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Abstract. In this paper we extend the results obtained by X. Dong and D. Wu in [1] to 3 x 3 Lipschitz
continuous nonlinear operator matrices. In this work, the Kachurovskij spectrum of 3 x 3 Lipschitz continu-
ous nonlinear operator matrices are studied. Firstly, some connections between the Kachurovskij spectrum
of certain 3 X 3 Lipschitz continuous nonlinear operator matrices and that of their entries are established,
and the relationship between the Kachurovskij spectrum of 3 x 3 Lipschitz continuous nonlinear operator
matrices and that of their Schur complement is presented by means of Schur decomposition.

1. Introduction

The spectrum for Lipschitz continuous operators which was defined by Kachurovskij in 1969, as well as a
spectrum for linearly bounded operators introduced by Dorfner in 1997. In [1] X. Dong and D. Wu study
the Kachurovskij spectrum of 2 x 2 Lipschitz continuous nonlinear operator matrices. The authors give
some connections between the Kachurovskij spectrum of certain 2 X 2 nonlinear operator matrices and that
of their entries.

In this paper, the Kachurovskij spectrum of 3 x 3 Lipschitz continuous nonlinear operator matrices are
studied. Firstly, some connections between the Kachurovskij spectrum of certain 3 x 3 Lipschitz continuous
nonlinear operator matrices and that of their entries are established, and the relationship between the
Kachurovskij spectrum of 3 x 3 Lipschitz continuous nonlinear operator matrices and that of their Schur
complement is presented by means of Schur decomposition.

Let X be an infinite dimensional complex Hilbert space. Let C(X) denote the set of all continuous (in

general, nonlinear) operators from X into X, and let £(X) denote the set of all bounded linear operators
from X into X. For F € C(X),
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If [F]Lip < 00, we write F € Lip(X), and call F Lipschitz continuous. Let £ip(X) denote the set of all Lipschitz
continuous operators from X into X, which map 0 into 0. Note that if F is a bounded linear operator, we
have [F]rj = ||F||. In addition, we define subset of C by means of the lower characteristic (2):

1ip(F) := {A € C such that [F — A];;, = 0}.
If [F — Alijp > O, then F is injective and closed.
Definition 1.1. Given F € Lip(X), we call the set
px(F) := {A € C such that F — A is bijective and (F — A7t e Lip(X)).
The Kachurovskij resolvent set and its complement
ok (F) = C\pk(F)
the Kachurovskij spectrum of F. o
E\ € pﬁ(F) if, and only if, F — A is a lipeomorphism, i.e., F — A is bijective, and satisfies [F — A].;, < oo and
F-A lip > 0.

In the case of a bounded linear operator F, o;;,(F) is the approximate point spectrum of F and ox(F) is the
usual spectrum of F.

Definition 1.2. Let X be a Hilbert space, F : X — X be continuous, the numerical range Wz (F) of F is denoted by

(F(x) = F(y),x—y)
[lx — yl?

WZ(F):z{ ,x,yeX,x;ty}.

Obviously, this definition coincides with the numerical range of Toeplitz [2] in the linear case.

Lemma 1.3. Let X be a Banach space and F : X — X a lipeomorphism. Suppose that G € Lip(X) satisfies
[GlLip < [FliipE. Then, F + G is also a lipeomorphism and

[F'y 1
G) My < - - ’
[(F+G) ]LV = 1- [G]Ljp[F_l]Lip [F]lip - [G]Lil’

¢
Lemma 1.4. Let X be a Hilbert space, F € Lip(X) with F(0) = 0, and A € C with
d, := dist(A, W(F)) > 0.
Then F — Al is a lipeomorphism with
(F =2 < 7
¢

2. Main results

First, we study the Kachurovskij spectrum of 3 x 3 diagonal block operator matrices.



A. Ammar et al. / Filomat 38:15 (2024), 5543-5557 5545

Proposition 2.1. Let

oo
omo

0
0 [eCXxXxX)
K

with A, E, and K are in 2ip(X).Then,

(@) 01ip(Lo) = 01ip(A) U 013 (E) U 011 (K).
(ii) ok(Lo) = ok(A) U ok(E) U ok(K). ¢

Proof. (i) Let A € 0y;,(A), then there exist sequences (xg)) and (yﬁ,l)) of X with xf}) * yﬁ,l), such that

1A = )l = (A = )yl
[ =yl

— 0 asn — oo.

