Filomat 38:15 (2024), 5431-5440
https://doi.org/10.2298/F11.2415431P

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

%, Yy A
2
&) 5

2 &

gy as’

5
TIprpor®

Every regular countably sieve-complete semitopological group is a
topological group

Liang-Xue Peng?

?Department of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China

Abstract. In this note, we firstly discuss some properties of spaces which are countably sieve-complete,
densely g-complete and strongly Baire. By some known conclusions, we finally show that if G is a regular
countably sieve-complete semitopological group then G is a topological group. If a regular semitopological
group G has a dense subgroup which is countably sieve-complete (densely g-complete), then G is a topo-
logical group. If G is a regular countably sieve-complete semitopological group then G is a D-space if and
only if G is paracompact. We point out that some conditions in Theorem 2.14 and Corollary 2.15 in [17] are
not essential.

1. Introduction

Recall that a paratopological group is a group with a topology such that the multiplication on the group is
jointly continuous. A topological group G is a paratopological group such that the inverse mapping of G into
itself associating x™! with x € G is continuous. A semitopological group is a group with a topology in which
the left and the right translations are continuous [4]. The set of all positive integers is denoted by IN and
@ = IN U {0}. In notation and terminology we will follow [9].

A topological space X is called pseudocompact if X is a Tychonoff space and every continuous real-valued
function defined on X is bounded [9]. A Tychonoff space X is pseudocompact if and only if every locally
finite family of open sets in X is finite [9]. Recall that a space X is feebly compact if every locally finite family
of open sets in X is finite.

If G is a paratopological group such that G is a dense Gs-set in a regular feebly compact space X, then G
is a topological group (([4], Theorem 2.4.1) and [3]). Thus every regular countably compact paratopological
group is a topological group ([4], Corollary 2.4.4). In [20] it was proved that a completely regular countably
compact semitopological group is a topological group. In [13] a completely regular pseudocompact semi-
topological group was constructed which is not a topological group. Applying Martin’s Axiom, Ravsky
constructed a Hausdorff countably compact paratopological group which is not a topological group ([19]
and ([4], p. 128)).

A Tychonoff space X is Cech-complete if and only if X is a Gs-set in some (equivalent, every) Hausdorff
compactification of X [9]. Every Cech-complete semitopological group is a topological group (([4], Theorem
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2.4.12) and [6]). Recall that a space X is called locally P if every point x of X has a neighborhood V. such
that V, has property $, where % is topological property. Then a space X is called locally countably compact if
every point x of X has a neighborhood V such that V, is a countably compact subspace of X.

An important generalization of both Cech-complete spaces and locally countably compact spaces was
introduced by Z. Frolik [10]—strongly countably complete spaces. Every Gs-subspace and every closed
subspace of a regular strongly countably complete space is a strongly countably complete space [10]. This
class of spaces was used both in the study of the continuity of operations in groups ([18] and [6]), and in the
study of separately continuous mappings ([16] and [11]). In [6] and [11], strongly countably complete spaces
are called countably Cech-complete spaces. In [18], H. Pfister proved that every locally strongly countably
complete regular paratopological group is a topological group. Consequently, every locally countably
compact regular paratopological group is a topological group. In [6] A. Bouziad, using ([6], Theorem 4),
proved ([6], Corollary 5): every semitopological Baire p-space group is a paratopological group. Using the
same arguments, it follows from ([6], Theorem 3) that every semitopological Baire point-wise countably
complete [6] completely regular group is a paratopological group. Since every strongly countably complete
regular space is point-wise countably complete [6], we obtain that from the results of [6] and the mentioned
result of H. Pfister [18] it follows that every semitopological strongly countably complete completely regular
group is a topological group. Consequently, every semitopological locally countably compact completely
regular group is a topological group.

Further generalizations of Cech-complete spaces and strongly countably complete spaces were obtained
using the concept of sieve [7]. Sieve-complete spaces [15] (which are called monotonically Cech-complete in
[7] and called A;-spaces in [24]) are a generalization of Cech-complete spaces and countably sieve-complete
spaces are a generalization of strongly countably complete spaces. In [24] A.-spaces were introduced, which
in [1] are called g-complete spaces. Any g-complete space is strongly countably complete and in the class of
regular spaces these classes coincide [15]. In [1], Arhangel’skii and Choban also considered a broader class
than countably sieve-complete spaces—densely g-complete spaces.

