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Abstract. The concept of mixed multiset topology was introduced and investigated by different researchers
from different aspects. In this paper, we introduce the notion of mixed multiset ideal topological space.
Further, we define the concepts of τ1(τ2)-pre-I-open mset, τ1(τ2)-semi-I-open mset, τ1(τ2)-α-I-open mset
and τ1(τ2)-δ-I-open mset in mixed multiset ideal topological space. We investigate on these generalized
open multisets.

1. Introduction

Over the last five decades, different concepts of topological space have been developed and expanded
in several ways. Among these, two major developments are the notions of mixed topology and bitopology.
Mixed topology is a technique of mixing two topologies on a set to get a third topology, which lies in the
theory of strict topology. Mixed topology in the context of multiset has recently been studied by Shravan
and Tripathy [26], Ray and Dey [23]. For a comprehensive study on mixed topology, one may refer to [3–
5, 22, 29, 30, 32]. A collection of objects that may appear more than once is referred to as a multiset (briefly,
mset). These objects are called the elements of such collection. A multiset is characterized by a count
function, which maps every element of a set from which a multiset is drawn to a non-negative integer and
that describes how frequently it appears in a multiset. The notion of multiset is considered when repeated
elements are significant, such as data analysis, probability theory and algorithms involving item frequencies.
Blizard [1, 2] provided an excellent overview of the literature on multiset theories. The basic properties of
multiset can be found in [11, 12, 17, 33]. Girish and John [12] established the notion of multiset topology.
Thereafter, multiset topological spaces have been carried out by several researchers [10, 13, 15, 21, 24, 28].
The authors [7–9] applied the notions of multiset and multiset topology in deoxyribonucleic acid (DNA)
and ribonucleic acid (RNA) mutations. By extending the notion of multiset in fuzzy environment, Hoque
et al. [14] studied the concept of fuzzy multiset topological space. Unlike in the case of general topology,
in multiset topology we can define two subspace M-topologies on a submset in terms of open and closed
msets [18]. Also, these two subspaces do not behave like similar concepts in general topology and thus,
many results in multiset topology vary from general topology via subspace topology. By applying this
concept, Kumar and John [18] defined two types of connectedness and Kumar et al. [19] defined two types
of compactness in multiset topology.
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The concept of an ideal topological spaces has been studied by several researchers. We may refer to
[6, 16, 20, 31]. Zakaria et al. [34] presented some of the ideal concepts in the multiset trend. Thereafter, it was
carried out by Shravan and Tripathy [25, 27]. On the other hand, in a mixed multiset topological space, every
τ1(τ2)-open mset is τ2-open mset (Theorem 3.10, Ray and Dey [23]). This result certainly plays a connection
between parent topologies and mixed topology. In this paper, we present the notion of mixed multiset ideal
topological space and study some of its basic properties. Thereafter, we define the notions of τ1(τ2)-pre-
I-open mset, τ1(τ2)-semi-I-open mset, τ1(τ2)-α-I-open mset, τ1(τ2)-δ-I-open mset and investigate some
of their properties in mixed multiset ideal topological space. We prove that the notions τ1(τ2)-pre-I-open
mset and τ2-pre-I-open mset; τ1(τ2)-semi-I-open mset and τ2-semi-I-open mset; τ1(τ2)-α-I-open mset
and τ2-α-I-open mset are completely independent. We also prove that a submset is τ1(τ2)-α-I-open if and
only if it is both τ1(τ2)-δ-I-open and τ1(τ2)-pre-I-open.

2. Preliminaries

We now recall some important definitions and results for the developing of this article.

Definition 2.1. [33] Let X be a base set. An mset M drawn from X is characterized by a function Count M or CM,
is defined by CM : X −→N, whereN is the set of all non-negative integers.

Here, CM(x) denote the multiplicity of the element x in the mset M. If X = {a1, a2, ....., ak} and multiplicity of ai is
ri, then an mset M is represented by M = {r1/a1, r2/a2, ..., rk/ak}.

Remark 2.2. (i) If CM(x) = 0 for some x ∈ X, those elements will not be considered in the mset M.
(ii) If CM(x) = 1 for every x ∈ X, then M becomes a crisp set. Therefore, an mset is the generalization of the crisp set.

Definition 2.3. [33] Let X be a base set. The family of all msets drawn from X is denoted by [X]ω, where ω is the
highest multiplicity of an element in an mset. On the other hand, [X]∞ means the family of all msets with there is no
restriction on the multiplicity.
If X = {a1, a2, ....., ak}, then
[X]ω = {{r1/a1, r2/a2, ..., rk/ak} : for i = 1, 2, ..., k; ri ∈ {0, 1, 2, ..., ω}}.
Let K,L ∈ [X]ω. Then,
(i) K = L if CK(x) = CL(x), ∀x ∈ X.
(ii) K ⊆ L if CK(x) ≤ CL(x), ∀x ∈ X.
(iii) W = K ∪ L if CW(x) = max{CK(x),CL(x)}, ∀x ∈ X.
(iv) W = K ∩ L if CW(x) = min{CK(x),CL(x)}, ∀x ∈ X.
(v) W = K ⊖ L if CW(x) = max{CK(x) − CL(x), 0}, ∀x ∈ X.