1) 1)

Xn Yn

Setx,=| 0 |, y.=| 0 [ thenx,#y,,n=12---,and
0 0

Lo = M = (Lo = Dyall _ A = A’ — (A= Dyl

_ 1 1
Il v [ =yl

— 0 asn—

i.e., A € gjj(Lo). By a similar argument, we can show that
a1ip(E) U 01ip(K) € 01ip(Lo)-
Conversely, let A € 05;,(Lo), assume that A ¢ 67,(A) U 01,(E) U 01i(K). Then, [A = Al > 0, [E = Al > 0, and

X1 n
[K — Aliip > 0. Thus, for any vectors x = [ X7 ], y= [ Yo ]with x # Y, we have
X3 Y3

(Lo — A)x — (Lo — Myl
llx = yll

I(A = A)x1 = (A = Dyl + I(E = A)xp = (E = Dyal? + (K = A)xz = (K= A)ysl?
[Ix1 = yall? + llx2 — y2ll? + llxs — ysll?

[A = Alipller = y1ll> + [E = Aliplixa = yall* + [K = Al llxs — ysl?
llx1 = 1l + llx2 = yall® + [lxs — 3l
min([A = Ay, [A = A, [K = Alip) >0,

\%

and hence [Ly — A];, > 0, which lead a contradiction. Thus A € 07;,(A) U 01ip(E) U 01 (K).  Therefore,
a1ip(Lo) = 01ip(A) U 01ip(E) U 01p(K).

(i) From (i), we know that [Lo — A];;, > 0 if and only if [A — A];, > 0, [A — Al > 0, and [K— Ay, > 0. Clearly,
Ly is bijective if and only if A — A, K= A, and K — A are bijective. Thus, px(Lo) = px(A) U px(E) U px(K),
therefore ox(Lg) = 0x(A) U ok(E) Uok(K). O

Now, we consider upper triangular operator matrices.

Proposition 2.2. Let

Ly = eC(XxXxX)

oo

B C
E F
0 K
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with A, B, C, E, F, and K are in Lip(X). Then,
01ip(A) C 01ip(Lo) C 013p(A) U 01ip(E) U 0135 (K). ¢

Proof. Itis easy tosee that o, (A) C 0;,(Lo), and so we only need to prove that 07;,(Lo) C 073,(A) U 01ip(E) U 01 (K).
Let A € 05;(Lo), then [Lo — A]j;, = 0. Evidently, the factorization formula

0

0 ®3)

I

I 0 0 I 0 C I 0 0 I B O
Lo-A=| 0 I 0 0 I F 0 E-A O 0 I 0
0 0 K=-4A 0 0 I 0 0 I 0 0 I

holds. Write
u- [

I
R=|0
0

g

W=

A-A

0
I
0

0
0

O~ O
| © O

—~ 0
~ OO e

o

E

OO~
o~ 3 o | o

I
0
0
I
0
0

0

0

I
0
0
I

A-A 0
Z= 0 I
0 0

Clearly, R and W are a lipeomorphism, and hence [R];;, > 0 and [W];;, > 0. Since
[Lo — Alip = [URVWZ]i, = [ULip [RLip [V 1iip [Wip[Z1iip,
it follows that [U];, = 0 or [V]y, = 0 or [Z];;,= 0, which implies that A € 0dy;,(A) U 01, (E) U 013p(K).

Consequently, 0;;,(Lo) € 013p(A) U 013y (E) U 04p(K).
[

Corollary 2.3. Let
Lo =

A B C
0 E F |eCXxXxX)
0 0 K

with A, B, C, E, F, and K are in £ip(X). If ox(A) N okx(E) (N ox(K) = 0, then ox(Lo) = ox(A) U ox(E) U ox(K). ¢
Theorem 2.4. Let
Ly =

A B C
0 E F |eCXxXxX)
0 0 K

with A, B, C, E, F, and K are in Lip(X). Then, 01,(A) U 01;p(E) U 01ip(K) = 013, (Lo) U(01i(E) (M A1) U(013,(K) (M A),
where Ay = {A € C: [A— ALy >0, and A — A is not surjective} and Ay = {A € C: [E— A];, >0, and E -
A is not surjective}. o
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Proof. 1t is easy to prove that