In this note, we firstly discuss some properties of spaces which are countably sieve-complete, densely
g-complete and strongly Baire. By some known conclusions, we finally show that if G is a regular countably
sieve-complete semitopological group then G is a topological group. If a regular semitopological group
G has a dense subgroup which is countably sieve-complete (densely g-complete), then G is a topological
group. If G is a regular locally countably sieve-complete semitopological group, then G is a topological
group. Thus every locally countably compact regular semitopological group is a topological group. This
answers Problem 2.3.B in [4].

Recall that a neighborhood assignment for a space X is a function ¢ from X to the topology of the space
X such that x € ¢(x) for any x € X [8]. A space X is a D-space if for every neighborhood assignment ¢
for X there is a closed discrete subspace D of X such that X = (J{¢(d) : d € D} [8]. It is an open problem
that whether every paracompact Hausdorff space a D-space. We point out that if G is a regular countably
sieve-complete semitopological group, then G is a D-space if and only if G is paracompact. We also point
out that some conditions in Theorem 2.14 and Corollary 2.15 in [17] are not essential.

2. Countably sieve-complete, densely g-complete and strongly Baire spaces

Recall that a filter base F clusters at x in X if x € F for all F € . Two collections of sets ¥ and U mesh
if every F € ¥ intersects every U € U ([14], p. 99). A sieve on a space X is a sequence of open covers
{Uy : @ € Aplueo (with disjoint A,), together with functions n,, : A,1 — Ay, such that, for all n € w and
a €Ay, Uy = U{Up : B € 7, (@)}. A m-chain for such a sieve is a sequence (a,) such that a,, € A, and
Ttu(An+1) = ap for all n. The sieve is complete if, for every m-chain (a,), every filter base ¥ on X which meshes
with {U,, : 1 € w} clusters in X [15]. A space X with a complete sieve is called sieve-complete [15].

Recall that a point x of a space X is an accumulation point of a sequence {x,},e, of points of X if every
open neighborhood V of x, |{n € w : x, € V}| = w. An accumulation point of a sequence {x,} of points of a
space X is also called cluster point of the sequence {x,},c,. Analogously to a complete sieve, one can define
a countably complete sieve ([15], p. 729) by restricting the filter base ¥ in the definition of complete sieve to
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be countable (equivalently, by requiring that, if (@) is a m-chain and x,, € U,, for all n, then the sequence
{Xn}new clusters in X). A space with a countably complete sieve is called countably sieve-complete ([15], p. 729).
Every Cech-complete space is sieve-complete and every sieve-complete space is countably sieve-complete.
Every countably compact space is countably sieve-complete, but not necessarily sieve-complete ([15], p.
730). Every uncountable discrete space X is countably sieve-complete, but it is not feebly compact.

A sequence {U, : n € w} of open subsets of a space X is called a stable sequence [1] if it satisfies the
following conditions:

(S1) 0 # Uys1 c U, for any n € w;
(S2) Every sequence {V,, : n € w} of open non-empty sets in X such that V,, C U, for each n € w has an
accumulation point in X.

The following notions appear in [1]. Let Y be a dense subspace of a space X, y = {y,, = {U, : @ € A,)} :
n € w} be a sequence of families of open subsets of X, and let © = {r,, : A,41 = A, : n € w} be a sequence of
mappings. A sequence a = {a, : 1 € w} is called a c-sequence if a, € A, and 7, (an+1) = @, for every n. Let
H(a) = N{U,, : n € w}. Consider the following conditions:

: B € A,} is dense subset o or every 1 € w;
(SC1) U{Ug A,lisd b f X f y
(5C2) UlUg: pem, (@)} is a dense subset of the set U, forall « € A, and 1 € w;
(SC3) U, = U{Up : B € 1, ()} forall a € A, and 1 € w;
(SC4) U{Ug : B € m;'(a)} € U, foralla € A, and 1 € w;
(C1) For any c-sequence « = {a, € A, : n € w}, the sequence {U,, : n € w} is stable.
(C2) For any c-sequence o = {a, € A, : 1 € w}, each sequence {y, € Y N U,, : n € w} has an accumulation
point in X;
(C4) For any c-sequence a = {a,, € A, : nn € w}, the set H(a) is a non-empty compact subset of X;
(C5) For any c-sequence a = {a, € A, : n € w}, the set H(a) is a non-empty countably compact subset of X.

