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Abstract. Let R be a ring with an involution and p ∈ R be a weighted projection. We characterize the
relation between the weighted Moore-Penrose invertibility (resp., weighted pseudo core invertibility) of
the corresponding elements of the two semigroups pRp and pRp + 1 − p. As an application, we obtain the
relation between the weighted Moore-Penrose invertibility (resp., weighted pseudo core invertibility) of the
corresponding elements of the matrix semigroup AA†M,NRm×mAA†M,N + Im −AA†M,N and the matrix semigroup
A†M,NARn×nA†M,NA+ In −A†M,NA, where A ∈ Rm×n be weighted Moore-Penrose invertible with weights (M,N).

1. Introduction

Let R be a ring with an involution ∗ and Rm×n denote the set of m × n matrices over R. An involution ∗
in R is an anti-isomorphism satisfying (a∗)∗ = a, (a + b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗ for all a, b ∈ R. An element
a ∈ R is called Hermitian if a∗ = a.

Let a ∈ R. We recall that a is said to be Drazin invertible [10] if there exist x ∈ R and a positive integer k
such that

ax = xa, ax2 = x, xak+1 = ak.

Such x (if it exists) is unique and called the Drazin inverse of a, denoted by aD. When k = 1, the Drazin
inverse of a is called the group inverse of a, denoted by a#. For more details of Drazin inverses, for example,
see[4–9, 16, 29].

The weighted Moore-Penrose inverse is a generalization of the Moore-Penrose inverse which was
characterized as the unique solution of four matrix equations by Penrose [22]. The concept of the weighted
Moore-Penrose inverse was first introduced to investigate the question of least squares fitting of curves and
surfaces by Greville [12]. Chipman [3] generalized Greville’s weighted generalized inverse with weight
being a Hermitian positive definite matrix to the weighted generalized inverse with weights being two
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Hermitian positive definite matrices. In 1992, Manjunatha Prasad and Bapat [17] defined the generalized
Moore-Penrose inverse with weights being two invertible matrices and gave necessary and sufficient
conditions for its existence over an integral domain. The weighted Moore-Penrose inverse of a complex
matrix with weights being two invertible Hermitian matrices does not necessarily exist [24]. Sheng and
Chen [24] presented the sufficient and necessary conditions for the existence of the weighted Moore-Penrose
inverse with weights being two invertible Hermitian matrices. In the following, we give the weighted
Moore-Penrose inverse of matrices over a ring with involution. More details of weighted Moore-Penrose
inverses can refer to, for example, [2, 20, 25].

Definition 1.1. [17] Let M ∈ Rm×m and N ∈ Rn×n be two invertible Hermitian matrices, A ∈ Rm×n. If there exists
X ∈ Rn×m satisfying the equations

(1) AXA = A, (2) XAX = X, (3M) (MAX)∗ =MAX, (4N) (NXA)∗ = NXA,

then A is called weighted Moore-Penrose invertible with weights (M,N). Such X is unique if it exists and called
the weighted Moore-Penrose inverse with weights (M,N) of A, denoted by A†M,N. More generally, if the equation
(1) holds, then A is called regular, and X is called an inner inverse of A. We use A− to denote an inner inverse of
A. If X satisfies the conditions (1) and (3M), then X is called a {1, 3M}-inverse of A and we use A(1,3M) to denote
a {1, 3M}-inverse of A. Similarly, if X satisfies the conditions (1) and (4N), then X is called a {1, 4N}-inverse of A
and we use A(1,4N) to denote a {1, 4N}-inverse of A. The symbols A{1, 3M} and A{1, 4N} denote all {1, 3M}-inverses
of A and {1, 4N}-inverses of A, respectively. Clearly, when M = Im and N = In, A†M,N reduces to the Moore-Penrose
inverse A† of A.

In 2007, Koliha [13] generalized the definition of the weighted Moore-Penrose inverse from matrices to
rings with involution. Throughout this paper, we assume that e, f ∈ R are invertible Hermitian elements.