Definition 2.4. [17] Let M ∈ [X]ω. Then the complement Mc of M is defined by CMc (x) = ω − CM(x), for all x ∈ X.

Definition 2.5. [12] (i) A submset K of M is called a whole submset of M if CK(x) = CM(x),∀x ∈ K∗.
(ii) A submset K of M is called a partial whole submset of M if CK(x) = CM(x), for some x ∈ K∗.
(iii) A submset K of M is called a full submset of M if K∗ =M∗ with CK(x) ≤ CM(x),∀x ∈ K∗.

Definition 2.6. [12] Let M ∈ [X]ω and τ ⊆ P∗(M). Then τ is called a multiset topology (M-topology) on M if τ
satisfies the following properties:
(i) ∅,M in τ;
(ii) N1,N2 ∈ τ⇒ N1 ∩N2 ∈ τ;
(iii) ∪γ∈ΛNγ ∈ τ for every {Nγ : γ ∈ Λ} ⊆ τ.
The pair (M, τ) is called multiset topological space.

Definition 2.7. [12] Let (M, τ) be an M-topological space. Let A be a submset of M. The intersection of all closed
msets containing A is defined as the closure of an mset A, and is denoted by cl(A), i.e., cl(A) = ∩{K ⊆ M : K is a
closed mset and A ⊆ K} and Ccl(A)(x) = min{CK(x) : A ⊆ K}.
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Definition 2.8. [12] Let (M, τ) be an M-topological space. Let A be a submset of M. The union of all open msets
contained in A is defined as the interior of an mset A, and is denoted by int(A), i.e., int(A) = ∪{K ⊆M : K is an open
mset and K ⊆ A} and Cint(A)(x) = max{CK(x) : K ⊆ A}.

Definition 2.9. [26] An mset K is said to be quasi-coincident with L, i.e., KqL at x iff CK(x) > CLc (x).

Definition 2.10. [26] An mset N in an M-topological space (M, τ) is said to be q-neighbourhood (q-nbd) of r/a if and
only if there exists an open mset W such that r/aqW ⊂ N. The set of all q-nbd of r/a will be denoted byN(r/a)

Definition 2.11. [34] A non-empty family I of submsets of an mset M is said to be an mset ideal on M, if
(i) K ∈ I and CL(x) ≤ CK(x), ∀x ∈ X⇒ L ∈ I;
(ii) K ∈ I and L ∈ I ⇒ K ∪ L ∈ I.

Theorem 2.12. [23] Let (M, τ1) and (M, τ2) be two M-topological spaces on M. Let τ1(τ2) = {A ⊆ M : for any
submset B of M with BqA, there exists a τ2-open mset C such that BqC and τ1-closure cl(C) ⊆ A}.
The collection τ1(τ2) forms an M-topology on M and this topology τ1(τ2) is called mixed multiset topology (mixed
M-topology) on M and the pair (M, τ1(τ2)) as mixed multiset topological space (briefly, MMTS).

Theorem 2.13. [23] Let (M, τ1) and (M, τ2) be two M-topological spaces on M. Then the mixed M-topology τ1(τ2)
is coarser than τ2, i.e., τ1(τ2) ⊆ τ2.

The τ1(τ2)-closure and τ1(τ2)-interior of an mset in a mixed multiset topology are defined in the similar
way to the closure and interior in multiset context. If N be a submset of M, then τ1(τ2)cl(N) and τ1(τ2)int(N),
respectively, denote the mset closure and mset interior of N in a mixed multiset topological space (M, τ1(τ2)).
Every member of τ1(τ2) will be called a τ1(τ2)-open mset. An mset is τ1(τ2)-closed if and only if its
complement is τ1(τ2)-open.

3. Main results

In this section, we introduce the notion of mixed multiset ideal topological space.

Definition 3.1. Let (M, τ1(τ2)) be an MMTS, and I be an mset ideal on M. Then the triplet (M, τ1(τ2),I) is called
a mixed multiset ideal topological space (briefly, MMITS).

Example 3.2. Let X = {p, q, r} and M = {2/p, 3/q, 1/r} ∈ [X]3. Consider two M-topologies τ1 and τ2 on M defined
by:
τ1 = {M, ∅, {2/p}, {3/q}, {2/p, 3/q}}, and
τ2 = {M, ∅, {2/p}, {3/q}, {1/r}, {2/p, 3/q}, {3/q, 1/r}, {2/p, 1/r}}.
By Theorem 2.12, we obtain τ1(τ2) = {M, ∅, {1/r}, {3/q, 1/r}, {2/p, 1/r}}.
Let I = {∅,M}, then I is an mset ideal on M. Thus, (M, τ1(τ2),I) is an MMITS.

