime numbers. The
fact that any nilpotent CW-complex could be localized at a collection of prime numbers up to homotopy
as a topological counterpart of the localization of algebraic objects is well known. In algebraic topology,
according to the localization of a nilpotent CW-space, introduced by D. Sullivan [30], any nilpotent CW-
space could be localized up to homotopy at a prime number; see [7] and [16] for the relevant and standard
references.

1.3. Goal and organization

The aim of our research is to develop the homotopy comultiplications and commutative comultiplica-
tions of the localization at a collection P of prime numbers of a wedge of the spheres and Moore spaces. In
particular, we focus on development and examination of the set of all homotopy commutative comultipli-
cations on the localization XP of the wedge sum X := Sm

∨M(G,n) of the spheres and Moore spaces, where
2 ≤ m < n, and G is a finitely generated abelian group.

A description of the fundamental concepts of homotopy comultiplications, Milnor’s formula, and
the Hopf-Whitney classification is provided in Section 2. A description of the localization counterparts
of the Hilton-Milnor formulas along with development of the pivotal concepts regarding the forms of
comultiplications on the localization XP of the wedge product X := Sm

∨M(G,n) of spheres and Moore
spaces of type (G,n) up to homotopy is provided in Section 3. The homotopy commutative comultiplications,
as well as a method for calculating the number of possible homotopy commutative comultiplications on
the localizations of the wedge sum of the CW-spaces are investigated in Section 4. Examples for use in
examining the phenomena of homotopy commutative comultiplications on XP for a collection P of prime
numbers are provided in Section 5.

1.4. Convention

Most of the spaces described in this paper are subject to the object classes in the homotopy category of
pointed connected spaces and homotopy classes of continuous maps that preserves the base point. The
notations ‘�’ and ‘≃’ for a group isomorphism and a pointed homotopy relation, respectively, will mainly
be utilized. For our notational convenience, the homotopy class ⟨ f ⟩ of a homotopy set (or group or abelian
group) [(X, x), (Y, y)] consisting of homotopy classes of base point preserving continuous maps from (X, x)
to (Y, y) is replaced primarily by f : (X, x)→ (Y, y).

2. Milnor-Hopf-Whitney theorems

A co-Hopf space is a pair (X, φ) consisting of a pointed space X := (X, x0) and a base point preserving
continuous map φ : (X, x0)→ (X, x0) ∨ (X, x0) such that

X

1X ,,

φ // X ∨ X

π1

��
X

and

X

1X ,,

φ // X ∨ X

π2

��
X
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are homotopy commutative diagrams; that is,

π1
◦ φ ≃ 1X ≃ π

2
◦ φ,

where

• x0 is the base point of X;

• 1X is the identity map of X; and

• π1, π2 : X ∨ X→ X are the first and second projections, respectively.

The base point preserving continuous map φ : X→ X∨X is said to be a homotopy comultiplication (or simply
comultiplication) on X.

Definition 2.1. A homotopy comultiplication φ : X→ X ∨ X on X is said to be homotopy commutative if the
triangle

X

φ
++

φ // X ∨ X

S

��
X ∨ X

commutes up to homotopy, where S : X ∨ X → X ∨ X is the switching map sending (x, x0) to (x0, x) and
(x0, x) to (x, x0) for all x ∈ X, where x0 is the base point of X.

Note that a commutative comultiplication on a co-Hopf space can be regarded as an Eckmann-Hilton
dual notion of a commutative multiplication on a Hopf space, which is a counterpart of homotopy and a
generalization of the commutative law of a group in group theory.

We refer to the original result reported by P. J. Hilton [15] with respect to the basic Whitehead products
and their heights; see [5] and [6] for additional details. Furthermore, a generalization of Hilton’s work was
developed by J. W. Milnor [28] as follows.

Theorem 2.2. Let A and B be connected CW-complexes. Then, there exists a homotopy equivalence

ΩΣ(A ∨ B) ≃ ΩΣA ×ΩΣ
(∨

i≥0

A∧i
∧ B
)
, (1)

where A∧i = A ∧ A ∧ · · · ∧ A︸             ︷︷             ︸
i−times

is the i-fold smash product.

Proof. See [28] for additional details.

We end this section with a description of the Hopf-Whitney classification theorem as follows.

Theorem 2.3. Let X be an n-dimensional CW-complex and Y an (n − 1)-connected n-simple space. Then there is a
one-to-one correspondence

[X,Y] ≈ Hn(X;πn(Y))

as sets.

