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On the identric mean of two accretive matrices
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Abstract. Intensive studies aiming to extend some matrix means from positive matrices to accretive
matrices and to establish some of their properties have been carried out recently. The contribution of this
work falls within this framework. We introduce the identric mean of two accretive matrices and we study

its properties. Some inequalities involving this identric mean when the variables are sector matrices are
presented as well.

1. Introduction

Throughout this manuscript, the notation IM,, refers to the space of n X n matrices with real or complex
entries.

e Every A € M,, can be written in the following form

A=RA+iIJA with RA =2 J;A and 94 =2 ;iA ) )

where the notation A* refers to the adjoint of A. The decomposition (1) is known, in the literature, as the
Cartesian decomposition of A and the matrices RA and JA are called the real part and the imaginary part
of A, respectively.

e As usual, if A € M,, is Hermitian, i.e. A* = A, we say that A is positive semidefinite (in short A > 0) if
(Ax,x) > Oforallx € C" and, A is positive definite (in short A > 0) if A is positive semidefinite and invertible.
For A, B € M,, Hermitian, we write A < B or B > A for meaning that B — A is positive semidefinite. We say
that A is accretive if its real part RA is positive definite. It is clear that if A and B are accretive then so is
A + B but, in general, AB may be not accretive. Also, A accretive does not ensure that AF is accretive, for
k > 2 integer. However, it is well known that every accretive matrix A € IM,, is invertible and A71lis also
accretive, [9].

e We also need to define the sector Sg in the complex plane by

Sg = {z eC: Rz>0, |Jz < (Rz)tan 9},

for some 60 € [0, 7t/2).
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The numerical range of A € M, is defined as follows
W(A) = {x*Ax cxeC, x'x= 1}.

We say that A is a sector matrix whenever W(A) C Sy for some 0 € [0,7/2). It is obvious that if A is a

sector matrix then A is accretive. For further details about the properties and applications of accretive

matrices/sector matrices, we refer the reader to [1-5, 9, 10, 12-15, 17] and the related references cited therein.
e The exponential of A € M, is defined by the infinite series

expA = 2 E 2)
k=0

Such series is convergent for any A € M, and exp A is always invertible with (exp A)™! = exp(-A). If A is
invertible then the equation A = exp X has the solution, [18]

X =logA:=(e?A-1) fo 1 (a-nr+ tei(’A)_ldt - 61, 3)

where 0 is any angle such that ¢? A has no singular value on (—oo,0]. Here, 7 denotes the n X n identity
matrix. By definition, log A defined by (3) is the logarithm of A. The basic properties of the logarithm and
exponential matrix functions are embodied in the following result. For further details, we refer the reader
to the interesting paper of A. Wouk [18].

Proposition 1.1. Let A, B € M,,. Then the following assertions hold true:

(i) The relation log(exp A) = A holds for any A € M,, while exp(log A) = A holds when A is invertible.

(ii) exp A is always invertible with (exp A)™ = exp(—A).

(iii) For any invertible A € M,, we have log A~ = —log A and log(aA) = (loga)I + log A, where a > 0 is a real
number.

(iv) The exponential and logarithm are analytic matrix functions. Further, the matrices exp A and log A commute
with any matrix which commutes with A.

(v) For any A € M, we have det ( exp A) = exp(TrA), where det A and TrA refer to the determinant and trace of A,
respectively.
(vi) For any invertible A € M,, we have Tr( logA) = log ( detA).

(vii) The map X +— log X is matrix monotone increasing and concave for X > 0 while X — exp X is neither matrix
monotone nor convex for X > 0.

e For A,B € M, positive definite, we write A < B (or B > A) for meaning that logA < logB. Then
< defines a partial order (called chaotic order) on the set of positive definite matrices. Since the map
X +— log X is matrix monotone increasing for X > 0 then, A < B implies A < B while the converse in not
always true since the map X +— exp X is not matrix monotone for X > 0.