Example 3.3. Let X = {p, q, r} and M = {3/p, 4/q, 5/r} ∈ [X]5. Consider two M-topologies τ1 and τ2 on M defined
by:
τ1 = {M, ∅, {3/p}, {4/q}, {3/p, 4/q}}, and
τ2 = {M, ∅, {3/p}, {5/r}, {3/p, 5/r}}.
By Theorem 2.12, we obtain τ1(τ2) = {M, ∅, {5/r}, {3/p, 5/r}}.
Let I = {∅, {2/p, 2/q, 3/r}}, then I is an mset ideal on M. Thus, (M, τ1(τ2),I) is an MMITS.

Definition 3.4. Let (M, τ1(τ2)) be an MMTS with mset ideal I on M. Then the mset local function N∗∗(τ1(τ2),I)
of N is the union of all multipoints ri/ai such that if W ∈ N(ri/ai) and I ∈ I then there is at least one a j ∈ X such
that CW(a j) − CNc (a j) > CI(a j). Sometimes we shall write N∗∗ or N∗∗(I) for N∗∗(τ1(τ2),I).

Remark 3.5. The class of mset local functions with respect to τ1(τ2) contains the class of mset local functions with
respect to τ2 in the sense of Shravan and Tripathy [25], that is N∗(τ2,I) ⊆ N∗∗(τ1(τ2),I) for every submset N of M
and the converse need not be true in general as shown in the example below.
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Example 3.6. Consider the MMTS (M, τ1(τ2)) as shown in Example 3.2. Let I = {∅}. Then it is an mset
ideal in M. Let N = {2/p, 1/r}. Then one can deduce that N∗∗(τ1(τ2),I) = M and N∗(τ2,I) = N. Clearly
N∗∗(τ1(τ2),I) ⊈ N∗(τ2,I).

The following result gives the relation between mset interior and mset closure of an mset via mixed
M-topology and M-topology, which can be obtained from Theorem 2.13.

Remark 3.7. τ1(τ2)int(N) ⊆ τ2int(N) ⊆ N ⊆ τ2cl(N) ⊆ τ1(τ2)cl(N) for every submset N of M.

Lemma 3.8. In an MMITS (M, τ1(τ2),I), if I = {∅} then N∗∗(I) = τ1(τ2)cl(N) for any submset N of M.

Proof. Suppose that I = {∅}. Then by Definition 3.4, we have
N∗∗(τ1(τ2),I) = ∪{ri/ai ∈M : CW(a j) − CNc (a j) > 0, I ∈ I,∀W ∈ N(ri/ai) with at least a j ∈ X}
= ∪{ri/ai ∈M : CW(a j) > CNc (a j), I ∈ I,∀W ∈ N(ri/ai) with at least a j ∈ X} = τ1(τ2)cl(N).

Lemma 3.9. In an MMITS (M, τ1(τ2),I), if I = P∗(M) then N∗∗(I) = ∅ for any submset N of M.

Proof. Since for every multipoint ri/ai of M, there is at least one W ∈ N(ri/ai) such that for every a j ∈ X,
CW(a j) − CNc (a j) ≤ CI(a j) for I = P∗(M), we have N∗∗(I) = ∅.

The following theorem gives some basic properties of mset local function.

Theorem 3.10. Let (M, τ1(τ2)) be an MMTS, and I,J be any two mset ideals on M. Then for any two submsets
N,P of (M, τ1(τ2)), the following results hold:
(i) N ⊆ P⇒ N∗∗(I) ⊆ P∗∗(I).
(ii) I ⊆ J ⇒ N∗∗(J) ⊆ N∗∗(I).
(iii) (N ∪ P)∗∗(I) = N∗∗(I) ∪ P∗∗(I).
(iv) (N ∩ P)∗∗(I) ⊆ N∗∗(I) ∩ P∗∗(I).

Proof. We prove only (i) and (ii). The proofs for the rest will follow similarly.
(i) Let ri/ai be a multipoint in M such that ri/ai ∈ N∗∗(I). Then for every W ∈ N(ri/ai), I ∈ I there exists
a j ∈ X such that CI(a j) < CW(a j) − CNc (a j).
Now, for all a j ∈ X, W ∈ N(ri/ai), I ∈ Iwe have

N ⊆ P
⇒ CN(a j) ≤ CP(a j)
⇒ Cc

P(a j) ≤ Cc
N(a j)

⇒ CW(a j) − CNc (a j) ≤ CW(a j) − CPc (a j).

Therefore, for every W ∈ N(ri/ai), I ∈ I there exists a j ∈ X such that CI(a j) < CW(a j)−CPc (a j) and eventually
ri/ai ∈ P∗∗(I), which establishes the proof.