Proof. See [32, page 244] for additional details.
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3. Localized homotopy comultiplications

Let P be a collection of prime numbers, or the empty collection which is denoted by ϕ in this case; that
is, P = ϕ. A group G is called a P-local group if the self-map p : G→ G defined by

p(1) = 1 ∗ 1 ∗ · · · ∗ 1︸        ︷︷        ︸
p−times

is a one-to-one correspondence between G and itself for all p ∈ Pc, the complement of P, where ∗ is the
binary operation of G. From the topological point of view, a nilpotent CW-space X is called a P-local space
if the nth homotopy group πn(X, x0) is P-local for all n ≥ 1; see [7] and [30] regarding the localization of a
nilpotent CW-space.

Development of the structure of all homotopy comultiplications of the localization XP of the wedge sum
X := Sm

∨M(G,n) of the m-spheres and Moore spaces up to homotopy is described in this section, where
2 ≤ m < n, and G is a finitely generated abelian group.

3.1. Localizations of Hilton-Milnor formulas
Examination of the localized counterparts of the Hilton-Milnor formulas described in Section 2 is as

follows.

Proposition 3.1. Let XP be the localized wedge sum of spheres X := Sm1 ∨Sm2 ∨· · ·∨Smk with 2 ≤ mi, i = 1, 2, . . . , k
at a collection P of prime numbers. Then, there is an isomorphism

πn(XP) �
∞⊕
j=1

πn(S
hwj

P
) (2)

of homotopy groups, where hw j is the height of the basic (generalized) Whitehead product w j for all j ≥ 1. In general,
if M is a nilpotent CW-complex with a suspension structure, then there is an isomorphism

[M,XP] �
∞⊕
j=1

[M, S
hwj

P
] (3)

of abelian groups.

Proof. See [23, Theorem 2] regarding the formulas (2) and (3), and [1] regarding generalized Whitehead
products.

3.2. Comultiplications on the localizations
Note that a finitely generated abelian group G can be decomposed as a free Z-module of finite rank r

and a torsion subgroup T of G; that is,

G � Z ⊕Z ⊕ · · · ⊕Z︸              ︷︷              ︸
r−times

⊕Zp1
s1 ⊕Zp2

s2 ⊕ · · · ⊕Zpk
sk︸                          ︷︷                          ︸

a finite subgroup T of G

; (4)

see [17, page 78] for additional details, where pi is a prime number and si is a positive integer for i = 1, 2, . . . , k.
Notation. The following notations will be used throughout this report.

• G is a finitely generated abelian group decomposed as in (4).

• X := Sm
∨M(G,n) with 2 ≤ m < n.

• α : Sm
→ X is the first inclusion map.
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• β : M(G,n)→ X is the second inclusion map.

• j1, j2 : Sm
→ Sm

∨ Sm are the first and second inclusion maps, respectively.

• ι1, ι2 : X→ X ∨ X are the first and second inclusion maps, respectively.

• π1, π2 : X ∨ X→ X are the first and second projection maps, respectively.

• P is a collection of prime numbers.

• XP is the topological localization of a nilpotent CW-space X at P.

• fP : XP → YP is theP-localization of a map f : X→ Y between connected nilpotent CW-spaces X and
Y.

• S : X∨X→ X∨X is the switching map sending (x, x0) to (x0, x) and (x0, x) to (x, x0) for all x ∈ X, where
x0 is the base point of X, or its P-localization.

• C(X) ⊆ [X; X ∨ X] is the set of all homotopy classes of homotopy commutative comultiplications on
X := Sm

∨M(G,n), or its localizations.

Development of the homotopy classes for consideration of all homotopy comultiplications on the P-
localization XP := Sm

P
∨M(G,n)P of X at a collection P of prime numbers is as follows.

Theorem 3.2. Let XP be the P-localization of X := Sm
∨M(G,n) with 2 ≤ m < n, where G is a finitely generated

abelian group decomposed as in (4). Then, each comultiplication

φ = φQ : XP → XP ∨ XP

can be expressed as follows:φ ◦ αP ≃ ι1
P
◦ αP + ι2P ◦ αP,

φ ◦ βP ≃ ι1
P
◦ βP + ι2P ◦ βP +Q.

(5)

Here,

• The additions originate from the homotopy additions in πm(XP ∨ XP) and [M(G,n)P,XP ∨ XP], respectively;

• Q = (Q1,Q2, . . . ,Qt, . . . ,Qr,QT) : M(G,n)P → XP ∨ XP;

• Qt = (αP ∨ αP)♯(
∑
∞

j=3 w j ◦ v j) for t = 1, 2, . . . , r, where w j is the jth generalized Whitehead product consisting
of at least one homotopy element of the first inclusion j1

P
: Sm
P
→ Sm

P
∨ Sm

P
and at least one homotopy element of

the second inclusion j2
P

: Sm
P
→ Sm

P
∨Sm
P

as a factor, localized atP, and v j is any homotopy class in the homotopy

group [M(Z,n)P, S
hwj

P
] for j = 3, 4, 5, . . .; and

• QT is the homotopy class in the homotopy group [M(TP,n),XP ∨XP] indicated by (αP ∨αP)♯(
∑
∞

j=3 w j ◦ x j), so

that x j is any homotopy element in [M(TP,n), S
hwj

P
] for j = 3, 4, 5, . . ., where TP is the localization of the torsion

subgroup T of G at the collection P of prime numbers.