01 (K) ) o) ] aun(E) > oy (Lo) 1o (E) () 1| loip(K) () Aol

Conversely, let A € [0y;,(K) U 01, (A) U 01ip(E)]\013p(Lo); then we have from Proposition 2.2 (i), A € [04;,(E) U 013, (K)\ 013, (A),
and hence A € A; |J px(A). Assume that A € pg(A), then A — A is a lipeomorphism. Make the factorisation
as in (3), we have that
[Ulip = [(Lo = DZTWVTIR gy > [Lo = AliplZ ™ 1ip W 1 [V 1ip [R™ 1 > 0.
Thus [K = A];;, > 0. So, A ¢ 0y;,(K). Make the factorisation as in (3), we have that
[V1ip = [R™MU (Lo = )Z' W iy > [R™3ip [U Lip[Lo = ALip[Z7 1o Wi > .

Thus [E — A];;, > 0. So, A ¢ 0yi,(E). Which is a contradiction to A € 0y;,(K) U 01i,(E). Hence, A € A;. Therefore
(o) | o (B)|_] oip(K)\orip(Lo) € oy (E) [ A
The same, we can prove [07;,(A) U 01, (E) U 013p(K)\0uip(Lo) € 01ip(K) (N A2, O

Corollary 2.5. Let

A B C
Lo=| 0 E F [eCXxXxX)
0 0 K
with A, B, C, E, F, and K are in Lip(X). Then,
o) |_Jau®)| oK) = aip(Lo) (4)
ifand OTlly ifO[l‘p(E) m A C Glip(LO) and O[,'p(K) m A, C Glip(LO)- Moreover, l'fﬁlip(E) m A = Gl,'p(K) m Ay = 0, then
(19) is hold. o

3. Frobenius-Schur’s decomposition

In this section, we are concerned with a 3 x 3 block operator matrix

A B C
Lo:=| D E F |, (5)
G H L

where the entries of the matrix are in general unbounded operators. The operator (5) is defined on
(DA) NDD) N D(G)) X (D(B) NYD(E) Y D(H)) X (D(C) N D(F) N D(L)) . The essential work in this section
is to impose some conditions on the entries of the operator Ly in order to establish its closedness. In the
product of Banach spaces X X Y x Z, we consider the operator L, defined by (5) where the operator A acts
on X and has a domain 9(A), the operator E acts on Y and has a domain 9D(E), and the operator L acts on Z
and has a domain D(L). The intertwining operator B is defined on the domain D(B) C Y into X, the operator
H is defined on the domain D(H) C Y into Z, the operator C is defined on the domain D(C) C Z into X, the
operator F is defined on the domain D(F) C Z into Y, the operator D is defined on the domain D(D) ¢ X
into Y, and the operator G is defined on the domain 9(G) c X into Z. In what follows, we will consider the
following hypotheses(see [5]):

(M1) The operator A is a closed, densely defined linear operator on X, with a nonempty resolvent set p(A).

(M2) The operator D (resp. G) verifies that D(A) € D(D) (resp. D(A) € D(G)) and, for some (hence for all)
1 € p(A), the operator D(A — p)™! (resp. G(A — u)™!) is bounded.
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Let F1(u) := D(A — u)™!, and Fa(u) := G(A — p)~L.

e In particular, if D (resp. G) is closable then, from the closed graph theorem, it follows that Fy(u) (resp.
F>(u)) is bounded.

(M3) The operator B (resp. C) is densely defined on Y (resp. Z) and, for some (hence for all) u € p(A), the
operator (A — u)"'B (resp. (A — u)~'C) is bounded on its domain.

Now, let G1(u) := (A — u)~'B, and Gy(u) := (A — u)~'C.

(M4) The lineal D(B) M D(E) is dense in Y and, for some (hence for all) u € p(A), the operator S;(u) :=
E — D(A — u)"!Bis closed.