Definition 1.2. [13] An element a ∈ R is said to be weighted Moore-Penrose invertible with weights (e, f ) if there
exists x ∈ R such that

(1) axa = a, (2) xax = x, (3e) (eax)∗ = eax, (4 f ) ( f xa)∗ = f xa.

Such x is called the weighted Moore-Penrose inverse of a with weights (e, f ) and it is unique if it exists, denoted by
a†e, f . Definitions of inner inverses, {1, 3e}-inverses and {1, 4 f }-inverses and their notations are similar to those defined
for matrices. If e = f = 1, then a†e, f = a†.

Later, the weighted core inverse and weighted pseudo core inverse were introduced and investigated.
Mosić et al. [19] introduced and investigated e-core inverses, Zhu and Wang [27] defined and characterized
pseudo e-core inverses by three equations in a ring with involution. More results concerning core inverses
and pseudo core inverses can be found in [1, 11, 18, 23, 26].

Definition 1.3. [27] Let a ∈ R. Then a is said to be pseudo e-core invertible if there exist x ∈ R and a positive integer
k such that xax = x, xR = akR, Rx = R(ak)∗e.

In [27], it was also proved that a is pseudo e-core invertible if and only if there exist x ∈ R and a positive
integer k such that xak+1 = ak, ax2 = x, (eax)∗ = eax. Such x is called the pseudo e-core inverse of a and is
unique if it exists, denoted by ae, DO. The smallest positive integer k is called the pseudo e-core index of a,
and denoted by ind(a). When ind(a) = 1, the pseudo e-core inverse of a is called the e-core inverse of a and
denoted by ae, #O. If e = 1, then the pseudo e-core index of a is called the pseudo core index of a and ae, DO = a DO

is called the pseudo core inverse of a. When ind(a) = 1 and e = 1, ae, DO = a #O is called the core inverse of a.
More details of pseudo e-core inverses and e-core inverses can refer to [15, 19, 27, 28].

Let M ∈ Rm×m be invertible Hermitian matrix. We note that A ∈ Rm×m is pseudo M-core invertible if and
only if there exist X ∈ Rm×m and a positive integer k such that XAk+1 = Ak, AX2 = X, (MAX)∗ =MAX. Such
X is unique if it exists and called the pseudo M-core inverse of A, which is denoted by AM, DO. Similarly, the
M-core inverse is defined.



W.D. Li et al. / Filomat 38:15 (2024), 5261–5274 5263

A motivation for this research appeared in [21]. Let p ∈ R be a projection. Then pRp+1−p = {pxp+1−p :
x ∈ R} is a (multiplicative) semigroup. Patrı́cio and Puystjens investigated the relation between the Moore-
Penrose invertibility of the corresponding elements of pRp and pRp + 1 − p. As an application, they related
the Moore-Penrose invertibility of the corresponding elements of the semigroup AA†Rm×mAA† + Im − AA†

and the semigroup A†ARn×nA†A+ In −A†A, when A† exists. The relevant results for the Drazin invertibility
were also investigated.

The article is organized as follows. In Section 2, we first investigate the relation between the weighted
Moore-Penrose invertibility of the corresponding elements of pRp and pRp + 1 − p when p is a weighted
projection. Also, we obtain analogous results for the pseudo e-core invertibility (resp., e-core inverse).
In Section 3, by applying Corollary 2.7 and Theorem 2.14 of Section 2, we relate the weighted Moore-
Penrose invertibility with weights (M,N) (resp., pseudo M-core invertibility and M-core invertibility) of
the corresponding elements between the semigroup AA†M,NRm×mAA†M,N + Im − AA†M,N and the semigroup
A†M,NARn×nA†M,NA + In − A†M,NA when A†M,N exists. The results on the weighted Moore-Penrose invertibility
generalize the relevant results of Patrı́cio and Puystjens on the Moore-Penrose invertibility in [21].