Proof. See [25, Theorem 3.10] for additional details.

Definition 3.3. The homotopy class ⟨Q⟩ = ⟨(Q1,Q2, . . . ,Qt, . . . ,Qr,QT)⟩of the homotopy group [M(G,n)P,XP∨
XP] in (5) is called a homotopy perturbation of the comultiplication φ : XP → XP ∨ XP.
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Examination of the homotopy perturbations is required in order to determine the pivotal properties
of homotopy comultiplications on a wedge sum of localizations of CW-spaces. Examples of homotopy
comultiplications with various homotopy perturbations on the localization XP = Sm

P
∨ M(G,n)P of a 1-

connected CW-space as a wedge sum of spheres and Moore spaces are provided in Section 4.
According to Theorem 3.2, if a prime number p ∈ P is not equal to any of the pi’s for i = 1, 2, . . . , k, then

the homotopy perturbation ⟨Q⟩ of the homotopy comultiplication

φ = φQ : XP → XP ∨ XP

concludes with the homotopy class ⟨Q⟩ = ⟨(Q1,Q2, . . . ,Qt, . . . ,Qr)⟩ of [M(G,n)P,XP ∨ XP] because, in this
particular case, TP is a trivial group.

4. Homotopy commutative comultiplications

This section includes an examination of the formulations of all possible homotopy commutative comul-
tiplications on the topological localization XP of the wedge sum X := Sm

∨M(G,n), 2 ≤ m < n at a collection
P of prime numbers.

We examine the conditions for making the homotopy comultiplication φ : XP → XP ∨ XP homotopy
commutative as follows.

Theorem 4.1. Let φ : XP → XP ∨ XP be the homotopy comultiplication in Theorem 3.2. Then, φ is homotopy
commutative if and only if

S ◦Q ≃ Q,

where Q : M(G,n)P → XP ∨ XP is a homotopy perturbation, and S : XP ∨ XP → XP ∨ XP is the switching map.

Proof. According to the fundamental decomposition properties of the wedge sum on the homotopy groups,
the homotopy comultiplication φ : XP → XP ∨ XP is homotopy commutative if and only if

S ◦ φ ◦ αP ≃ φ ◦ αP (6)

and

S ◦ φ ◦ βP ≃ φ ◦ βP, (7)

where αP : Sm
P
→ XP is the P-localization of the first inclusion map α : Sm

→ X sending x to (x, y0), and
βP : M(G,n)P → XP is the P-localization of the second inclusion map sending y to (x0, y) for all x ∈ Sm and
y ∈ M(G,n), where x0 and y0 are base points of Sm and M(G,n), respectively. Since [Sm

P
,XP ∨ XP] is abelian

for 2 ≤ m < n, we have
S ◦ φ ◦ αP ≃ S(ι1

P
◦ αP + ι2P ◦ αP)

≃ ι2
P
◦ αP + ι1P ◦ αP

≃ ι1
P
◦ αP + ι2P ◦ αP

≃ φ ◦ αP

which provides the proof of (6). In a similar manner, we also obtain

S ◦ φ ◦ βP ≃ S(ι1
P
◦ βP + ι2P ◦ βP +Q)

≃ ι2
P
◦ βP + ι1P ◦ βP + S ◦Q

≃ ι1
P
◦ βP + ι2P ◦ βP + S ◦Q

(8)

in the homotopy group [M(G,n)P,XP ∨ XP], which is also abelian. Therefore, (7) holds if and only if the
formula (8) is equal to

φ ◦ βP ≃ ι
1
P
◦ βP + ι

2
P
◦ βP +Q,

as required.
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We now provide examples of homotopy comultiplications on the localization XP = Sm
P
∨M(G,n)P of a

1-connected CW-space as a wedge sum of the m-spheres and Moore spaces for 2 ≤ m < n as follows.

Example 4.2. Let G be a finitely generated abelian group decomposed as in (4), and letκ1 : M(G,n)P → S2m−1
P

be the homotopy class of a continuous map that preserves the base point. An element Q1 of [M(G,n)P,XP∨
XP] is defined as the composition

M(G,n)P
κ1 // S2m−1

P

[ j1, j2]P // Sm
P
∨ Sm

P

αP∨αP // XP ∨ XP

of base point preserving continuous maps; that is,

Q1 ≃ (αP ∨ αP) ◦ [ j1, j2]P ◦ κ1.