(ii) Let N be any submset of M and for any two mset ideals I,J on M with I ⊆ J . Let ri/ai be a
multipoint in M such that ri/ai ∈ N∗∗(J). Then for every W ∈ N(ri/ai), J ∈ J there exists a j ∈ X such that
CJ(a j) < CW(a j) − CNc (a j). Since I ⊆ J , CI(a j) < CW(a j) − CNc (a j) for every W ∈ N(ri/ai), I ∈ I. Therefore,
ri/ai ∈ N∗∗(I).

Remark 3.11. The equality in Theorem 3.10(iv) does not hold in general, which is illustrated by the following
example.

Example 3.12. Let X = {p, q, r} and M = {2/p, 3/q, 5/r} ∈ [X]5. Consider two M-topologies τ1 and τ2 on M defined
by:
τ1 = {M, ∅, {1/p, 1/q, 2/r}, {1/p, 1/q, 5/r}, {1/p, 3/q, 5/r}, {2/p, 1/q, 5/r}}, and
τ2 = {M, ∅, {1/p}, {2/q}, {1/p, 2/q}, {1/p, 2/q, 3/r}}.
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By Theorem 2.12, we obtain τ1(τ2) = {M, ∅, {1/p}, {2/q}, {1/p, 2/q}, {1/p, 2/q, 3/r}}.
Let I = {∅}, then I is an mset ideal in M. Thus, (M, τ1(τ2),I) is an MMITS.
Consider two submsets N = {1/p, 2/q, 1/r} and P = {2/p, 1/q, 3/r} of M. By using Definition 3.4, one can deduce
that N∗∗(I) = {1/p, 3/q, 5/r}, P∗∗(I) = {2/p, 1/q, 5/r} and (N ∩ P)∗∗(I) = {1/p, 1/q, 2/r}. Clearly (N ∩ P)∗∗(I) ,
N∗∗(I) ∩ P∗∗(I).

Definition 3.13. Let (M, τ1(τ2)) be an MMTS, and N be a submset of M. A function cl∗∗(.) : P∗(M)→ P∗(M) is said
to be an mset closure operator on N, defined by cl∗∗(N) = N ∪N∗∗(I), where N∗∗(I) is the mset local function of N.

Remark 3.14. It follows from Remark 3.5 that the mset closure operator on N with respect to τ2 in the sense of
Shravan and Tripathy [25] contained in that of with respect to τ1(τ2) that is cl∗2(N) ⊆ cl∗∗(N) for any submset N of M.

The following theorem gives some basic properties of mset closure operator.

Theorem 3.15. Let (M, τ1(τ2),I) be an MMITS. Then for any two submsets N,P of M, the following results hold:
(i) If N ⊆ P, then cl∗∗(N) ⊆ cl∗∗(P).
(ii) cl∗∗(N ∪ P) = cl∗∗(N) ∪ cl∗∗(P).
(iii) τ1(τ2)int(N) ⊆ cl∗∗(N).

Proof. (i) Let N ⊆ P, then for all x ∈ X, CN(x) ⊆ CP(x).
Now, for all x ∈ X, we have

Ccl∗∗(N)(x) = CN∪N∗∗(I)(x)
= max{CN(x),CN∗∗(I)(x)}
≤ max{CP(x),CP∗∗(I)(x)}
= Ccl∗∗(P)(x).

Therefore, N ⊆ P⇒ cl∗∗(N) ⊆ cl∗∗(P).
(ii) By using Definition 3.13, for any two submsets N,P of M, we obtain

cl∗∗(N ∪ P) = (N ∪ P) ∪ (N ∪ P)∗∗(I)
= (N ∪ P) ∪ (N∗∗(I) ∪ P∗∗(I))
= (N ∪N∗∗(I)) ∪ (P ∪ P∗∗(I))
= cl∗∗(N) ∪ cl∗∗(P).

Therefore, cl∗∗(N ∪ P) = cl∗∗(N) ∪ cl∗∗(P).
(iii) Let N be any submset of M. Since τ1(τ2)int(N) ⊆ N and N ⊆ N ∪ N∗∗(I), we have τ1(τ2)int(N) ⊆
N ∪N∗∗(I) = cl∗∗(N).

Definition 3.16. Let (M, τ1(τ2),I) be an MMITS. A submset N of M is said to be
(i) τ1(τ2)-pre-I-open mset (briefly, τ1(τ2)-PIO) if N ⊆ τ1(τ2)int(cl∗∗(N)).
(ii) τ1(τ2)-semi-I-open mset (briefly, τ1(τ2)-SIO) if N ⊆ cl∗∗(τ1(τ2)int(N)).
(iii) τ1(τ2)-α-I-open mset (briefly, τ1(τ2)-αIO) if N ⊆ τ1(τ2)int(cl∗∗(τ1(τ2)int(N))).