2. Weighted generalized invertibility in pRp and pRp + 1 − p of R

Recall that a ∈ R is said to be {1, 3}-invertible (resp., {1, 4}-invertible) if there exists x ∈ R such that axa = a,
(ax)∗ = ax (resp., (xa)∗ = xa). In this section, we mainly investigate the relation between the weighted Moore-
Penrose invertibility of the corresponding elements of pRp and pRp+ 1− p when p is a weighted projection,
which will play an important role in the forthcoming section. The relation between the {1, 3}-invertibility
(resp., {1, 4}-invertibility) of the corresponding elements of pRp and pRp + 1 − p is first given when p is a
projection.

Lemma 2.1. Let p ∈ R be a projection, x ∈ R. Then pxp + 1 − p is {1, 3}-invertible in R if and only if pxp is
{1, 3}-invertible in pRp. In this case,

p(pxp + 1 − p)(1,3)p ∈ (pxp){1, 3},

and
(pxp)(1,3) + 1 − p ∈ (pxp + 1 − p){1, 3},

where (pxp)(1,3)
∈ pRp.

Proof. Assume (pxp + 1 − p)(1,3) is a {1, 3}-inverse of pxp + 1 − p in R. Then we have

(pxp + 1 − p)(pxp + 1 − p)(1,3)(pxp + 1 − p) = pxp + 1 − p.

Multiplying on the left and right sides by p, we can get

(pxp)p(pxp + 1 − p)(1,3)p(pxp) = pxp.

Also, (
(pxp + 1 − p)(pxp + 1 − p)(1,3)

)∗
= (pxp + 1 − p)(pxp + 1 − p)(1,3),

multiplying on the left and right sides by p, we have(
pxpp(pxp + 1 − p)(1,3)p

)∗
= pxpp(pxp + 1 − p)(1,3)p,

Hence, p(pxp + 1 − p)(1,3)p ∈ (pxp){1, 3}.
Conversely, assume (pxp)(1,3) is a {1, 3}-inverse of pxp in pRp. Then pxp(pxp)(1,3)pxp = pxp implies

(pxp + 1 − p)
(
(pxp)(1,3) + 1 − p

)
(pxp + 1 − p) = pxp + 1 − p

since (pxp)(1,3)
∈ pRp. Also, (

pxp(pxp)(1,3)
)∗
= pxp(pxp)(1,3).

As (1−p)∗ = (1−p), (pxp+1−p)
(
(pxp)(1,3) + 1 − p

)
is Hermitian. Therefore, (pxp)(1,3)+1−p ∈ (pxp+1−p){1, 3}.
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Proposition 2.2. Let p ∈ R be a projection, x ∈ R. Then pxp is {1, 3}-invertible in pRp if and only if pxp is
{1,3}-invertible in R.

Proof. The necessity is clear since pRp ⊆ R. For the sufficiency, we assume that pxp is {1, 3}-invertible with
a {1, 3}-inverse y in R. Then pxpypxp = pxp implies pxp(pyp)pxp = pxp. Since (pxpy)∗ = pxpy, we have
pxppyp = (pxpy)∗p = (pxpy)∗p∗ = (ppxpy)∗ = pxpy. Then (pxppyp)∗ = pxppyp. Therefore, pyp is a {1, 3}-inverse
of pxp in pRp.

Following [13], the mapping ∗e : R → R defined by x 7→ e−1x∗e is an involution. Furthermore, a ∈ R
is {1, 3e}-invertible with respect to ∗ if and only if a ∈ R is {1, 3}-invertible with respect to ∗e. Next, we
characterize the case of the {1, 3e}-invertibility.

Corollary 2.3. Let p ∈ R be an idempotent with (ep)∗ = ep, x ∈ R. Then pxp + 1 − p is {1, 3e}-invertible in R if and
only if pxp is {1, 3e}-invertible in R. In this case,

p(pxp + 1 − p)(1,3e)p ∈ (pxp){1, 3e},

and
p(pxp)(1,3e)p + 1 − p ∈ (pxp + 1 − p){1, 3e}.