It can be demonstrated that the map φQ1 : XP → XP ∨ XP indicated byφ ◦ αP ≃ ι1
P
◦ αP + ι2P ◦ αP,

φ ◦ βP ≃ ι1
P
◦ βP + ι2P ◦ βP +Q1

is a homotopy comultiplication with a homotopy perturbation Q1. Indeed, we can observe that

π1
P
◦Q1 ≃ cx0 ≃ π

2
P
◦Q1,

where cx0 : M(G,n)P → XP is a constant map at x0 in XP.

Lemma 4.3. Let φQ1 : XP → XP ∨ XP be the homotopy comultiplication in Example 4.2. Then, φQ1 is a homotopy
commutative comultiplication if and only if (1) m is even or (2) m is odd and κ1 ≃ (−1)κ1.

Proof. It can be observed that

Q1 ≃ (αP ∨ αP) ◦ [ j1, j2]P ◦ κ1 ≃ [ι1
P
◦ αP, ι

2
P
◦ αP] ◦ κ1

and
S ◦Q1 ≃ S♯[ι1P ◦ αP, ι

2
P
◦ αP] ◦ κ1

≃ [ι2
P
◦ αP, ι1P ◦ αP] ◦ κ1

≃ (−1)m2
[ι1
P
◦ αP, ι2P ◦ αP] ◦ κ1

according to the anticommutative property of the Whitehead products, where S♯ : [M(G,n)P, XP ∨ XP] →
[M(G,n)P,XP ∨ XP] is a homomorphism between homotopy groups induced by the switching map S :
XP ∨ XP → XP ∨ XP. If m is even, then we have

S ◦Q1 ≃ Q1.

If m is odd, we obtain
S ◦Q1 ≃ (−1)m2

[ι1
P
◦ αP, ι2P ◦ αP] ◦ κ1

≃ (−[ι1
P
◦ αP, ι2P ◦ αP]) ◦ κ1

≃ [ι1
P
◦ αP, ι2P ◦ αP](−1) ◦ κ1.

Because [ι1
P
◦ αP, ι2P ◦ αP] is a basic Whitehead product, φQ1 is a homotopy commutative comultiplication if

and only if

κ1 ≃ (−1)κ1,

as required.
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Example 4.4. Let G be a finitely generated abelian group decomposed as in (4), and letκ2 : M(G,n)P → S3m−2
P

be the homotopy class of a continuous map that preserves the base point. A homotopy element Q2 of
[M(G,n)P,XP ∨ XP] is defined as the composition

M(G,n)P
κ2 // S3m−2

P

[ j1, [ j1, j2]]P // Sm
P
∨ Sm

P

αP∨αP // XP ∨ XP

of base point preserving continuous maps; that is,

Q2 ≃ (αP ∨ αP) ◦ [ j1, [ j1, j2]]P ◦ κ2.

It can be demonstrated that the map φQ2 : XP → XP ∨ XP indicated byφ ◦ αP ≃ ι1
P
◦ αP + ι2P ◦ αP,

φ ◦ βP ≃ ι1
P
◦ βP + ι2P ◦ βP +Q2

is a homotopy comultiplication with a homotopy perturbation Q2. Indeed, we can observe that

π1
P
◦Q2 ≃ cx0 ≃ π

2
P
◦Q2,

where cx0 : M(G,n)P → XP is a constant map at x0 in XP.

Lemma 4.5. Let φQ2 : XP → XP ∨ XP be the homotopy comultiplication in Example 4.4. Then, φQ2 is a homotopy
commutative comultiplication if and only if κ2 ≃ cs0 , where cs0 is the constant map at s0 in S3m−2

P
.

Proof. It should be noted that

Q2 ≃ (αP ∨ αP) ◦ [ j1, [ j1, j2]]P ◦ κ2 ≃ [ι1
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ2

and
S ◦Q2 ≃ S♯[ι1P ◦ αP, [ι

1
P
◦ αP, ι2P ◦ αP]] ◦ κ2

≃ [ι2
P
◦ αP, [ι2P ◦ αP, ι

1
P
◦ αP]] ◦ κ2

≃ [ι2
P
◦ αP, (−1)m2

[ι1
P
◦ αP, ι2P ◦ αP]] ◦ κ2

according to the anticommutative property of the Whitehead products, where S♯ : [M(G,n)P, XP ∨ XP] →
[M(G,n)P,XP ∨ XP] is a homomorphism between homotopy groups induced by the switching map S :
XP ∨ XP → XP ∨ XP. If m is even, then we have

S ◦Q2 ≃ [ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ2,

and thus
cx0 ≃ Q2 − S ◦Q2

≃ [ι1
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ2 − [ι2

P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ2,

where cx0 : M(G,n)P → XP ∨ XP is the constant map at (x0, x0) in XP ∨ XP. Because all of the Whitehead
products are basic Whitehead products, we can see that the homotopy class κ2 : M(G,n)P → S3m−2

P
can be

regarded as inessential, and similarly for the case of an odd number, as required.