Definition 3.17. Let (M, τ1,I) and (M, τ2,I) be two mset ideal topological spaces. A submset N of M is said to be
(i) τk-pre-I-open mset (briefly, τk-PIO), where k ∈ {1, 2} if N ⊆ τkint(cl∗k(N));
(ii) τk-semi-I-open mset (briefly, τk-SIO), where k ∈ {1, 2} if N ⊆ cl∗k(τkint(N));
(iii) τk-α-I-open mset (briefly, τk-αIO), where k ∈ {1, 2} if N ⊆ τkint(cl∗k(τkint(N))).
Here, cl∗k(N) = N ∪ N∗(τk,I) and N∗(τk,I) is the mset local function of N with respect to τk, where k ∈ {1, 2} and
mset ideal I [25].

Theorem 3.18. Let (M, τ1(τ2),I) be an MMITS. Then every τ1(τ2)-open mset is τ1(τ2)-PIO (resp. τ1(τ2)-SIO,
τ1(τ2)-αIO).
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Proof. We prove the result for the case τ1(τ2)-PIO. The others can be established in a similar technique.
Let N be a τ1(τ2)-open mset in (M, τ1(τ2),I). Then N = τ1(τ2)int(N). Since N ⊆ cl∗∗(N) and N = τ1(τ2)int(N),
we have N ⊆ τ1(τ2)int(cl∗∗(N)). Therefore, N is τ1(τ2)-PIO.

Theorem 3.19. Let (M, τ1(τ2),I) be an MMITS. Then every τ1(τ2)-open mset is τ2-PIO (resp. τ2-SIO, τ2-αIO).

Proof. We prove the result for the case τ2-PIO. The proofs for the rest will follow similarly.
Let N be a τ1(τ2)-open mset in (M, τ1(τ2),I). Then N = τ1(τ2)int(N). By using Remark 3.7, we have
N = τ1(τ2)int(N) ⊆ τ2int(N). Since N ⊆ cl∗2(N), we get N ⊆ τ2int(cl∗2(N)). Therefore, N is τ2-PIO.

Result 3.20. Let (M, τ1,I) and (M, τ2,I) be two mset ideal topological spaces. If a submset N of M is τ1(τ2)-PIO,
then it need not be a τ2-PIO.

Example 3.21. Let X = {p, q} and M = {10/p, 10/q} ∈ [X]10. Consider two M-topologies τ1 and τ2 on M defined by:
τ1 = {M, ∅, {4/p, 6/q}, {6/p, 8/q}}, and
τ2 = {M, ∅, {2/q}, {6/p, 4/q}, {4/p, 2/q}}.
By Theorem 2.12, we obtain τ1(τ2) = {M, ∅, {6/p, 4/q}, {4/p, 2/q}}.
Let I = {∅}. Then it is an mset ideal on M. If N = {8/p, 7/q}, then one can obtain that N is a τ1(τ2)-PIO but not a
τ2-PIO.

Result 3.22. Let (M, τ1,I) and (M, τ2,I) be two mset ideal topological spaces. If a submset N of M is τ1(τ2)-SIO
then it need not be a τ2-SIO.

Example 3.23. Let X = {p, q} and M = {2/p, 3/q} ∈ [X]3. Consider two M-topologies τ1 and τ2 on M defined by:
τ1 = {M, ∅, {1/p, 3/q}, {2/p, 1/q}, {1/p, 1/q}}, and
τ2 = {M, ∅, {1/p}, {1/q}, {2/q}, {1/p, 1/q}, {1/p, 2/q}}.
By Theorem 2.12, we obtain τ1(τ2) = {M, ∅, {1/p}, {2/q}, {1/p, 2/q}}.
Let I = {∅}. Then it is an mset ideal on M. If N = {3/q}, then one can verify that N is a τ1(τ2)-SIO but not a τ2-SIO.

Result 3.24. Let (M, τ1,I) and (M, τ2,I) be two mset ideal topological spaces. If a submset N of M is τ1(τ2)-αIO
then it need not be a τ2-αIO.

Example 3.25. Let X = {p, q, r} and M = {2/p, 3/q, 1/r} ∈ [X]3. Consider two M-topologies τ1 and τ2 on M defined
by:
τ1 = {M, ∅, {2/p}, {3/q}, {2/p, 3/q}}, and
τ2 = {M, ∅, {2/p}, {3/q}, {1/r}, {2/p, 3/q}, {3/q, 1/r}, {2/p, 1/r}}.
By Theorem 2.12, we obtain τ1(τ2) = {M, ∅, {1/r}, {3/q, 1/r}, {2/p, 1/r}}.
Let I = {∅}. Then it is an mset ideal on M. If N = {2/r}, then one can show that N is a τ1(τ2)-αIO but not a τ2-αIO.

Proposition 3.26. Let (M, τ1(τ2),I) be an MMITS. If I = P∗(M), then N is τ1(τ2)-PIO (resp. τ1(τ2)-SIO,
τ1(τ2)-αIO) if and only if N is τ1(τ2)-open mset.