(M5) D(C) ¢ D(F), and the operator F — D(A — u)'C is bounded on its domain, for some p € p(A) and
therefore, for all u € p(A). We will also suppose that there exists i such that u € p(A) () p(S1(1)) and we will
denote G3(u) by

Gs(u) := (S1(u) — W)™ (F = D(A = p)~10).
e To explain this, let u € p(A), such that F — D(A — 1)~'C is bounded on its domain. Then, for an arbitrary
A € p(A), we have
F-DA-A)"'C=F-DA-uw'C+ (u-A)F(uA-1)"C
From the assumptions (M2) and (M3), it follows that the operator on the right-hand side is bounded on its
domain. Then, the boundedness of the operator F — D(A — 1)"'C does not depend on u € p(A). We will
denote G4(u) by Ga(u) := F — D(A — u)~'C.

Remark 3.1. If the operators A and E generate Co-semigroups, and if the operators D and B are bounded, then

there exists u € C, such that u € p(A) () p(S1(w)). Indeed, it is well known that, if the operators A and E generate

Co-semigroups then, there exist two constants M > 0 and w > 0, such that ||(u — T)7!|| < —M_ where T € {A, E}

Reu—-w”
for all p such that Rep > w. For a fixed u € C chosen in such a way that Reu > w + a, where a > 0, we consider
the following resolvent equation of S1(u)

(A~E+D(A~p) "B = ¢ (6)
Since A € p(E), we deduce that, for ReA > w + «a, Eq. (6) may be transformed into
[I+ (A ~E)"'D(u~A)"Blp =1 -E"y.

The fact that
M?|IDI|IIBII
a(ReA —w)

allows us to conclude that < %im (A = E)™'D( — A)™'B|| = 0. Hence, there exists p > w + a such that, for ReA > B,
eA—+0o0

A = By'D(u — A)'BI| <

we have 1,((A — E)™'D(u — A)™'B) < 1, where r,(.) represents the spectral radius. Hence for u, such that Rey > B,
we have 1 € p(A) and u € p(S1(u)). Moreover, we can write

(u=S1w)™" =Y [ =B D(u - A 'BI"(u - E)™. o

n>0

(M6) The operator H satisfies the fact that D(B) ¢ D(H) and, for some (hence for all) u € p(A) (" p(S1(w)),
the operator (H — G(A — 1) ™'B)(S1(u) — )~! is bounded. Set

F3(u) = (H ~ G(A - ) B)(S: () — )"

(M7) For the operator K, we will assume that D(C) ¢ D(K) and, for some (hence for all) p € p(A) (N p(S1(w)),
the operator
L—G(A—w)™C~[H~ G(A - )y BI(S1() — p) ' [F = D(A - p)'C]

is closable. Let us denote by Sy() this operator, and by S,(u) its closure.
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Remark 3.2. (i) From the Hilbert identity, we get for A, u € p(A)
S1(A) = S1(u) = (u — A)F1(p)(A — A)7'B.

Since the operator Fy(u) is bounded and (A — A)™'B is bounded on its domain, we deduce that neither the domain of
S1(u) nor the property of being closable depends on the choice of p. Then,

51(A) = S1(u) = (u = MF1 ()G (A). 7)
(ii) Let A € p(A) (M p(S1(A)) and p € p(A) () p(S1(w)). Then,

(1= HE2(p)(A - 1)7'C = F(W)[F = D(A - 1)'C] +
F3(w)[F = D(A - p)~'C]
= (u - MFa(u)(A - 1)'C = F(VIF - D(A - 1)7'Cl +
F3(u)IF ~ D(A ~ 1)"'C ~ (u = HD(A - ) (A - 1)'C]
= (= DF2()(A = )'C + [Fa(w) = FWIIF - DA - 1)7'C] +
(A = WEs(WF: (u)(A - A)1C

Since the operators Fi(.), withi = 1,2, 3 are bounded everywhere and since the operators (A—p) ' Cand F-D(A-A)"'C
are bounded on their domains then, the closedness of the operator S,(u) does not depend on the choice of u. Hence,

52(1) = Sa(p) = (= MF2()G2(A) + [F3(4) = Fa(DIGa(A) + (A = w)F3(@)F(@)Ga(A). (8)
3

52(A) = S2(w)

First, we will search the Frobenius-Schur’s decomposition of the operator Ly defined in (5). For this

x
purpose, let [ Yy ] € D(Lp) and A € C. Then,
z

x 0 A-A B C
Lo—MA)| vy =] 0 | if, and only if, D E-A F
Z 0

This leads to the following system

Dx+(E-A)y+Fz=0

(A-=A)x+By+Cz=0
Gx+Hy+ (K-A)z=0.