Example 4.6. Let G be a finitely generated abelian group decomposed as in (4), and letκ3 : M(G,n)P → S3m−2
P

be the homotopy class of a continuous map that preserves the base point. An element Q3 of [M(G,n)P,XP∨
XP] is defined as the composition

M(G,n)P
κ3 // S3m−2

P

[ j2, [ j1, j2]]P // Sm
P
∨ Sm

P

αP∨αP // XP ∨ XP

of base point preserving continuous maps; that is,

Q3 ≃ (αP ∨ αP) ◦ [ j2, [ j1, j2]]P ◦ κ3.
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It can be demonstrated that the map φQ3 : XP → XP ∨ XP indicated byφ ◦ αP ≃ ι1
P
◦ αP + ι2P ◦ αP,

φ ◦ βP ≃ ι1
P
◦ βP + ι2P ◦ βP +Q3

is a homotopy comultiplication with a homotopy perturbation Q3. Indeed, we can see that in this case

π1
P
◦Q3 ≃ cx0 ≃ π

2
P
◦Q3,

where cx0 : M(G,n)P → XP is a constant map at x0 in XP.

Lemma 4.7. Let φQ3 : XP → XP ∨ XP be the homotopy comultiplication in Example 4.6. Then, φQ3 is a homotopy
commutative comultiplication if and only if κ3 ≃ cs0 , where cs0 is the constant map at s0 in S3m−2

P
.

Proof. It should be noted that

Q3 ≃ (αP ∨ αP) ◦ [ j2, [ j1, j2]]P ◦ κ3 ≃ [ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3

and
S ◦Q3 ≃ S♯[ι2P ◦ αP, [ι

1
P
◦ αP, ι2P ◦ αP]] ◦ κ3

≃ [ι1
P
◦ αP, [ι2P ◦ αP, ι

1
P
◦ αP]] ◦ κ3

≃ [ι1
P
◦ αP, (−1)m2

[ι1
P
◦ αP, ι2P ◦ αP]] ◦ κ3,

where S♯ : [M(G,n)P,XP ∨ XP] → [M(G,n)P,XP ∨ XP] is a homomorphism between homotopy groups
induced by the switching map S : XP ∨ XP → XP ∨ XP. If m is even, then the homotopy comultiplication
φQ3 : XP → XP ∨ XP is homotopy commutative if and only if

[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3 ≃ [ι1

P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3;

that is,
[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3 − [ι1

P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3 ≃ cx0 ,

where cx0 : M(G,n)P → XP ∨ XP is the constant map at (x0, x0) in XP ∨ XP. Because all of the Whitehead
products are basic Whitehead products, we can see that the homotopy class κ3 : M(G,n)P → S3m−2

P
can be

regarded as inessential.
If m is an odd number, then the homotopy comultiplication φQ3 : XP → XP ∨ XP is homotopy commu-

tative if and only if

[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3 ≃ (−[ι1

P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]]) ◦ κ3;

that is,

[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3 + [ι1

P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3 ≃ cx0 , (9)

where cx0 : M(G,n)P → XP ∨ XP is the constant map at (x0, x0) in XP ∨ XP. Because all of the Whitehead
products in (9) are basic Whitehead products, we see that the homotopy class κ3 : M(G,n)P → S3m−2

P
can be

regarded as inessential, as required.

To assess the number of possible homotopy commutative comultiplications on the localization XP of a
wedge X := Sm

∨M(G,n) of the m-sphere and Moore space with 2 ≤ m < n, a homotopy perturbation Q of
a homotopy comultiplication φQ : XP → XP ∨ XP on XP can be constructed as follows.

Example 4.8. Let

• Q1 ≃ (αP ∨ αP) ◦ [ j1, j2]P ◦ κ1;

• Q2 ≃ (αP ∨ αP) ◦ [ j1, [ j1, j2]]P ◦ κ2; and
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• Q3 ≃ (αP ∨ αP) ◦ [ j2, [ j1, j2]]P ◦ κ3

be the homotopy classes in Examples 4.2, 4.4, and 4.6, respectively. A homotopy class φQ : XP → XP ∨ XP
is defined by φ ◦ αP ≃ ι1

P
◦ αP + ι2P ◦ αP,

φ ◦ βP ≃ ι1
P
◦ βP + ι2P ◦ βP +Q,

where
Q ≃ Q1 +Q2 +Q3.