Sequences ) and 7t are called an A-sieve if they have the Properties (SC3) and (SC4) and each y,, covers
X. A space is called a g-complete if there exists an A-sieve with the Properties (C2) and (C5) for Y = X. A
space X is called fan-complete if there exists an A-sieve on X with the Property (C1). Sequences y and 7t are
called a dense A-sieve if they have the Properties (SC1), (5C2), (SC4). A space is called densely sieve-complete
if there exist a dense subspace Y and a dense A-sieve with the Properties (C2) and (C4). A space X is called
densely g-complete if there exists a dense subspace Y and a dense A-sieve with the Property (C2). A space X
is called densely fan-complete if there exists a dense A-sieve on X with the Property (C1).

Proposition 2.1. ([1], p. 37) Any closed subspace of a g-complete space is q-complete.
Proposition 2.2. ([1], p. 37) Any g-complete space is densely g-complete.

By definitions of countably sieve-completeness and g-completeness, we have the following result.
Proposition 2.3. Every g-complete space is countably sieve-complete.

Asieve ({U, : a € A}, my) on a space X is a strong sieve if Uﬁ c U, whenever « € A, and g € 1;;} (@) [7].
Lemma 2.4. ([15], p. 729) Every regular countably sieve-complete space has a strong countably complete sieve.
Proposition 2.5. If X is a reqular space, then X is countably sieve-complete if and only if X is g-complete.

Proof. The sufficiency follows from Proposition 2.3. Now we prove the necessity. Since X is a regular
countably sieve-complete space, it follows from Lemma 2.4 that X has a strong countably complete sieve
({Uy : @ € Apl, 1y). Then for any w-chain (a,) and any sequence {y,}neo With y, € U, for every n € w, the
sequence {I/,}new has an accumulation point y in X. Since U,,,, C U,, for every n, the set H = ({U,, : n € w}
is a closed non-empty countably compact subset of X. Thus X is a g-complete space. [

n



L.-X. Peng / Filomat 38:15 (2024), 5431-5440 5434
By Propositions 2.2 and 2.5, we have the following result.
Proposition 2.6. Every reqular countably sieve-complete space is densely g-complete.

In what follows, we show that the converse of the above result does not hold.

Recall that R is the set of real numbers. The Michael line M is the set R topologized by isolating the
points of the set IP of irrational numbers and leaving the points of the set Q of rational numbers with their
usual neighborhoods. The following result shows that the Michael line M is densely g-complete.

Theorem 2.7. Let X be a reqular space and let Y be a dense subspace of X. If Y is densely q-complete, then so is X.

Proof. By assumption, there exist a dense subspace D of Y and a dense A-sieve U = {y,, = (U, : @ € An}, 7t
Ap1 = Ayt n € w} with the Property (C2). Since D is dense in Y and Y is dense in X, the set D is dense in X.
Now we define a dense A-sieve V = {V,, = (V1) 1 (@, A) € Ay X Apl, Tty X Py ¢ Aps1t X A1 = An XAy 111 € W)}
on X such that the set D and the dense A-sieve V on X satisfy the Property (C2), where ¢, : A1 = Ay isa
mapping. The dense A-sieve V on X also has the following properties:

1. If {a,A) € Ag X Ao, then V(, ;) is an open subset of X such that Vi, 1y NY = U,, where A is any
non-empty set;

2. For any n € w and any (o, A) € A, X A,, the set V, 5y is an open subset of X such that V(,,y N Y C U,
and if (8, ") € 71; (@) X ;' () then Vig 1y € Vigay and Vigay NY € Us.

Let Ag be any non-empty set. For for any o € Ag and any A € Ay, let V(, 1y be an open subset of X such
that Vi, 1y NY = U,. Denote 7' = {O C X : O is a non-empty open subset of X} and let x = [7’|. Then
denote 7" = {O¢ : £ € x}. Let A = Ag X x and let ¢g : A1 = Ag be a mapping such that ¢o((A, &)) = A for
every (A, &) € A If (o, A) e Ag x Agand (B, 1) € nal(a) X qbal (A), then we let V(g -y be an open subset of X
such that Vg 1y = Oy if Op NY C Ug and a C Vi(a,1y, otherwise Vg 11y = 0.