Proof. Since (ep)∗ = ep, we have p = e−1p∗e = p∗e. Hence, it is easy to obtain the result by Lemma 2.1 and
Proposition 2.2.

We characterize the {1, 4}-invertibility case without proof, as it can be obtained by a similar way of the
{1, 3}-invertibility.

Lemma 2.4. Let p ∈ R be a projection, x ∈ R. Then pxp + 1 − p is {1, 4}-invertible in R if and only if pxp is
{1, 4}-invertible in pRp. In this case,

p(pxp + 1 − p)(1,4)p ∈ (pxp){1, 4},

and
(pxp)(1,4) + 1 − p ∈ (pxp + 1 − p){1, 4},

where (pxp)(1,4)
∈ pRp.

Corollary 2.5. Let p ∈ R be an idempotent with ( f p)∗ = f p, x ∈ R. Then pxp+ 1− p is {1, 4 f }-invertible in R if and
only if pxp is {1, 4 f }-invertible in R. In this case,

p(pxp + 1 − p)(1,4 f )p ∈ (pxp){1, 4 f },

and
p(pxp)(1,4 f )p + 1 − p ∈ (pxp + 1 − p){1, 4 f }.

It is known in [28] that a ∈ R is weighted Moore-Penrose invertible with weights (e, f ) if and only if a ∈ R
is {1, 3e}-invertible and {1, 4 f }-invertible. Moreover, a†e, f = a(1,4 f )aa(1,3e). Combining Corollaries 2.3 and 2.5,
then we can present the analogous results for the weighted Moore-Penrose invertibility with weights (e, f ).

Theorem 2.6. Let p ∈ R be an idempotent with (ep)∗ = ep and ( f p)∗ = f p, x ∈ R. Then pxp + 1 − p is weighted
Moore-Penrose invertible with weights (e, f ) in R if and only if pxp is weighted Moore-Penrose invertible with weights
(e, f ) in R. In this case,

(pxp)†e, f = p(pxp + 1 − p)†e, f p,

and
(pxp + 1 − p)†e, f = (pxp)†e, f + 1 − p.
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Proof. Here we only need to prove the expressions of (pxp+ 1− p)†e, f and (pxp)†e, f . Assume that (pxp)†e, f is the
weighted Moore-Penrose inverse with weights (e, f ) of pxp. Then it is easy to check that p(pxp)†e, f p is also
the weighted Moore-Penrose inverse with weights (e, f ) of pxp according to the similar proof of Proposition
2.2. By the uniqueness of the weighted Moore-Penrose inverse, we get (pxp)†e, f = p(pxp)†e, f p. Then for the
expression of (pxp + 1 − p)†e, f , we can obtain that

(pxp + 1 − p)†e, f =(pxp + 1 − p)(1,4 f )(pxp + 1 − p)(pxp + 1 − p)(1,3e)

=
(
p(pxp)(1,4 f )p + 1 − p

)
(pxp + 1 − p)

(
p(pxp)(1,3e)p + 1 − p

)
=p(pxp)(1,4 f )pxp(pxp)(1,3e)p + 1 − p

=p(pxp)†e, f p + 1 − p

=(pxp)†e, f + 1 − p ∈ pRp + 1 − p.

For the expression of (pxp)†e, f , we can check that (pxp)†e, f = p(pxp + 1 − p)†e, f pxp(pxp + 1 − p)†e, f p. Since
(pxp)†e, f + 1 − p ∈ pRp + 1 − p, it follows that (pxp)†e, f = p(pxp + 1 − p)†e, f p.

In the following result, we illustrate the relation between the weighted Moore-Penrose invertibility of
the corresponding elements of R and pRp.