It can be demonstrated that φQ : XP → XP ∨ XP is a homotopy comultiplication with a homotopy pertur-
bation Q ≃ Q1 +Q2 +Q3; that is,

Q ≃ [ι1
P
◦ αP, ι2P ◦ αP] ◦ κ1 + [ι1

P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ2

+[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3

(10)

in an abelian group [M(G,n)P,XP ∨ XP].

Theorem 4.9. Let φQ : XP → XP ∨ XP be the homotopy comultiplication in Example 4.8. Then, φQ is a homotopy
commutative comultiplication if and only if (1) m is an even number, and κ2 ≃ κ3 or (2) m is odd, κ1 ≃ (−1)κ1, and
κ2 ≃ −κ3.

Proof. Let S♯ : [M(G,n)P,XP ∨ XP] → [M(G,n)P,XP ∨ XP] be the homomorphism between homotopy
groups induced by the switching map S : XP ∨XP → XP ∨XP. It should be noted that the homotopy group
[M(G,n),XP ∨ XP] is abelian, and that all of the Whitehead products from Q1,Q2,Q3,S♯(Q1),S♯(Q2), and
S♯(Q3) in Lemmas 4.3, 4.5, and 4.7 are basic Whitehead products. We can also see that φQ : XP → XP ∨ XP
is a homotopy comultiplication with a homotopy perturbation

Q ≃ [ι1
P
◦ αP, ι2P ◦ αP] ◦ κ1 + [ι1

P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ2

+[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3

(11)

in an abelian group [M(G,n)P,XP ∨ XP]. We now have

S ◦Q ≃ S♯
(
[ι1
P
◦ αP, ι2P ◦ αP] ◦ κ1

+[ι1
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ2

+[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3

)
≃ [ι2

P
◦ αP, ι1P ◦ αP] ◦ κ1

+[ι2
P
◦ αP, [ι2P ◦ αP, ι

1
P
◦ αP]] ◦ κ2

+[ι1
P
◦ αP, [ι2P ◦ αP, ι

1
P
◦ αP]] ◦ κ3

≃ (−1)m2
[ι1
P
◦ αP, ι2P ◦ αP] ◦ κ1

+[ι2
P
◦ αP, (−1)m2

[ι1
P
◦ αP, ι2P ◦ αP]] ◦ κ2

+[ι1
P
◦ αP, (−1)m2

[ι1
P
◦ αP, ι2P ◦ αP]] ◦ κ3.

(12)

It should be noted that the homotopy comultiplication φQ : XP → XP ∨ XP is homotopy commutative if
and only if

Q − S ◦Q ≃ cx0 : M(G,n)P → XP ∨ XP
in the homotopy group [M(G,n)P,XP∨XP], which is abelian, where cx0 : M(G,n)P → XP∨XP is the constant
map at (x0, x0) in XP ∨ XP. According to (11) and (12), we obtain

Q − S ◦Q ≃ [ι1
P
◦ αP, ι2P ◦ αP] ◦ κ1

+[ι1
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ2

+[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3

−

(
(−1)m2

[ι1
P
◦ αP, ι2P ◦ αP] ◦ κ1

+[ι2
P
◦ αP, (−1)m2

[ι1
P
◦ αP, ι2P ◦ αP]] ◦ κ2

+[ι1
P
◦ αP, (−1)m2

[ι1
P
◦ αP, ι2P ◦ αP]] ◦ κ3

)
.
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If m is even, then
Q − S ◦Q ≃ [ι1

P
◦ αP, ι2P ◦ αP] ◦ κ1

+[ι1
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ2

+[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3

−[ι1
P
◦ αP, ι2P ◦ αP] ◦ κ1

−[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ2

−[ι1
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3.

Because the homotopy group [M(G,n)P,XP∨XP] is abelian, we observe that the homotopy comultiplication
φQ : XP → XP ∨ XP is homotopy commutative if and only if

Q − S ◦Q ≃ [ι1
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ2

+[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3

−[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ2

−[ι1
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ κ3

≃ [ι1
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ (κ2 − κ3)

+[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ (κ3 − κ2)

≃ cx0

(13)

so that
κ2 ≃ κ3

because all of the Whitehead products in (13) are basic Whitehead products.
If m is an odd number, then φQ : XP → XP ∨ XP is homotopy commutative if and only if

Q − S ◦Q ≃ 2[ι1
P
◦ αP, ι2P ◦ αP] ◦ κ1

+[ι1
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ (κ2 + κ3)

+[ι2
P
◦ αP, [ι1P ◦ αP, ι

2
P
◦ αP]] ◦ (κ3 + κ2)

≃ cx0

(14)

so that
κ1 ≃ (−1)κ1

and
κ2 ≃ −κ3

because all of the Whitehead products in (14) are basic Whitehead products, as required.