The present paper will be organized as follows: In Section 2, we recall some standard means of two
accretive matrices recently introduced in the literature that will be needed throughout this manuscript. In
Section 3 we use (3) to write the logarithm of an accretive matrix A € IM,,. Afterwards, we give other forms
of log A in integral representations that allowed us to establish the inequality ‘R log(A) > log (%A), valid
for every accretive matrix A € M,,. This latter inequality, whose the proof seems to be difficult from (3), will
be a good tool for proving some inequalities in the next sections. In Section 4, we introduce the so-called
chaotic geometric matrix mean of two accretive matrices. Section 5 deals with the identric mean of two
accretive matrices together with a study of its properties, specially when the involved matrices are sector
matrices. Section 6 displays with further properties for the logarithmic and identric means of two accretive
matrices.
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2. Means of accretive matrices

As already pointed out before, every accretive matrix A € M, is invertible and A™! is also accretive.
Further, it is easy to check that the set of all accretive matrices is a convex cone of M,,. Let A,B € M,, be
accretive and A € [0, 1]. The following expressions

-1 _1
AViB:=(1-MA+AB, AuB:=((1-VAT+AB?) =(A7'V,B7) (4)

are known, in the literature, as the A-weighted arithmetic mean and the A-weighted harmonic mean of A
and B, respectively. The A-weighted geometric mean of A and B is defined by, see [15]

1
A#,B = fo AlLB dva(b), ()

where, for fixed A € [0, 1], v1(t) is the probability measure on (0, 1) defined by

sin(An) 1
n (1=t

dv(t) == (6)

For A = 1/2, the previous matrix means are simply denoted by AVB, A!B and A#B, respectively. From their
definitions, it is clear that AV, B, A!;,B and Af}; B are accretive whenever A and B are. Further, it is clear that
‘R(AVAB) = (‘RA)VA(‘RB). Otherwise, we have [15]

R(AB) > (RA)1(RB), R(A#iB) = (RA)(RB). 7)

The logarithmic mean of two accretive matrices A and B is defined by, [17]

L(A,B) := fo 1 AY;B dt. 8)
From (8), L(A, B) is accretive and by the second inequality in (7) we get, [17]
RL(A, B) > L(RA, RB). 9)
If A, B € M,, are positive definite, the following inequalities hold, [17]
A!B < A#B < L(A,B) < AVB. (10)
An analog of (10) for sector matrices was proved in [17, Theorem 3.5].
Theorem 2.1. Let A, B € M, be accretive. Assume that W(A), W(B) C Sg for some 6 € [0, 71t/2). Then we have
(cos B)*R(A!B) < (cos 0)>R(AHB) < RL(A, B) < (sec 6)>R(AVB). (11)

Some reverses of (7) and (9) can be found in [17, Lemma 3.3, Proposition 3.4] and we have the following
result.

Proposition 2.2. Let A, B € M, be accretive with W(A), W(B) C Sg for some 0 € [0, t/2). If m denotes one of the
three matrix means !y, #) and L then we have

R(AmB) < (sec 0)*(RA)m(RB). (12)

We end this section by stating the following remark which may be of interest.
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Remark 2.3. (i) All the previous matrix means, as well as the following ones, are defined when the involved arguments
are accretive matrices. However, the definition of the weighted arithmetic mean V,, for A € [0, 1], can be extended for
any n X n matrices. Henceforth, and for the sake of simplicity, we may use the formula AV, B := (1 — A)A + AB when
A, B € M,, are accretive or not.

(ii) In [11], the authors explored a general theory about the class of operator/matrix means later known as monotone
operator/matrix means in the Kubo-Ando sense. In [1], the authors extended the Kubo-Ando theory from positive
definite matrices to accretive matrices in an analogous and general point of view.

(iii) A weighted logarithmic mean of two accretive matrices has been introduced in [16].

(iv) As we will see later, the identric mean investigated here does not belong to the class of matrix means discussed in
[1,11].

3. Chaotic identric mean

3.1. Logarithm of accretive matrices.

If A € M, is accretive then we can take 6 = 0 in (3). We then state the following definition.

Definition 3.1. Let A € M, be accretive. The logarithm of A is defined by

-1

log A := (A— 1) j; 1 (a-p1+ tA)_ldt =(A-1) fo 1 (7 + (1 -pA) dt. (13)

Of course, log A may be not accretive. The following result will be of interest for studying some
properties of the logarithm matrix function.

Proposition 3.2. Let A € M, be accretive. Then there hold:

1 7LA—
logA:f Mdt, (14)
0 t
1 _ 7141
logAzf l#dt. (15)
0

Proof. Simple manipulation leads to
-1
IWA-T =HI-A")I4A) = KA - DT +(1-DA) .