Proposition 2.7. Let p ∈ R be a projection with (ep)∗ = ep and ( f p)∗ = f p. Then pxp + 1 − p is weighted Moore-
Penrose invertible with weights (e, f ) in R if and only if pxp is weighted Moore-Penrose invertible with weights
(pe, p f ) in pRp. In this case,

(pxp)†pe,p f = p(pxp + 1 − p)†e, f p ∈ pRp,

and
(pxp + 1 − p)†e, f = (pxp)†pe,p f + 1 − p ∈ pRp + 1 − p.

Take e = f = 1 in Proposition 2.7, we obtain the characterization of the Moore-Penrose invertibility case
given in [21].

Corollary 2.8. [21, Theorem 1] Let p ∈ R be a projection, x ∈ R. Then pxp + 1 − p is Moore-Penrose invertible in
R if and only if pxp is Moore-Penrose invertible in pRp. In this case,

(pxp)† = p(pxp + 1 − p)†p ∈ pRp,

and
(pxp + 1 − p)† = (pxp)† + 1 − p ∈ pRp + 1 − p.

In [27], Zhu and Wang presented the following two lemmas, which will be useful in proving our results.

Lemma 2.9. [27, Corollary 3.10] Let a ∈ R. Then a is e-core invertible if and only if a is group invertible and
{1, 3e}-invertible. In this case, ae, #O = a#aa(1,3e).

Lemma 2.10. [27, Theorem 3.19] Let a ∈ R. Then a is pseudo e-core invertible if and only if an is e-core invertible
for some positive integer n. In this case, ae, DO = an−1(an)e, #O and (an)e, #O = (ae, DO)n.

Proposition 2.11. Let p ∈ R be an idempotent, x ∈ R. Then pxp is group invertible in R if and only if pxp is group
invertible in pRp. In this case, the group inverse of pxp in R is consistent with that in pRp.

Proof. The sufficiency is clear. For the necessity, assume that y is the group inverse of pxp in R. Then
y = pxpy2 = y2pxp ∈ pRp. That is, y is also the group inverse of pxp in pRp. Hence, the group inverse of pxp
in R is consistent with that in pRp by the uniqueness of the group inverse.
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In [11], it was proved that if a, b ∈ R are pseudo core invertible with ab = ba = 0 and a∗b = 0, then a + b
is pseudo core invertible with (a + b) DO = a DO + b DO. As a new involution ∗e was shown before, it is easy to
check that a ∈ R is pseudo e-core invertible with respect to ∗ if and only if a ∈ R is pseudo core invertible
with respect to ∗e. Then we can easily obtain the following result involving with the additive property of
the pseudo e-core inverse.

Corollary 2.12. Let a, b ∈ R be pseudo e-core invertible. If ab = ba = 0 and a∗eb = 0, then a + b is pseudo e-core
invertible with (a + b)e, DO = ae, DO + be, DO.

When a, b ∈ R are e-core invertible, we have the relevant result of e-core inverses.

Corollary 2.13. Let a, b ∈ R be e-core invertible. If ab = ba = 0 and a∗eb = 0, then a + b is e-core invertible with
(a + b)e, #O = ae, #O + be, #O.

Finally, we illustrate the relation between the pseudo e-core invertibility (resp., e-core invertibility) of
the corresponding elements of two semigroups pRp and pRp + 1 − p of R.

Theorem 2.14. Let p ∈ R be an idempotent with (ep)∗ = ep. Then the following statements hold.
(1) pxp + 1 − p is e-core invertible in R if and only if pxp is e-core invertible in R. In this case,

(pxp)e, #O = p(pxp + 1 − p)e, #Op,

and
(pxp + 1 − p)e, #O = (pxp)e, #O + 1 − p.

(2) pxp+1−p is pseudo e-core invertible with ind(pxp+1−p) = k in R if and only if pxp is pseudo e-core invertible
with ind(pxp) = k in R. In this case,

(pxp)e, DO = p(pxp + 1 − p)e, DOp,

and
(pxp + 1 − p)e, DO = (pxp)e, DO + 1 − p.