Proof. We prove the result for the case τ1(τ2)-PIO. The proofs for the rest will follow similarly.
Let I = P∗(M). Then by Lemma 3.9, we have N∗∗(I) = ∅. Clearly, cl∗∗(N) = N ∪ N∗∗(I) implies cl∗∗(N) = N.
Thus, τ1(τ2)int(cl∗∗(N)) = τ1(τ2)int(N). Therefore, N is τ1(τ2)-PIO if and only if it is τ1(τ2)-open.

Proposition 3.27. Let (M, τ1(τ2),I) be an MMITS. If I = P∗(M), then every τ1(τ2)-PIO (resp. τ1(τ2)-SIO,
τ1(τ2)-αIO) is τ2-PIO (resp. τ2-SIO, τ2-αIO).

Proof. We only prove that every τ1(τ2)-PIO is τ2-PIO. The others can be established in a similar technique.
Let N be a submset of M andI = P∗(M). Then by Lemma 3.9, we have N∗∗(I) = ∅. Clearly, cl∗∗(N) = N∪N∗∗(I)
implies cl∗∗(N) = N.
By using Remark 3.7, we obtain

τ1(τ2)int(cl∗∗(N)) = τ1(τ2)int(N)
⊆ τ2int(N)
⊆ τ2int(cl∗2(N)).
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Therefore, N ⊆ τ1(τ2)int(cl∗∗(N)) ⇒ N ⊆ τ2int(cl∗2(N)). This proves that N is τ2-PIO, whenever N is τ1(τ2)-
PIO.

Remark 3.28. The converses of the above proposition need not be true in general, as illustrated by the following
example.

Example 3.29. (i) Consider the MMTS (M, τ1(τ2)) as in Example 3.21. Let I = P∗(M) be an mset ideal on M.
Then, (M, τ1(τ2),I) is an MMITS. One can easily justify that the submset N = {2/q} of M is a τ2-PIO but not a
τ1(τ2)-PIO.
(ii) Consider the MMTS (M, τ1(τ2)) as in Example 3.23. Let I = P∗(M) be an mset ideal on M. Then, (M, τ1(τ2),I)
is an MMITS. One can prove that the submset N = {1/p, 1/q} of M is a τ2-SIO but not a τ1(τ2)-SIO.
(iii) Consider the MMTS (M, τ1(τ2)) as in Example 3.25. Let I = P∗(M) be an mset ideal on M. Then, (M, τ1(τ2),I)
is an MMITS. It can be verified that the submset N = {2/p, 3/q} of M is a τ2-αIO but not a τ1(τ2)-αIO.

Note 3.30. By using Results 3.20, 3.22, 3.24 and Remark 3.28, we conclude that the notions τ1(τ2)-PIO and τ2-PIO;
τ1(τ2)-SIO and τ2-SIO; τ1(τ2)-αIO and τ2-αIO are completely independent.

Theorem 3.31. Let (M, τ1(τ2),I) be an MMITS. Then every τ1(τ2)-αIO is τ1(τ2)-PIO.

Proof. Let N be a τ1(τ2)-αIO in an MMITS (M, τ1(τ2),I), then N ⊆ τ1(τ2)int(cl∗∗(τ1(τ2)int(N))).
Now,

τ1(τ2)int(N) ⊆ N
⇒ cl∗∗(τ1(τ2)int(N)) ⊆ cl∗∗(N)
⇒ τ1(τ2)int(cl∗∗(τ1(τ2)int(N))) ⊆ τ1(τ2)int(cl∗∗(N)).

Therefore, we get N ⊆ τ1(τ2)int(cl∗∗(N)). This shows that N is τ1(τ2)-PIO.

Remark 3.32. The converse of the above theorem is not true in general, which follows from the following example.

Example 3.33. Consider the MMITS (M, τ1(τ2),I) as shown in Example 3.21. One can deduce that the submset
N = {8/p, 7/q} of M is τ1(τ2)-PIO but not a τ1(τ2)-αIO.

Theorem 3.34. Let (M, τ1(τ2),I) be an MMITS. Then every τ1(τ2)-αIO is τ1(τ2)-SIO.

Proof. Let N be a τ1(τ2)-αIO in (M, τ1(τ2),I), then N ⊆ τ1(τ2)int(cl∗∗(τ1(τ2)int(N))).
Clearly, τ1(τ2)int(cl∗∗(τ1(τ2)int(N))) ⊆ cl∗∗(τ1(τ2)int(N)). Therefore, N ⊆ cl∗∗(τ1(τ2)int(N)). This shows that N
is τ1(τ2)-SIO.

Remark 3.35. The converse of the above theorem is not true in general, which follows from the following example.

Example 3.36. Consider the MMITS (M, τ1(τ2),I) as in Example 3.23. One can easily justify that the submset
N = {3/q} of M is a τ1(τ2)-SIO but not a τ1(τ2)-αIO.