Dx+(E-A)y+Fz=0 9)
Gx+Hy+ (K-A)z=0.

Suppose that p(A) is nonempty and let A € p(A). Then, the first equation of the system (9) gives x =
—(A = A)"'By — (A — A)"!Cz. Consequently, the second equation of (9) becomes

{ (A-A)x=-By-Cz

DI(A=AN)"'By+(A-A)1Cz]-Fz+(A—E)y =0 10
Gx+Hy+ (K-A)z=0. 10

From Eq. (10), we must assume that D(A) € D(C). Then, Eq. (10) becomes

[E-A-DA-A)"Bly=[(A-A)'C-Flz
Gx+Hy+(K-A)z=0.
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Let S;(A) = E — D(A — A)7!B. If A € p(S1(A)), then
y=S1)-N)A-1)T"C-Flz

Hence

{=G(A = ))'B(S1(A) = A) A -A)IC-F]-GA - A)IC+
H(S1(A) =AM A -A)TIC-FI+(K-A)}z=0

Let S$»(A) = K — G(A — A)'B(S1(A) — A)"1[(A = 1)71C — F] - G(A — A)~1C+
H(S1(A) = A)~[(A - A)71C - F].

Now we can search Fi(u), i = 1,2,3 and G;(u), i = 1,2, 3 such that the operator

I 0 0 A-u 0 0 I Gi() Go(p)
F 1 0][ 0 Si(w-up 0 }[0 I G3(H)]

Fa(u) Fa(u) 1T 0 0 Sw-uJlo o I

A-u C
u F .

D E

B
is equal to -
G H L-u

X
It follows that for [ y | € D(Ly)
z
A—- u 0 0 I Gl([.l) Gz([.l) X
FEWA-p)  Siw-p 0 ]{ 0 I G ||y
EWA-n B@Sw-p S@w-s)\o o 1 )z
A-u B C X
= D E-u F ][ Y ] (11)
G H E-u z

From the last matrix equality (11), we can choose Fi(u), i = 1,2,3 and G;(u), i = 1,2,3, for a necessary
condition as follows:

(A= wx+(A-wGi Wy + (A - )Gz = (A - wx + By +Cz
then for 1 € p(A) we have
x+ Gy + Ga(u)z =x+ (A— ) "By + (A — p) ' Cz.

Take

Gi(u):=(A-u)'B (12)
and

Ga(w) = (A-p)'C. (13)
The second equation of (11) gives:

Fy(u)(A = wx + (F1(u)(A = )Gi(w) + S1(w) — 1) y + (Fr()(A — ) Ga(p) + (S1.(w) — 1) Ga()z

must be equal to
Dx + (E— )y + Fz.



A. Ammar et al. / Filomat 38:15 (2024), 5543-5557 5551
Take

Fi(u) == D(A - )™ (14)

From the third equation of (11) we have

Fa(u)(A — w)x + (Fa(u)(A = w)Ga () + Fa(u)(S1(w) — W)y + (F2(u)(A — 1) Ga(u) +
F3(u)(S1(u) = ) + Sa(p) — w)z=Gx+Hy + (L — u)z
Take
Fy(u) := G(A - )™ (15)

For the action on y, we choose
GGi(u) + Fs(u)(S1(w) —w)—H =0

therefore for 11 € p(A) N p(S1(p)), take
F3(u) = [H = G(A = )" BI(S1(p) — )™
ie.,
F3(u) = O(u)(S1(u) — )~ (16)
Now for the action on z take,
[F2(u)(A — )G () + Fa(u)(S1(u) — 1)Ga(u) + So(p) —p—L+u]l =0

then
G(A - 1)™'C + ©W)Gs(u) = L - Sa(p).

From the expression of S>(u) we can choose

Ga(u) = (S1(p) — )" (F = DA — w)~'C). (17)

We shall now verify the sufficient condition.

We denote by T, the operator defined for every u € p(A) N p(S1(u)) by

I 0 0 A-u 0 0 I Gi() Ga(p)
Ty = [ Fiqw) I 0 0 Si(w-p 0 ][ 0 I Gsw ]
Fo(u) Fs(u) 1 0 0 So(p) — 0 0 I

where F;(u),i =1,2,3 and G;(u), i = 1,2, 3 are the operators defined in (12)-(17).
X
y

z
A-wx+A-WGWy+A-wG(uw)z = A-wx+By+Cz

The second row of T, gives:

Fi(u)(A = p)x + [F1(A = w)Gi(u) + S1(u) — ply + [F1(u)(A = 1)Ga(u) + (S1(w) — w)Gs(w)]z

Dx + (E = Sy(p) + (Sa(p) — )y + Fz
Dx + (E - p)y + Fz.