Let n € w. Assume that for every i < n we have defined a mapping ¢; : Ai;1 — A; and for every i < n
and any (a, A) € A; X /\; there exists an open subset V, 1, of X with the following properties:

1. VigyN Y =U,if{a, Ay € Ay X Ag;

2. 1f0 <i < nand () € A; X A, then for any (B, ') € 7 (a) X p;(A), Vig,1y is an open subset of X
such that Vg, NY C Ug and m C Vi)

3. If0<i<nand(a,A) € A; x Aj, then U{Vgay : (B,A) € ni‘l(a) X qbl.‘l()\)} is dense in V4 1y

Let Api1 = Ay Xk andlet ¢, : Ay — Ay be amapping such that ¢, ((A, A’)) = A whenever (A4, ') € Ay41.

For any (a,A) € A, x A, and any (B, A") € 1, (Ay) X ¢, (An), let Vigay = O if Op NY C Up and
O_Af C Via,1y, otherwise Vg 1y = 0. Now we assume that V(, 1y # 0. Since Y is dense in X and V() is a
non-empty open subset of X, Y NV, 4y is dense in V(, 1y. Since Vi, 1y NY C U, and U{Ug : g € i, ()} is
dense in U,, the set Vi, 1y N (UfUg : B € 7, (a)}) is dense in Vi, 1y. Thus J{Os : £ € x,0: NY C Ug and
Of C V(o 1) is dense in Vi, 1. Then the set UtV : (B A) € (@) X ¢ (A)) is dense in Vg vy,

In this way, we get a dense A-sieve V = {V, = (Vo) 1 {a,A) € Ay X Ay}t 1y X 1 Apst X Ay —
Ay XNy i n € wyon X, If {ay, Ay) @ 1 € w}is a c-sequence, then Vi, 1y NY C Uy, tp(an1) = a, and
Vi) € Viana, for every n € w.

If {d, }new is a sequence of points such thatd,, € V4, 1,y N D for every n € w, thend, € U,, foreveryn € w.
Since U is a dense A-sieve on Y such that D and U satisfy the Property (C2), the sequence {d,,},c, has an
accumulation in Y. Then the sequence {d,},c», has an accumulation in X. Thus V is a dense A-sieve on X.
Then the dense subspace D of X and the dense A-sieve V on X satisfy the Property (C2). Thus X is densely
g-complete. [J

The following result was proved in ([15], Theorem 3.2). A paracompact Hausdorff space X is Cech-
complete if and only if X is sieve-complete. In ([15], p. 730), it was pointed out that the above result valid
with “sieve-complete” weakened to “countably sieve-complete”.
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Lemma 2.8. ([15], p. 730) A paracompact Hausdorff space X is Cech-complete if and only if X is countably
sieve-complete.

Remark 2.9. The Michael line M is densely g-complete, but it is not g-complete (countably sieve-complete).

Proof. The space Q of all rational numbers with the topology of a subspace of the real line with the usual
topology is not Cech-complete ([9], p. 200). Thus the subspace Q of M is not Cech-complete. Since every
closed subspace of a Cech-complete space is Cech-complete ([9], Theorem 3.9.6), the Michael line M is not
Cech-complete. By Lemma 2.8, M is not countably sieve-complete. By Proposition 2.5, M is not g-complete.

Since the subspace IP of M is a densely g-complete dense subspace of X, it follows from Theorem 2.7 M
is densely g-complete. [

By Proposition 2.6 and Theorem 2.7, we have the following result.

Proposition 2.10. Let X be a regular space and let Y be a dense subspace of X. If Y is countably sieve-complete, then
X is a densely g-complete space.

By an argument similar to the proof of Theorem 2.7, we have the following result.

Proposition 2.11. ([1], p. 38) If X is a reqular space and Y is a dense subspace of X such that Y is densely
fan-complete, then X is densely fan-complete.

Proposition 2.12. ([15], p. 729) Countably sieve-completeness is inherited by closed subsets.

Recall that a subset F of a space X is called a regular closed set if F = F°.

Proposition 2.13. Let X be a reqular space and let Y be a reqular closed subset of X. If X is densely g-complete
(densely sieve-complete, densely fan-complete, fan-complete, g-complete), then the subspace Y of X is densely g-
complete (densely sieve-complete, densely fan-complete, fan-complete, g-complete).