Definition 3.37. A submset N in an MMITS (M, τ1(τ2),I) is called τ1(τ2)-δ-I-open mset (briefly, τ1(τ2)-δIO) if
τ1(τ2)int(cl∗∗(N)) ⊆ cl∗∗(τ1(τ2)int(N)).

Proposition 3.38. In an MMITS (M, τ1(τ2),I), every τ1(τ2)-SIO is τ1(τ2)-δIO.

Proof. Let N be a τ1(τ2)-SIO in (M, τ1(τ2),I), then N ⊆ cl∗∗(τ1(τ2)int(N)).
Now,

τ1(τ2)int(cl∗∗(N)) ⊆ cl∗∗(N)
⊆ cl∗∗(cl∗∗(τ1(τ2)int(N)))
= cl∗∗(τ1(τ2)int(N)).

Hence, the proof is completed.
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Proposition 3.39. Let (M, τ1(τ2),I) be an MMITS. Then a submset of M is τ1(τ2)-αIO if and only if it is both
τ1(τ2)-δIO and τ1(τ2)-PIO.

Proof. Let N be a τ1(τ2)-αIO. Then it is τ1(τ2)-SIO. Hence, by above theorem it is τ1(τ2)-δIO. On the other
hand, by Theorem 3.31, every τ1(τ2)-αIO is τ1(τ2)-PIO.

Conversely, let N be a τ1(τ2)-δIO and τ1(τ2)-PIO. Then, we have τ1(τ2)int(cl∗∗(N)) ⊆ cl∗∗(τ1(τ2)int(N))
and hence τ1(τ2)int(cl∗∗(N)) ⊆ τ1(τ2)int(cl∗∗(τ1(τ2)int(N))). Since N is τ1(τ2)-pre-I-open, we have N ⊆

τ1(τ2)int(cl∗∗(N)). Thus, we obtain N ⊆ τ1(τ2)int(cl∗∗(τ1(τ2)int(N))). This shows that N is a τ1(τ2)-αIO.

Proposition 3.40. Let K,L be submsets of an MMITS (M, τ1(τ2),I). If K ⊆ L ⊆ cl∗∗(K) and K is τ1(τ2)-δIO, then
L is τ1(τ2)-δIO.

Proof. Suppose that K ⊆ L ⊆ cl∗∗(K) and K is τ1(τ2)-δIO.
Then,

τ1(τ2)int(cl∗∗(K)) ⊆ cl∗∗(τ1(τ2)int(K)) (1)

By using Eq. (1), we have

K ⊆ L
⇒ τ1(τ2)int(K) ⊆ τ1(τ2)int(L)
⇒ cl∗∗(τ1(τ2)int(K)) ⊆ cl∗∗(τ1(τ2)int(L))
⇒ τ1(τ2)int(cl∗∗(K)) ⊆ cl∗∗(τ1(τ2)int(L)). (2)

Also,

L ⊆ cl∗∗(K)
⇒ cl∗∗(L) ⊆ cl∗∗(cl∗∗(K)) = cl∗∗(K)
⇒ τ1(τ2)int(cl∗∗(L)) ⊆ τ1(τ2)int(cl∗∗(K)). (3)

By using Eqs. (2) and (3), we obtain τ1(τ2)int(cl∗∗(L)) ⊆ cl∗∗(τ1(τ2)int(L)). This proves that L is a τ1(τ2)-δIO.

Remark 3.41. The concepts of τ1(τ2)-δIO and τ1(τ2)-PIO are independent notions as illustrated by the following
example.

Example 3.42. Consider the MMITS (M, τ1(τ2),I) as shown in Example 3.21. If N = {8/p, 7/q}, then it can be
verified that it is a τ1(τ2)-PIO but not a τ1(τ2)-δIO. On the other hand, by considering Example 3.23, one can deduce
that the submset N = {3/q} of M is a τ1(τ2)-δIO but not a τ1(τ2)-PIO.

Theorem 3.43. Let K, L and W be three submsets of an MMITS (M, τ1(τ2),I) with τ1(τ2)int(cl∗∗(W)) is a whole
submset of M. If W is a τ1(τ2)-δIO, then W = K∪ L, where K is a τ1(τ2)-αIO, τ1(τ2)int(cl∗∗(L)) = ∅ and L∩K = ∅.