Let be € D(Ly). The first row in the product of T, gives:
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We can show also that the left side of the third row of T}, i.e.,

Fa(u)(A = w)x + [Fo(u)(A = w)Gi(u) + F1(S1(u) — @)y + [F2(u)(A — 1)Ga(u)
+F3(u)(S1(u) — w)Gs(u) + S1(u) — ulz

is equal to Gx + Hy + (L — p)z. It follows that Ly — i is an extension of the operator T, i.e., Lo — u C Ty.
Now it remains to prove that D(T;) C D(Ly). Observe that

x’ I —G1 G1 G3 - Gz X X € D(A)
D(T,) = [ y ]=[ 0 I -Gs ][ y ] y € D(S1(p) -
z' 0 O I z z € D(S2(u))

NN

x
Let be [ y ] € D(T,) then
Zl

v =y-Gs(u)z

z' =z.

{ X' =x—=Gi(u)y + [Gi(w)Ga(u) — Ga(w)] z

Observe thatz € Y, ¢ DICO)NDE)ND(L), ¥y =y —Gs(w)z € N(S(u) — ) € Yy, Y1 € DB) N D(E) and
¥ = 2= Gy + (Gi(Gs() - Ga()z € D(A).

Now, we are able to establish the closedness of the operator L.

Theorem 3.3. Let the hypotheses (M1)-(M6) be satisfied. Then, the operator Ly is closable if, and only if, So(u) is
closable on Z, for some p € p(A) () p(S1(y)). Moreover, the closure L of Ly is given by

I 0 0 u—A 0 0 I Gi(p) Gaw)
L=p- [ Fw I 0 ] 0 u=5w 0 [ 0 I G J (18)
Fa(p)  Fs(u) 1 0 0 p=Sw JLo 0 I

ot, spelled out,
L:DL)CXXYXZ—>XXYXZ
Alx + Gi(W)y + Ga(w)z] = u[Gi(w)y + Ga(u)z]

X
L[ y ] = [ Dlx + Gi(w)y + Ga(w)z] + S1(ly + Gs(w)z] - uGs(p)z ]
Glx + Gi(w)y + Ga(w)z] + [H = G(A — ) ' Blly + Gs(uw)z] + Sa(u)z

x x+Gipy+G()z € DA),
D(L) = { [ y ]eXxYstuch that y+Gs(wz € D(Si(w) }
z and z € D(Sy(u))
&

Theorem 3.4. Let the hypotheses (M1)-(M6) be satisfied. If C, E, L, H, F, and B are in Lip(X) and G and D are in
L(X), then for u € p(A) N p(S1(w)), the following cases hold

(i) p € (L) if and only iF 0 € 013y (S1(1)) U 0 (Sa(10).
(ii) p € ox(L) if and only if 0 € ox(S1(w)) U ox(S2(w)). o

Proof. Since u € p(A), then L — u has the factorization (18). Denote it by
L—u=URYV,
where

u=

I 0 0
Fi(w I 0 ]
Fo(u) Fs(u) 1
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u-A 0 0
R=| 0 pu-S(u 0
0 0 = Sx(n)

and

0 I G

[I Gi(w) Gz(u)]
V= .
0 0 I

Obviously, U and V are lipeomorphisms on X x X x X.
(1) Let pu € ayp(L), then [L — ul;; = 0. Since [U];j, > 0, [V];, > 0, and

[L — uliip = [URV iy = [Ulip[Rl1ip[V iip,

it follows that [R]y;, = 0, and [S1(1)]iy = 0 and [Sa(1)]ipy = 0, i.e., 0 € 073(S1(w)) U 01ip(S2(u)). Conversely, let
0 € 01ip(S1(w)) U 01p(S2()), then [R];;, = 0. Since [U];, > 0, [V]i;, > 0, and