Proof. (1). Assume that pxp + 1 − p is e-core invertible in R. Then pxp + 1 − p is group invertible and
{1, 3e}-invertible in R by Lemma 2.9. Following Corollary 2.3, Proposition 2.11 and [21, Theorem 1], we
have that pxp is group invertible and {1, 3e}-invertible in R. Moreover, (pxp)# = p(pxp + 1 − p)#p and
p(pxp + 1 − p)(1,3e)p ∈ (pxp){1, 3e}. Hence, by Lemma 2.9 again, we have that pxp is e-core invertible in R. For
the expression, since (pxp + 1 − p)#

∈ pRp + 1 − p, we obtain

(pxp)e, #O = (pxp)#(pxp)(pxp)(1,3e)

= p(pxp + 1 − p)#p(pxp)p(pxp + 1 − p)(1,3e)p

= p(pxp + 1 − p)#(pxp + 1 − p)(pxp + 1 − p)(1,3e)p

− p(pxp + 1 − p)#(1 − p)(pxp + 1 − p)(1,3e)p
= p(pxp + 1 − p)e, #Op.

Conversely, if (pxp)e, #O is the e-core inverse of pxp in R, then by Corollary 2.13, we have that pxp + 1 − p
is e-core invertible, and

(pxp + 1 − p)e, #O = (pxp)e, #O + (1 − p)e, #O

= (pxp)e, #O + 1 − p

since (pxp)(1 − p) = 0 = (1 − p)(pxp) and (pxp)∗e(1 − p) =
(
e(1 − p)pxp

)∗ = 0.
(2). By Lemma 2.10, it can be derived that a ∈ R is pseudo e-core invertible with ind(a) = k if and only

if k is the smallest positive integer such that ak is e-core invertible. If pxp + 1 − p is pseudo e-core invertible
with ind(pxp + 1 − p) = k, then k is the smallest positive integer such that (pxp + 1 − p)k = (pxp)k + 1 − p =



W.D. Li et al. / Filomat 38:15 (2024), 5261–5274 5267

p
(
x(px)k−1

)
p + 1 − p is e-core invertible, and therefore p

(
x(px)k−1

)
p = (pxp)k is e-core invertible according to

(1). We remark that k is the smallest positive integer such that (pxp)k is e-core invertible. In fact, if there
exists a positive integer m < k such that (pxp)m is e-core invertible, then p

(
x(px)m−1

)
p = (pxp)m is e-core

invertible. The by (1), we get that (pxp+1−p)m is e-core invertible, a contradiction. Therefore, pxp is pseudo
e-core invertible with ind(pxp) = k. For the expression of (pxp)e, DO, by Lemma 2.10 we can obtain that

(pxp)e, DO = (pxp)k−1
(
(pxp)k

)e, #O

= (pxp)k−1p
(
(pxp)k

)e, #O

=
(
(pxp)k−1 + 1 − p

)
p
(
(pxp)k + 1 − p

)e, #O
p

= p(pxp + 1 − p)k−1
(
(pxp + 1 − p)k

)e, #O
p

= p(pxp + 1 − p)e, DOp.

Conversely, since (pxp)(1 − p) = 0 = (1 − p)(pxp) and (pxp)∗e(1 − p) =
(
e(1 − p)pxp

)∗ = 0, it follows that

(pxp + 1 − p)e, DO = (pxp)e, DO + (1 − p)e, DO

= (pxp)e, DO + 1 − p

by Corollary 2.12.

In the following result, we also illustrate the relation between the pseudo e-core invertibility of the
corresponding elements of R and pRp.

Corollary 2.15. Let p ∈ R be a projection with (ep)∗ = ep, x ∈ R. Then the following statements hold.
(1) pxp + 1 − p is e-core invertible in R if and only if pxp is pe-core invertible in pRp. In this case,

(pxp)pe, #O = p(pxp + 1 − p)e, #Op ∈ pRp,

and
(pxp + 1 − p)e, #O = (pxp)pe, #O + 1 − p ∈ pRp + 1 − p.