Proof. Suppose that W is a τ1(τ2)-δIO in (M, τ1(τ2),I).
Then,

τ1(τ2)int(cl∗∗(W)) ⊆ cl∗∗(τ1(τ2)int(W))
⇒ τ1(τ2)int(cl∗∗(W)) ⊆ τ1(τ2)int(cl∗∗(τ1(τ2)int(W))) (4)

Now, we have W = [W ∩ τ1(τ2)int(cl∗∗(W))] ∪ [W ⊖ τ1(τ2)int(cl∗∗(W))].
We now set K =W ∩ τ1(τ2)int(cl∗∗(W)) and L =W ⊖ τ1(τ2)int(cl∗∗(W)).
We first show that K is a τ1(τ2)-αIO.
Now,

τ1(τ2)int(cl∗∗(τ1(τ2)int(K)))
= τ1(τ2)int(cl∗∗(τ1(τ2)int[W ∩ τ1(τ2)int(cl∗∗(W))))]
= τ1(τ2)int(cl∗∗[(τ1(τ2)int(W) ∩ τ1(τ2)int(cl∗∗(W))))]
= τ1(τ2)int(cl∗∗(τ1(τ2)int(W). (5)
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Since K =W ∩ τ1(τ2)int(cl∗∗(W)), we have K ⊆ τ1(τ2)int(cl∗∗(W)).
Therefore, from Eqs. (4) and (5), we have K ⊆ τ1(τ2)int(cl∗∗(τ1(τ2)int(K))). This shows that K is τ1(τ2)-αIO.
Next we prove that τ1(τ2)int(cl∗∗(L)) = ∅.
We have,

τ1(τ2)int(cl∗∗(L))
= τ1(τ2)int(cl∗∗[W ⊖ τ1(τ2)int(cl∗∗(W)])
= τ1(τ2)int(cl∗∗[W ∩ (M ⊖ τ1(τ2)int(cl∗∗(W))])
⊆ τ1(τ2)int(cl∗∗(W) ∩ τ1(τ2)int(cl∗∗(M ⊖ τ1(τ2)int(cl∗∗(W)))
⊆ τ1(τ2)int(cl∗∗(W) ∩ τ1(τ2)int(τ1(τ2)cl(M ⊖ τ1(τ2)int(cl∗∗(W)))
⊆ τ1(τ2)int(cl∗∗(W) ∩ [M ⊖ τ1(τ2)int(cl∗∗(W)]
= ∅.

Also, it is clear that [W ∩ τ1(τ2)int(cl∗∗(W))] ∩ [W ⊖ τ1(τ2)int(cl∗∗(W))] = ∅.
Hence, the proof is completed.

Example 3.44. Consider X = {p, q, r} and M = {2/p, 3/q, 4/r} ∈ [X]4. Consider two M-topologies τ1 and τ2 on M
defined by:
τ1 = {M, ∅, {3/q}, {4/r}, {3/q, 4/r}}, and
τ2 = {M, ∅, {1/p}, {2/p}, {2/p, 3/q}, {2/p, 4/r}}.
By Theorem 2.12, we obtain τ1(τ2) = {M, ∅, {2/p}, {2/p, 3/q}, {2/p, 4/r}}.
Consider an mset ideal I = {∅} on M. Then (M, τ1(τ2),I) is an MMITS.
Let W = {2/p, 2/q} be a submset of M. We first show that W is a τ1(τ2)-δIO.
By using Definition 3.13, one can deduce that cl∗∗(W) =M and thus, τ1(τ2)int(cl∗∗(W)) =M. Also, cl∗∗(τ1(τ2)int(W)) =
M.
Clearly, τ1(τ2)int(cl∗∗(W)) ⊆ cl∗∗(τ1(τ2)int(W)). Therefore, W is a τ1(τ2)-δIO.
Let us write W = K ∪ L, where K =W and L = ∅.
We now verify that K is a τ1(τ2)-αIO.
As cl∗∗(τ1(τ2)int(K)) = M, we have τ1(τ2)int(cl∗∗(τ1(τ2)int(K))) = M. Therefore, K is τ1(τ2)-αIO. On the other
hand, τ1(τ2)int(cl∗∗(L)) = ∅ and K ∩ L = ∅.

Remark 3.45. We now show that the condition, τ1(τ2)int(cl∗∗(W)) is a whole submset of M in the above theorem is
mandatory.

Example 3.46. Consider the MMITS (M, τ1(τ2),I) as shown in Example 3.23. Consider W = {3/q}. By using
Definition 3.13, we obtain cl∗∗(W) = {1/p, 3/q} and then τ1(τ2)int(cl∗∗(W)) = {1/p, 2/q}. Also, cl∗∗(τ1(τ2)int(W)) =
{1/p, 3/q}. Therefore, W is a τ1(τ2)-δIO. But, there do not exist two submsets K,L of M such that W = K ∪ L, where
K is a τ1(τ2)-αIO, τ1(τ2)int(cl∗∗(L)) = ∅ and K ∩ L = ∅.

4. Conclusion

In this article, we have introduced the notion of mixed multiset ideal topological spaces. We have
defined the notions of τ1(τ2)-pre-I-open mset, τ1(τ2)-semi-I-open mset, τ1(τ2)-α-I-open mset and τ1(τ2)-δ-
I-open mset via mixed multiset ideal topological space and investigated on these generalized open msets.
This article is a starting of a new structure. There are lots of investigation left in this direction and a few of
the properties have been discussed here. We hope that this article will open up a new window for research
fraternity in coming days.
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