Proof. We just prove the case of densely g-completeness. The proofs of other cases are similar. Since X is
densely g-complete, there exist a dense subspace D of X and a dense A-sieve U = {U, = {U, : a € A,}, 1y, :
Ant1 = Ay 0 n € w) with the Property (C2). Since Y is a regular closed set, Y = Ye. Then Dy = DN Y° is
denseinY. f Uy ={U, ={U,NY :a €Ay}, 7, : Aps1 — Ay i 1 € w}, then Uy is a dense A-sieve on Y. Itis
obvious that the dense subset Dy of Y and the dense A-sieve Uy satisfy the Property (C2). O

Proposition 2.14. Let X be a reqular space and let Y be an open subspace of X. If X is densely q-complete (densely
sieve-complete, densely fan-complete), then sois Y.

Proof. We just prove the case of densely g-completeness. The proofs of other cases are similar.

By assumption, there exist a dense subspace D of X and a dense A-sieve U = {y,, = {U, : @ € A}, 715 :
Apt1 = Ay 1 n € w} with the Property (C2). Since Y is open in X and D=X,Dy =DnYisdensein Y.
Denote 7’ = {O ¢ X : O is a non-empty open subset of X} and let x = |7”|. Then denote 7’ = {O; : & € x}.

By an argument similar to the proof of Theorem 2.7 we can get a dense A-sieve V = {V,, = {V(u ) :
(a, Ay € Ay X Ay}, Tty X Pyt Apitl X Apr1 = Ay X Ayt 1 € w} on X such that Dy and V satisfy the Property
(C2) and the following properties:

1. A is any non-empty set and V, 1y = U, NY for every {(a, A) € Ag X Ao;

2. For every n € w, let Ayy1 = Ay X x and let ¢, : Ayy1 = A, be a mapping such that ¢,((A, A7) = A
whenever (A, A') € A, ;1.

3. For any n € w and any {(a,A) € A, X A, the set V(g1 is an open subset of X such that m C
Ug N Vigy NY forany (B, A’) € 1, () X ¢, (A);

4. Forany n € w and any (@, 1) € A, X A,,, the set U{Vig 1y : (B, 1) € 7 (a) X ;' (A)} is dense in Viy 1y.
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If {an, Ap) : n € w} is any c-sequence, then m,(ay+1) = a, and ¢Pu(Ay41) = A, for every n € w. If
dy, € Dy N Vi, ) for every n € w, then d, € U,, for every n € w. Thus the sequence {d,},c» has an
accumulation point y € X. Since Vi, 1,y € Y and Vg, 1,5 € Vi ay € Viaay C Y, the point y € Y. Thus Y is
densely g-complete. [

Proposition 2.15. ([1], Proposition 2.3) Every Gs-subspace of a regular fan-complete space is fan-complete.
Proposition 2.16. Every Gs-subspace of a regular g-complete space is q-complete.

Proof. This can be gotten by Proposition 2.5 and the fact that countably sieve-completeness is inherited by
Gs-subsets in a regular space ([15], p. 729). O

It was pointed out in ([15], p. 729) that a space X is countably sieve-complete if and only if every point
of X has a countably sieve-complete open neighborhood. If X is regular, then the neighborhood need not
be open. However, we have following result.

Lemma 2.17. A space X is countably sieve-complete if and only if every point of X has a countably sieve-complete
neighborhood.

Proof. The necessity is obvious. Now we prove the sufficiency.

For every x € X, there exists a countably sieve-complete neighborhood V. Let U, = {U,(x) = {Uy : a €
An(X)}, Tty © A (x) = An(x), n € w} be a countably complete sieve on X. For every x € X and every nn € w
welet U (x) = {U, NV : a € Ay(x)}. For every n € w, let B, = {A,(x) X {x} : x € X} and let 7, : B,41 — By
be a mapping such that for any x € X n,({a, x)) = @ whenever {a, x) € A,(x) X {x}. For any x € X and any
(a,x) € Ap(x) X {x}, let Vigpy = Uy NV Then V = {V,, = {Vign) : (@, x) € By}, : Byy1 = By :n€ewlisa
sieve on X. If (@, xx)) is a m-chain, then there exists y € X such that x, = y and a,, € A,(y) for every n € w.
If {d,}new is @ sequence of points of X such thatd, € Vi, +,) for every n € w, thend, € U,, N V; c U,, and
Ty (@nt1) = a, for every n € w.