[Rlip = (UL = )V ip = (U L [L = i [V Vi

it follows that [L — ul;; = 0, i.e., u € ojp(L).
(i) Since U and V are lipeomorphisms, then by the factorization (18), the desired result follows immedi-
ately. O

Theorem 3.5. Let the hypotheses (M1)-(M6) be satisfied. If C, E, L, H, F, and B are in L(X) and G and D are in
Lip(X), then if p(K) # 0, then for u € p(K), the following cases hold

(i) t € op(L) if and only if 0 € 03 (Sa(1) U i (Sa(w).
(i1) p € ox(L) if and only if 0 € ox(S3(u)) U ox(Sa()), where

Ss(u)=A-B(K-u)'D

Sa() =L~ G(A - u)'C — [H~ G(A — ) "BI(S1() — o' [F ~ D(A ~ ']

Proof. The proof is analogue of Theorem 3.5. [J

Theorem 3.6. Let

0 0 C
0 E O
G 0 0

Lo = eC(X X XxX)

with C, E, and G are in Lip(X). If C, E € L(X) and G € Lip(X), then the following cases holds
(1) 01ip(Lo)\{0} = {A € C such that Ade a1i(GCE)\{0}}.
(ii) ox(Lo)\{0} = {A € C such that A3 € ox(GCE)\{0}}.

Theorem 3.7. Let

0 0 C
Ly=] 0 E 0 |[eCXxXXxX)
G 0 0

with C, E, and G are in Lip(X). If C, G € L(X) and E € Lip(X), then the following cases holds
() 01ip(Lo)\{0} = {A € C such that A> € 0;,(CGE)\{0}}.
(i1) ok (Lo)\{0} = {A € C such that A3 € og(CGE)\{0}}. o
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Theorem 3.8. Let

An Ap Agp
F:= A21 A22 A23 EC(XXXXX),

Az An Az
where A;; € Lip(X) 1 < i,j < 3. Then, ox(F) C G1 U G2 U Gs, where G; = ox(Ai) U{A € px(Ai) such that [A;; —
Alip < [Ajiliip}- o
Proof. LetA ¢ G1 UGz U Gs. Then, A € px(A11) U px(A22) (M px(Ass) and [A;i—Alp > [Aji—Alyp fori, j =1,2,3.
Write

A — A 0 0
T, = 0 An—A 0 .
0 0 Azz — A

Then,

F—Al=[(F- ADT;'IT,.

Thus, we have the following factorization

(F = ADT;!
Au—-A  Ap Az (A —A)7! 0 0
= Ay Ap-A  Axp 0 (A — A)71 0
Az Ay Azp-A 0 0 (A3 — A)7!
I Ap(Ap — A1 Ap(As—A)T
= | Au(An-A)7"? I Ax(Az —A)7!
Az1(A11 =AY Ap(An —A)7E I
= I+ M),
where
0 An(An - A1 Az(Ass—A)7!
M) =| An(An —A)™ 0 Ax(Ass = A7t .
Az1(An =) Ap(An —A)7! 0

Note that [M(A)];;, < 1. Then, from Lemma 1.3, we have
I+M(A) = (F-ADTY!

is a lipeomorphism. Therefore, A € px(F). O

Theorem 3.9. Let

A A A
Fi=| Ay An Axn |,
Azl Az Az
where A;; € L(X)and A;j € Lip(X)withi # j1 <i,j < 3. Then,ox(F) C {A € C : dist(A, Wz(A112) U Wz(A2) U Wz(As) <
max([A12liip, [A13]iip, [A21]iip, [A2Liip, [As2]1ip)}- ¢

Proof. The proof follows from Theorem 3.8 and Lemma 1.4. [J
Corollary 3.10. We assume that the diagonal operator matrices
Anp 0 0
0 An 0 |,
0 0 Az

is a hyponormal operator. Then, we have

dist(0, 0(A112) U 0(Ax) U 0(As3)) = max([A12]iip, [A13)iip, [A21Liip, [A23)iip, [As2]iip)-
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Theorem 3.11. Let

with A, B, C, D, E and G € Lip(X).

(i) If A, D, G, and F are lipeomorphism, then B and C are lipeomorphism.

(ii) If F is lipeomorphismand satisfies
min([A,, [BE, + D2,

then A, D and G are lipeomorphism.

Proof. (i) It follows immediately from Proposition 2.2 (ii).