This, when combined with (13), yields (14). We then deduce (15) by using (14) with the help of the identity
logA=-logA™. O

Remark 3.3. Adding (14) and (15) side by side we obtain another integral representation for log A which is of
symmetric character in A and A™L.

T ILA - T1LAD
log A = f ThA - 1A=

The following result may be stated as well.
Proposition 3.4. Let A € M,, be accretive. Then

R log(4) > log (RA). (16)
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Proof. By (14) we easily obtain
1R(11A4) - THRA
R log(A) — log (RA) = f ; dt,

0

which, according to the first inequality in (7), immediately yields (16). O
A reverse of (16) reads as follows.
Proposition 3.5. Let A € M, be accretive with W(A) C Sg for some 0 € [0, 7t/2). Then we have
0< %( logA) —log (%A) <2log ( sec 9)], (17)

ot, equivalently,
exp R log(A) < (sec? 9)(‘)%A).

Proof. We recall that the map X +— log X is matrix monotone increasing on the convex cone of positive
definite matrices. This, with the following inequality [12, Lemma 3] (%A)_l < (sec 9)*RA™!, implies that
—log (‘RA) < 2log(sec 0)I +log (‘RA‘l).
Therefore we can write
‘R( logA) - log (‘RA) < —‘R(logAil) +2log(sec 0)1 +log (‘RAil),
which, with (16), immediately gives (17). O

3.2. Chaotic geometric mean of accretive matrices.
Let A, B € M, be accretive. We define the chaotic geometric mean AficB of A and B as follows
log A +log B
2

The basic properties of AficB are embodied in the following result.

AfcB = exp( ) = exp ((logA)V(log B)). (18)

Proposition 3.6. The following statements hold:

(i) If A, B € M, are positive definite then so is AicB.

(ii) The inequality AficB < AVB does not in general hold when A and B are positive definite.

(iii) In general A#B # AlicB, even if A and B are positive definite. If AB = BA then A#jcB = A#B.

(iv) (AlcB)™! = A" YYcB™! for any accretive A, B € M,,.

(v) AcB = BficA and (aA)ic(bB) = VabAHcB for any accretive A, B € M, and a,b > 0 real numbers.
(vi) det (AficB) = (det A)fic(det B) = (det A)fi(det B).

Proof. (i) If A,B € M, are positive definite then logA and log B are Hermitian and so AficB is positive
definite as exponential of Hermitian matrix.
(ii) Assume that AficB < AVB holds for any A, B positive definite. That is,

logA +logBy A+B

ex ( > ) < 5
which means that X — exp X is matrix midconvex and so matrix convex, since X — exp X is continuous.
This contradicts Proposition 1.1,(vii).
(iii) Since A#B < AVB, for any A, B € M, positive definite, we then conclude by (ii).
(iv) and (v) are immediate from (18) with the help of the basic properties of the matrix logarithm and
exponential pointed out in Proposition 1.1.
(vi) Follows by using the properties (v) and (vi) of Proposition 1.1. [
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Note that AficB may be not accretive when A and B are accretive. We have the following result as well.

Proposition 3.7. Let A, B € IM,, be accretive. Then we have
R log(AficB) > log ((RA)4c(RB)), (19)

ot, equivalently,

exp R log(AficB) = (RA)c(RB).
Proof. By (18), with the help of (16), we get

R log(AicB) = R((log A)V(log B)) = (R log A)V(R log B)
> (log RA)V(log RB) = log ((RA)c(RB)).
Hence (19). [
A reverse of (19) is stated in the following result.

Proposition 3.8. Let A, B € M, be accretive with W(A), W(B) C Sg. Then we have
R log(AticB) — log ((RA)c(RB)) < 2log (sec 6)1. (20)

Or, equivalently,
exp R log(AficB) < (sec? 0)(RA)Hc(RB).