Since U, is a countably complete sieve on V,, the sequence {d,},c, has an accumulation point d in
V, € X. Thus V is a countably complete sieve on X. Then X is countably sieve-complete. []

By Lemma 2.17 and Proposition 2.5, we have the following result.
Proposition 2.18. A reqular space X is q-complete if and only if every point x of X has a g-complete neighborhood.
Proposition 2.19. Every locally countably compact space X is countably sieve-complete.

Proof. Since X islocally countably compact and every countably compact space is countably sieve-complete,
every point of X has a neighborhood which is countably sieve-complete. Thus by Lemma 2.17 X is countably
sieve-complete. [

The above result shows that the T; separation axiom in Proposition 1.1 in [17] is not essential.

Proposition 2.20. Let X be a regular space. If every point of X has a densely fan-complete (fan-complete) neighbor-
hood, then X is densely fan-complete (fan-complete).

Proof. We just prove the case of densely fan-completeness. The proof of the other case is similar.

Since X is regular and every point of X has a densely fan-complete neighborhood, it follows from
Proposition 2.13 for every x € X there exists an open neighborhood V; of x such that V, is densely fan-
complete. By Proposition 2.14, the subspace V, of X is densely fan-complete for every x € X. By an argument
similar to the proof of Proposition 2.14, for every x € X there exists a dense A-sieve V, = {V,(x) = {V,(x) :
a € Ap(X)}, Tty © Aps1(x) = Ap(x) : n € w} on V, with the Property (C1) and for every n € w and every
a € Ay(x), the set Vg(x) C V,(x) if B € 1, 1(a).

For every n € w, we let A, = [J{A,(x) X {x} : x € X]. For every n € w, let n, : Ays1 = A, be a mapping
such that if (a, x) € Ay11(x) X {x} for some x € X, then 7,({a, x)) = a. For every n € w and every x € X, let
Uaxy = Val(x) for every {(a, x) € An(x) X {x}. Then U = {U,, = {U(ay : {a, x) € Ay(x) X {x}, x € X}, 1y 1 A1 —
Ay :n € w}is a dense A-sieve on X with the Property (C1). Thus X is densely fan-complete. [
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The following notions appears in [12]. Let (X, 7) be a topological space and let D be a dense subset of X.
On X we consider the Gs(D)-game played between two players a and . Player  goes first and chooses a
non-empty open subset B; C X. Player a must then respond by choosing a non-empty open subset A; C B;.
Following this, player f must select another non-empty open subset B, C A; C By and in turn player «
must again respond by selecting a non-empty open subset A, C B, C A; C By. Continuing this procedure
indefinitely the players a and  produce a sequence ((A,, B,) : n € IN) of pairs of open sets called a play of
the Gs(D)-game. We shall declare that @ wins a play ((As, By) : n € IN) of the Gs(D)-game if; (),en An is
non-empty and each sequence (a, : n € N) with a, € A, N D has a cluster-point in X. Otherwise the player
p is said to have won this play. By a strategy t for the player f we mean a ‘rule’ that specifies each move of
the player g in every possible situation. More precisely, a strategy t := (t, : n € IN) for § is a sequence of
t-valued functions such that f,41(4;, ..., A,;) C A, for each n € IN. The domain of each function ¢, is precisely
the set of all finite sequences (A1, A, ..., A;—1) of lengthn—1in T with A; C t;(Ay,...,Aj-1) forall1 < j<n-1.
The sequence of length 0 will be denoted by 0. Such a finite sequence (A1, A», ..., A,—1) or infinite sequence
(A, : n € IN) is called a t-sequence. A strategy t := (t, : n € N) for the player § is called a winning strategy if
each f-sequence is won by . We will call a topological space (X, 7) a strongly Baire or (strongly B-unfavorable)
space if it is regular and there exists a dense subset D of X such that the player f does not have a winning
strategy in the Gs(D)-game played on X [12]. In [2], the authors provided a large class of topological spaces
X for which the absence of winning strategy for player § is equivalent to the requirement that X is a Baire
space.

Theorem 2.21. If X is a densely g-complete regular space, then X is a strongly Baire space.