(ii) Let

and

We have F = T + S + K+ W. Then, for any vectors x = [

have
IF(x)-F(w)I —
[lx=yll?

o MA@ - Ayl = 11B(x2) = By + IC(x3) = Cya)IP

~
1l

wn
Il
—_——

coo coo SO

=~
I
—_—

0
W= 0

0

o0 oow oo

eC(XxXxX)

N—
~ N ——
~

coN ©99° ANoco

N——
~

],

[C]Zz,-,, + [E]lz,-p + [G]lzip) — [Alip[Bliip = ([Bliip + [Cliip + [Gliip)?,

in XX X x X with x # y, we

Y3

lA(x1) — A(y1) + B(x2) — B(y2) + C(x3) — C(y3)II?

1 — yall? + llx2 — yall? + llxs — yall?

ID(x2) — D(y2) + E(x3) — E(y3)II* + [IG(x3) — G(y3)I*
lIx1 — y1ll? + llx2 — ol + llxs — ysl?

[Ix1 = all? + llx2 = y2ll? + llxz — ysll?

ID(x2) = D(y2)I* + IE(x3) = E(ya)II” + G(x3) = G(ya)IP

Ix1 = y1ll? + llx2 — yoll? + llx3 — yal?

J 1AG) - AP + 1IB(x2) = By2)I* +1IC(x3) = C(ya)II* + ID(x2) = D(ya)IP N

lIx1 = yall? + llx2 — y2ll? + llxs — ysll?

_HMEGs) - E(y3)I? + 1G(x3) = G(ya)I? + lA(x1) = A(y)lllIB(x2) = B(wo)

llxr =yl + [z = yal? + llxs — sl
[A]%ir?”xl AL ([B]%ip + [D]iip)zllxz -l + ([C]

>

2, + (B, ks = yslP?

llx1 = yall? + llx2 — y2ll? + llxs — ysll?
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o [Alp[Blriplxr = yllllx2 = yoll
Ix1 = yall? + llx2 = vl + llxs — yall?

Hence,
IF(x) = F(y)I .
Tl 2 (AR DB, + DR, (C, + (R, + [GR, ~ (Al Bli)
> ([Bluip + [Cliip + [GlLip)*.
So,
[Flrip = [BlLip + [ClLip + [GlLip-
On the other hand,
1S(x) = S(y)II? _ IB(x2) — B(y2)II?
[lx — yII? [lx1 = yall? + llx2 = yall* + llxs — sl
[B]%ipﬂxz -l
<
Ix1 = y1ll? + llx2 — yoll? + llx3 — yall?
<

(B,
It follows that

[SlLip < [BlLip-
Similarly, we can prove

[KlLip < [ClLip
and

[(WlLip < [ElLip-
Thus,
[K+ W + SlLip < [FlLip-

By using Lemma 1.3, we have

is a lipeomorphism. Then, A, D, and G are lipeomorphism. [J

Example 3.12. Let X = lz,foranyx = (x1,%2,...,) € Xand A(x1, X2, ...,) = |Ixlle, E(x1, x2,...,) = (Ixll, x1, x2, .. .,),
K(x1,x2,...,)=0and C = (0,x1,xy,...,) wheree = (1,0,0, ...). Consider the block operator matrix

A B C
Lo=| O E F |.
0 0 K
Then, by Corollary 2.5, we have that. Hence,
aip(A) | o B) |01 (K) = 0y (o) (19)
On the other hand, by calculation, we have
oip(A) ={A e C: A < 1}.

and
aip(E) ={A e C: 1 <Al < V2)
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In addition, we claim that
aiip(Lo) = (A € C: A < V2.

In fact, the equalities [Lo];, = 0 and [Loliypy = \2 follows from a straightforward calculation. Thus,

aip(Lo) C{A € C: A < V2).

X1 X2
It is clear that 0 € 0yy(Lo) when 0 < |A[ <1 ,setz; = 0 | andzo =] 0 | then [Lo— Al = [A = Al = 0.
0 0
0 0 0
When 1 < |A| < V2, set z; = vi | and zo = | y2 | then [Lo — Ay = [K = Alyy, = Oset zy = | 0 |, and
0 0 w1
0
2y = 0 , then [LO - A]lip = [E - A]lip =0. ThMS,
(%)

alip(Lo) = (A € C: Al < V2).
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