Let C(Y) be the set of all homotopy classes of homotopy commutative comultiplications on a co-Hopf
space Y, and let |C(Y)| be the cardinality of C(Y).

Corollary 4.10. Let XP be the localization of the wedge sum X := Sm
∨M(G,n), 2 ≤ m < n ≤ 4m− 4 at a collection

P of prime numbers, and let φQ : XP → XP ∨ XP be the homotopy comultiplication in Example 4.8. If m is an even
number, then

|C(XP)| = |[M(G,n)P, S2m−1
P

]| × |[M(G,n)P, S3m−2
P

]|.

If m is odd, then

|C(XP)| = |{κ1 ∈ [M(G,n)P, S2m−1
P

] | κ1 ≃ (−1)κ1}| × |[M(G,n)P, S3m−2
P

]|.

Proof. The proof follows from Theorem 4.9 and the range hypothesis. Indeed, if n is even, then the homotopy
comultiplication

φQ : XP → XP ∨ XP
is homotopy commutative for any homotopy class κ1 in homotopy group [M(G,n)P, S2m−1

P
], and κ2 ≃ κ3 in

[M(G,n)P, S3m−2
P

]. If n is odd, then
φQ : XP → XP ∨ XP

is homotopy commutative for any homotopy class κ1 satisfying κ1 ≃ (−1)κ1 in [M(G,n)P, S2m−1
P

], and
κ2 ≃ −κ3 in [M(G,n)P, S3m−2

P
], as required.
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5. Examples

A list of examples is provided for use in evaluation of the structure of homotopy commutative comulti-
plications on the topological localization XP, or the rationalization XQ, of a wedge X := Sm

∨M(G,n),where
2 ≤ m < n.

In Tables:

• C(XP) is the set or the group consisting of all homotopy commutative comultiplications on the
topological localization XP of X at a collection P of prime numbers.

• The setC(XP) is in one-to-one correspondence with each group, as shown in the last columns in Tables
1, 2, 3, 4, 5, and 6.

• {e} is the trivial group.

• Zn is the group of integers modulo n.

• ZP is the P-localization of the ring of integers.

• ϕ is the empty set, and C(XP) = C(XQ) in this case.

m G n P C(XP)

2 Z2 ⊕Z2 ⊕Z5 3 {3, 7} {e}

2 Z2 ⊕Z3 ⊕Z3 3 {5, 7} {e}

2 Z2 ⊕Z3 ⊕Z5 3 {7, 11} {e}

Table 1: The finite group cases for m = 2

m G n P C(XP)

3 Z2 ⊕Z5 ⊕Z7 4 {2, 5, 13} Z2

3 Z2 ⊕Z7 ⊕Z11 4 {2, 5, 7} Z2

3 Z2 ⊕Z7 ⊕Z14 4 {2, 5, 7, 13} Z2 ⊕Z2

Table 2: The finite group cases for m = 3
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m G n P C(XP)

4 Z2 ⊕Z5 ⊕Z15 6 {2, 5, 7, 17} Z2 ⊕Z5 ⊕Z5

4 Z2 ⊕Z5 ⊕Z22 6 {2, 3, 11, 17} Z2 ⊕Z2 ⊕Z11

4 Z2 ⊕Z10 ⊕Z33 6 {2, 5, 13, 17} Z2 ⊕Z2 ⊕Z5

m ≥ 2 all finite groups n > m ϕ {e}

Table 3: The finite group cases for the others

m G n P C(XP)

2 Z ⊕Z2 ⊕Z2 3 {3, 5} Z{3,5}

2 Z ⊕Z2 ⊕Z5 3 {3, 7} Z{3,7}

2 Z ⊕Z2 ⊕Z3 4 {5, 7} {e}

Table 4: The infinite group cases for m = 2

m G n P C(XP)

3 Z ⊕Z ⊕Z5 ⊕Z7 4 {5, 7} {e}

3 Z ⊕Z ⊕Z5 ⊕Z7 5 {3, 11} Z{3,11} ⊕Z{3,11}

3 Z ⊕Z ⊕Z7 ⊕Z11 5 {5, 13} Z{5,13} ⊕Z{5,13}

Table 5: The infinite group cases for m = 3

m G n P C(XP)

4 Z ⊕Z2 ⊕Z5 ⊕Z13 6 {2, 13} Z2 ⊕Z13

4 Z ⊕Z ⊕Z11 ⊕Z13 9 {2, 17} Z2 ⊕Z2

4 Z ⊕Z ⊕Z19 9 ϕ {e}

5 Z ⊕Z ⊕Z11 ⊕Z19 9 ϕ Q ⊕Q

Table 6: The infinite group cases for the others
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Proof. We first provide the proof of the case of a finite group with m = 3: Let X = S3
∨M(G, 4), where