Proof. By (18) we get
R log(AticB) — log ((RA)c(RB)) = R((log A)V(log B)) - log(RA)V log(RB).
This, with the definition of the matrix mean V, yields

R log(AtcB) - log ((%A)ﬂc(?’\B)) _ R(log A) —log(RA) ; R(logB) - log(%B)’

which, when combined with (17), gives (20). O

3.3. Identric mean of accretive matrices.
We start this subsection by stating the following main definition.

Definition 3.9. Let A, B € M, be accretive. The identric mean of A and B is defined by

1
I(A, B) := exp ( f log (AVtB)dt). 1)
0

The elementary properties of I(A, B) are included in the following proposition.

Proposition 3.10. The following statements hold:

(i) If A, B € M, are positive definite then so is I(A, B).

(ii) I(A, B) = I(B, A) for any accretive A, B € M,,.

(iii) For any accretive A, B € M, I(A, B) is invertible and we have

~ 1
(I(A, B)) - exp‘fO log(A™",B~1ydt.
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Proof. (i) Similar to that of Proposition 3.6, (i).

(ii) Follows from the relationship AV;B = BV;_;A, valid for any A,B € M,, and t € [0, 1], with a simple
change of variables in the integral of (21).

(iif) Follows from Proposition 1.1,(ii) and the definition of !;. O

As for AficB, I(A, B) may be not accretive when A and B are accretive. Further, it is worth mentioning
that, for A and B positive definite matrices, I(A, B) is not a monotone matrix mean in the Kubo-Ando sense.
That is, the following relationship

I(A,B) = AV2I(1, A2 BA™2) A2

does not in general hold. To show this, it is enough [11, Theorem 4.5] to show that the inequality I(A, B) <
AVB is not always true for some A, B € M, positive definite. This follows by the same arguments as for
AlcB. We omit the details here for the reader.

An interesting result which justifies more the previous discussion and gives an analog of (10) for I(A, B)
is recited in the following.

Proposition 3.11. Let A, B € M, be positive definite. Then
A!B < AficB < I(A,B) < AVB. (22)

Proof. Recall that the map X + log X is matrix concave for X > 0. This, with the definition of A!B, yields

A1+ B\ logA+logB
IB) = — <
log(AIB) = —log ( . ) < > ,
which, with the definition of A§cB, gives A!B < AficB. For the same reason we have

1 1 log A +log B
f log(AV;B)dt > f ((1-tlog A+ tlogB)dt = ———
0 0

which, with the definition of I(A,B) and that of AficB, gives AficB < I(A,B). By the same reason and
according to the integral Jensen inequality for matrix concave maps, [7], we get

1 1
f log(AV,;B)dt < logf (AV;B)dt = log 4 ;L B/
0 0

which gives I(A, B) < AVB. Summarizing, the proof of (22) is finished. [
The following remark may be of interest.

Remark 3.12. We can prove (22) by another different way as explained in what follows. Since the map x — log x
is matrix concave on (0, 00), by the Hermite-Hadamard inequalities for matrix maps [8] we have

A1 +B1 logA+logB log(AV(B) + log(AV;B)
1
< f 10g(AV;B) dt < log(AV12B) =: log(AVB).
0

This, with (18), (22) and the definition of | and <, immediately yields (22). Such way stems its importance in
the fact that it brings us an interesting idea for refining and reversing (21), since refinements and reverses of the
Hermite-Hadamard inequalities have been investigated in the literature, see [8] for instance. We omit the details about
this latter point which is out of the purpose of this paper.
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The following result may be stated as well.
Proposition 3.13. Let A, B € IM,, be accretive. Then we have
Rlog (A, B) 2 logI(RA, RB), (23)

ot, equivalently,

exp (‘R logI(A, B)) > I(‘RA, ‘RB).

Proof. From (21) we deduce

1
logI(A,B) = f log (AV,B)dt. (24)
0

This, with (16), implies that

1 1 1
RlogI(A,B) = f R log (AV,B)dt > f log R(AV,B)dt = f log (RAV,RB)dt,
0 0 0

which, with (24), yields (23). O
A reverse of (23) reads as follows.