Proof. Since X is a densely g-complete space, there exist a dense subspace D of X and a dense A-sieve
U ={y, ={Uy: @ € Ay}, 11t Ay = Ay 2 n € w} with the Property (C2). Let us prove that X is a strongly
Baire space. Let t := (t, : n € IN) be the strategy for player . Let us construct a t-sequence (A, : n € IN) that
wins for a. Let By = t1(0). Then B; is a non-empty open subset of X.

Since U{U, : a € Ao} is dense in X, there exists ay € Ag such that By N U,, # 0. Since X is regular
and B; N Uy, is a non-empty open subset of X, there exists a non-empty open subset A; of X such that
A C AL € B1 N Uy, Let By = t(A;) be a non-empty open subset of X such that B, ¢ A;. Since
UfUp : B € m (o)} is dense in U,,, there exists a1 € Ay N 715 (arg) such that Uy, N By # 0. Then there exists a
non-empty open subset A, of X such that A, C U,, NB, by the regularity of X. Then A, Cc Ajand b (A1) = By.
Take a non-empty open subset B3 = f3(A1, Az) C Ao.

Letn > 1. Assume that we have finite sequences (By, ..., By+1), (A1, ..., Ay), (o, ..., ¥n—1) with the following
properties:

. A1 CB N Uy,;

. (B1, ..., Bus1) and (Ay, ..., Ap) are finite sequences of open subsets of X;
. Foreach0<i<n-1,a; € A;and mj(aj31) = a; foreachi <n —2;

. Foreach1<i<n, A;CBin Uy, ,;

Bii1 = tis1(Aq, ..., A;) C A; for each i < n.

U W N e

Then Byi1 = ty1(A1, ..., Ay) € Ay € A, € By N U,,,. Since U{Us : B € 2 (ay-1)} is dense in Uy, ,,
there exists a, € A, N n;}l(an,l) such that B,41 N U,, # 0. Then there exists a non-empty open subset A,
of X such that A1 C By N Uy,. Let Byio = tyi2(A1, ..., Ays1) be a non-empty open subset of X such that
Bn+2 - An+1-

By induction we get two sequences {B,, : n € IN} and {A, : n € IN} of open subsets of X and a c-sequence
a = {ay, : n € w} with the following properties:

1. A; C By NUy,;
2. Byi1 = tys1(Ag, .., An) C Ay for every n € IN;

3. Aps1 C Bpi N U,, for every n € IN.
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Thus An+1 € Ap N Uy, for every n € IN. If {x,},e0 is a sequence of points of X such that x,, € A,+1 N D for
every n € w, then x, € U,, N D for every n € w.
Since the dense subspace D and the dense A-sieve U = {y, = {Uy : a € Ay}, 7yt Apr1 = Ay 111 € w)

satisfy the Property (C2), the sequence {x,},c, has an accumulation point y in X and y € ﬂ{A_n N € w).

Then M{A, : n € N} = ({A, : n € w} # 0. Thus the strategy ¢ := (f, : n € IN) for the player 8 does not win.
Then X is a strongly Baire space. [J

3. Continuity in semitopological groups

All topological groups in this note are assumed to be Hausdorff. Let e be the identity of the consid-
ered group in this note. Given a semitopological group G, the symbol N(e) denotes the family of open
neighborhoods of the identity ¢ in G.

Lemma 3.1. ([12], Theorem 2) Let G be a semitopological regqular group. If G is a strongly Baire space, then G is a
topological group.

Theorem 3.2. If G is a reqular countably sieve-complete semitopological group, then G is a topological group.

Proof. It can be gotten by Proposition 2.6, Theorem 2.21 and Lemma 3.1. It can also be gotten by Proposition
2.6 in this note and Theorem 5.2 in [1]. O

Corollary 3.3. Let G be a regular semitopological group. If G is locally countably sieve-complete, then G is a
topological group.

Proof. By Lemma 2.17, G is countably sieve-complete. Then by Theorem 3.2 G is a topological group. O
By Theorem 3.2 and Proposition 2.19, we have the following result.

Corollary 3.4. If G is a locally countably compact reqular semitopological group, then G is a topological group.

Theorem 3.5. If Gisaregular semitopological group with a densely q-complete dense subgroup, then G is a topological

group.

Proof. Let H be a densely g-complete dense subgroup of G. By Theorem 2.7, G is densely g-complete.
Since every densely g-complete regular semitopological group is a topological group ([1], Theorem 5.2), the
semitopological group G is a topological group. [

By Proposition 2.6 and Theorem 3.5, we have the following result.