G = Z2 ⊕Z5 ⊕Z7 and P = {2, 5, 13}. Then, according to Corollary 4.10, the Hopf-Whitney theorem, and the
universal coefficient theorem for cohomology, we have

|C(XP)| = | {κ1 ∈ [M(G, 4)P, S5
P

] | 2κ1 ≃ cs0 } | × | [M(A, 4)P, S7
P

]|} | by Corollary 4.10

= | {κ̄1 ∈ H5(M(Z2 ⊕Z5, 4);π5(S5
P

)) | 2κ̄1 = 0} | × 1 by Hopf-Whitney theorem

= | {κ̄1 ∈ H5(M(Z2 ⊕Z5, 4);ZP) | 2κ̄1 = 0} |

= | {κ̄1 ∈ Ext(H4(M(Z2 ⊕Z5, 4);Z),ZP) | 2κ̄1 = 0} | by UCT for cohomology

= | {κ̄1 ∈ Ext(Z2 ⊕Z5,ZP) | 2κ̄1 = 0} |

= |Z2|.

Here,

• cs0 : M(G, 4)P → S5
P

is the constant map at s0 in the homotopy group [M(G, 4)P, S5
P

] consisting of the
P-localizations of the homotopy classes in the cohomotopy group π5(M(G, 4));

• κ̄1 is the element of cohomology, extension products, and torsion groups corresponding to the homo-
topy element κ1 ∈ [M(G, 4)P, S5

P
]; and

• 0 is the trivial element of cohomology, extension products, and torsion groups.

Secondly, we provide the proof of the case of a finitely generated infinite abelian group with m = 4: Let
X = S4

∨M(G, 6), where
G = Z ⊕Z2 ⊕Z5 ⊕Z13

and P = {2, 13}. We then obtain

|C(XP)| = |[M(G, 6)P, S7
P

]| × |[M(G, 6)P, S10
P

]| by Corollary 4.10

= |[M(G, 6)P, S7
P

]| × 1

= |[M(ZP ⊕Z2 ⊕Z13, 6), S7
P

]|

= |[M(ZP, 6) ∨M(Z2, 6) ∨M(Z13, 6), S7
P

]|

= |[M(ZP, 6), S7
P

] ⊕ [M(Z2, 6), S7
P

] ⊕ [M(Z13, 6), S7
P

]|

= |{e} ⊕H7(M(Z2, 6);π7(S7
P

)) ⊕H7(M(Z13, 6);π7(S7
P

))| by Hopf-Whitney theorem

= |Ext(H6(M(Z2, 6);Z),ZP) ⊕ Ext(H6(M(Z13, 6);Z),ZP) | by UCT for cohomology

= |Z2 ⊕Z13|,

where {e} is the trivial group as the homotopy group [M(ZP, 6), S7
P

] consisting of the P-localizations of the
homotopy classes in the cohomotopy group π7(M(G, 6)).

The remaining parts can be proven in a similar manner using the previously described results included
in Section 4 and the pivotal theorems in algebraic topology, including the cohomotopy group, the cellular
approximation theorem, the universal coefficient theorem in cohomology, the Hopf-Whitney classification
theorem, obstruction theory [13, Lemma 17.19], and the homotopy group of spheres [31].
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6. Conclusions

The investigation of studies on homotopy comultiplications and homotopy multiplications on co-Hopf
spaces and Hopf spaces, respectively, has been explored by several authors to date. Indeed, it is well known
that a co-Hopf space with a homotopy comultiplication and a Hopf space with a homotopy multiplication
are the pivotal object classes in the pointed homotopy category and they are Eckmann-Hilton duals with
each other in classical homotopy theory.

In general terms, there exist many distinctive homotopy comultiplications on a co-Hopf space along
with a lot of different properties. It is well known that any nilpotent CW-complex could be localized at a
collection of prime numbers up to homotopy as a topological (or homotopy) counterpart of the localization
of algebraic objects.

In this article, we have described the localization counterparts of the Hilton-Milnor formulas along
with the development of the pivotal concepts of the forms of comultiplications on the localizations of
CW-spaces. In particular, we have developed the homotopy comultiplications and homotopy commutative
comultiplications of the localization of a wedge X := Sm

∨M(G,n) of the m-spheres and Moore spaces at a
collection P of prime numbers, where 2 ≤ m < n, and G is a finitely generated abelian group. Finally, we
have provided the lists of examples for the homotopy commutative comultiplications on XP.

In a subsequent paper, we explore the homotopy associative and commutative comultiplication struc-
tures on nilpotent CW-spaces, more general CW-spaces, and their localizations, which are not simply
connected spaces at all.
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