Proposition 3.14. Let A, B € IM,, be accretive with W(A), W(B) C Sg. Then we have
0 < RlogI(A, B) - log(RA, RB) < 2log (sec )7, (25)

ot, equivalently,

exp (‘R log I(A, B)) < (sec? Q)I(%A, ‘RB).
Proof. By (21) we get

RlogI(A,B) - log I(RA, RB) = f 1 (R log(AV;B) — log (R (AV,B)))d,
0

which, with (17), immediately gives (25). [J
The following result concerns an analog of (22) for accretive matrices.
Theorem 3.15. Let A, B € M, be accretive with W(A), W(B) C Sg. Then there holds
(RA)(RB) < (RA)Hc(RB) < exp %(log I(A, B)) < (sec 0)*R(AVB). (26)
Proof. By (25) and then the right inequality in (22) we have
9%( log I(A, B)) <log I(%A, ‘RB) +2log ( sec 9)]' <log R(AVB) + 2log ( sec Q)I.
Hence the right inequality in (26). Now, by (21) and then (16) we have

1 1
R(logI(A, B)) = fo R log(AV;B)dt > fo log ((1- )RA + tRB)dt,

which, with the fact that the map x — log x is matrix concave for x > 0, yields

log RA +1log RB
2

R(logI(A, B)) 2 f 1 (1= log RA + tlog RB)dt = = log(RAficRB),
0

whence the second inequality in (26). The first inequality in (26) follows from the left inequality in (22).
The proof is finished. O
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4. More properties for L(A, B) and I(A, B)

In this section we investigate further properties for the logarithmic and identric means of two accretive
matrices previously studied. We need the following lemma.

Lemma 4.1. For any real number x > 0 we have

1
b(x) = fo xfsin(nt)dtz(“—l)”2. 27)

% + <logx)

Proof. We consider (x) := f01 x! cos(rit)dt and we compute Y(x) + ip(x), where i> = —1. By an elementary
computation of integral we get

—-x -1

Y(x) +ip(x) = fl xte™dt = fl exp t(in +log x)dt =
0 0

in +logx’
Separating the real and imaginary parts, we obtain the desired result. [

In (8), L(A, B) is defined in terms of the weighted geometric matrix mean. The following result states
another expression of L(A, B) in terms of the weighted harmonic matrix mean.

Theorem 4.2. Let A, B € M,, be accretive. Then we have

1
L(A,B) = fo AlB du(t),

where p(t) denotes the probability measure on (0, 1) defined through

dt
H1 - ) + (log 1))

du(t) =

Proof. According to (8) and then (5) with (6) we get

1 1 . 1 -1
t
L(A,B) = f AH,B dt = f sin(rt) f T __ALBds dt,
0 0 T 0o (1-9)

1 (tAB [ t
L(A,B) = — fo - fo sin(nt)(%) dt ds.

Thanks to (27), with a simple reduction, we obtain

or, equivalently,

1 AlB ds 1
L(A,B) = = | ALBdu).
Lsﬂ—%#+0%ﬁj) J A

The fact that L(A,A) = A and Al,B = A for any s € (0,1) imply that fol du(s) = 1ie. u(s) is a probability
measure on (0, 1). The proof is finished. [J

In order to give a result for I(A, B) we need the following lemma.
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Lemma 4.3. Let 7 be a nonempty convex subset of M,, and let @ : T~ — M,, be a continuous matrix map. Then
the following equality

! A+B ! A+B !
fo O((1- DA+t ; )t + fo o((1 - 1) ;“ + tB)dt = 2 fo o((1 - DA+ tB)dt (28)

holds true for all A,B € T".

Proof. One making the change of variable t = 25, we get after a simple reduction

f 1 O((1- HA + AtB )it =2 f " O((1 - s)A + sB)ds.
0 0

2

Now, with the change of variable t = 2s — 1 we obtain

1 A B 1
j{: o((1- 1) ; + 1B)dt = 2 fl (1 - 5)A + sB)ds.

/2

Adding these latter equalities side by side, we get the desired result. [

Finally, we state the following result which gives a relationship between the three matrix means V, fc
and I.

Proposition 4.4. For any accretive A, B € M, we have the following identity
I(A, B) = I(A, AVB)4cI(AVB, B). (29)

Proof. With ®(X) = log X, (28) can be written in the following form

1
fo log (AV/(AVB))dt + fo

which, with (21), is equivalent to

1 1
log ((AVB)VB)dt = 2 fo log (AV,B)dt,

log I(A, AVB) + log I(AVB, B) = 210g I(A, B),

and by (18) we get
log (I(A, AVB)4cI(AVB, B)) = log I(A, B).

Hence (29). O
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