Corollary 3.6. If G is a regular semitopological group with a countably sieve-complete dense subgroup, then G is a
topological group.

In what follows, we show that if G is a regular countably sieve-complete semitopological group, then G
is a D-space if and only if G is paracompact.
The following result was pointed out in ([15], p. 730).

Lemma 3.7. ([15], p. 730) The following properties of a strong sieve ({Uy, : @ € Ay}, 7t,) on a space X are equivalent:

(1) ({Uy : @ € Ay}, my) is a countably complete sieve;
(b) If (ay) is a m-chain, if U,, # O for all n, and if C = (,,en Ua
compact, and every open V > C contains some U, .

then C is nonempty, closed, and countably

n’

Recall that a topological group G is feathered if it contains a non-empty compact set K with countable
character in G ([4], p. 235).
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Lemma 3.8. Let P be a topological property such that every countably compact space X with property P is compact,
property P is hereditary with respect to closed sets. If G is a regular countably sieve-complete semitopological group
with property P, then G is a paracompact Cech-complete topological group.

Proof. By Theorem 3.2, G is a topological group. By Lemmas 2.4 and 3.7, there exists a non-empty countably
compact closed subset K of G with countable character in G. Then K is countably compact and has
property P. Thus K is compact. Then G is feathered. Every feathered topological group is paracompact
([4], Corollary 4.3.21). Then G is paracompact countably sieve-complete. It follows from Lemma 2.8 G is
Cech-complete. [

Theorem 3.9. If G is a regular countably sieve-complete semitopological group, then G is a D-space if and only if G
is paracompact.

Proof. Assume that G is a D-space. Since the D-property is hereditary with respect to closed subsets and
every countably compact T1 D-space is compact, it follows from Lemma 3.8 G is a paracompact.

Now we assume that G is a paracompact countably sieve-complete semitopological group. By Lemma
2.8 and Theorem 3.2, G is a Cech-complete topological group. By ([4], Theorem 4.3.20), there exists a
compact subgroup H of G such that G/H is a complete metric space. Let m : G — G/H be the canonical
quotient homomorphism. By ([4], Theorem 1.5.7), the mapping 7 is perfect. Since every metric space is a
D-space and every perfect preimage of a D-space is a D-space [5], it follows that G is a D-space. [

Given a paratopological group G with a topology 7, one defines the conjugate topology 1™ on G by
7! ={U™!: U € 7}. The upper bounded 7* = 7 Vv 77! is a topological group topology. We call G* = (G, t°)
the group associated to G [23]. A paratopological group is called totally P if the associated topological group
G" has property # [23]. Recall that a semitopological group G is w-narrow if for any neighborhood U of the
identity e in G, there exists a countable set C C G such that CU = UC = G.

In [22], Sdnchez gave an internal characterization of subgroups of products of metrizable semitopological
groups. A family U of subsets of a semitopological group G is discrete with respect to a family y C N (e) if for
every x € G we can find V € y such that xV intersects at most one element of U. Also, we say that U is
o-discrete with respect to a family y C N(e) if U can be decomposed as a countable union of families discrete
with respect to . The family U of subsets of G is dominated by a family y c N(e) if for every U € U and
x € U there exists V € y such that xV ¢ U [22]. Let U be a cover of a space X. We say that a refinement V
of U is basic if for every U € U and x € U there exists V € V such that x € V c U [22]. A semitopological
group has property (#) if for every U € N(e), the family {Ux : x € G} has an open basic refinement which
is dominated by a countable family y and o-discrete with respect to y ([22], Definition 2.3). The symmetry
number of a T1 semitopological group G, denoted by Sm(G), is the minimum cardinal number « such that for
every neighborhood U of e in G, there exists a family V of neighborhoods of e in G such that Ny, V™! c U
and |V| < « [21]. If G is a regular countably sieve-complete semitopological group with Sm(G) < w and
satisfies property (), then G is a topological group ([17], Theorem 2.14). By Theorem 3.2, the conditions of
Sm(G) £ w and property (*) in Theorem 2.14 in [17] is not essential.

In ([17], Corollary 2.15), it is proved that if G is a regular totally w-narrow countably sieve-complete
paratopological group, then G is a topological group. By Theorem 3.2, the property of totally w-narrowness
of the paratopological group G in Corollary 2.15 in [17] is not essential.
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