(2) pxp + 1 − p is pseudo e-core invertible with ind(pxp + 1 − p) = k in R if and only if pxp is pseudo pe-core
invertible with ind(pxp) = k in pRp. In this case,

(pxp)pe, DO = p(pxp + 1 − p)e, DOp ∈ pRp,

and
(pxp + 1 − p)e, DO = (pxp)pe, DO + 1 − p ∈ pRp + 1 − p.

Take e = 1. Then we can obtain analogous results of the core invertibility and the pseudo core invertibility,
respectively, as follows.

Corollary 2.16. [14, Theorem 1] Let p ∈ R be a projection, x ∈ R. Then the following statements hold.
(1) pxp + 1 − p is core invertible in R if and only if pxp is core invertible in pRp. In this case,

(pxp) #O = p(pxp + 1 − p) #Op ∈ pRp,

and
(pxp + 1 − p) #O = (pxp) #O + 1 − p ∈ pRp + 1 − p.

(2) pxp + 1 − p is pseudo core invertible with ind(pxp + 1 − p) = k in R if and only if pxp is pseudo core invertible
with ind(pxp) = k in pRp. In this case,

(pxp) DO = p(pxp + 1 − p) DOp ∈ pRp,

and
(pxp + 1 − p) DO = (pxp) DO + 1 − p ∈ pRp + 1 − p.
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3. Weighted generalized invertibility in two matrix semigroups

Given a ring R with an involution ∗, there is a natural involution ∗ : Rm×n
→ Rn×m, that is for any

A = (ai j) ∈ Rm×n, A∗ ∈ Rn×m is defined as (a∗ji).
Let R be a ring with involution ι and S a ring with involution τ. Then φ : R → S is a ι, τ-invariant

homomorphism if φ is a ring homomorphism and φ(xι) =
(
φ(x)
)τ for all x ∈ R. If ι and τ coincide, then it is

written ι-invariant for short, which is equivalent to say that ι and φ commute [21].
Let A ∈ Rm×n with A† existing and ϕA : AA†Rm×mAA† → A†ARn×nA†A with ϕA(AA†XAA†) = A†XA. If

ϕA is ∗-invariant, then A is called ∗-invariant. Furthermore, Patrı́cio and Puystjens [21] also illustrate that
ϕA is ∗-invariant if and only if A†YA = A∗Y(A†)∗ for all Y ∈ Rm×m.

Let A ∈ Rm×n with A† existing and B ∈ Rm×m. Denote the conditions (i) Γ = AA†BAA† + Im − AA† is
Moore-Penrose invertible and (ii) Ω = A†BA + In − A†A is Moore-Penrose invertible. In [21], Patrı́cio and
Puystjens gave an example to illustrate that (i)⇔(ii) does not hold in general. In order to give a sufficient
condition for (i)⇔(ii), they introduced the notation and definition of ∗-invariance. Additionally, they also
gave an example to explain the ∗-invariance of A is not necessary for (i)⇔(ii). Also, the authors [14] showed
the analogous equivalence of pseudo core inverses and core inverses.

In this section, let M ∈ Rm×m and N ∈ Rn×n be two invertible Hermitian matrices. In order to give
a sufficient condition for the analogous results on the weighted Moore-Penrose invertibility with weights
(M,N) and pseudo M-core invertibility, respectively. We first illustrate some more notations and definitions.

Let R equip with an involution ∗ and A ∈ Rm×n with A†M,N existing. Suppose that AA†M,NRm×mAA†M,N and
A†M,NARn×nA†M,NA are equipped with the involutions ∗M and ∗N, respectively. We define

ϕA : AA†M,NRm×mAA†M,N → A†M,NARn×nA†M,NA

with
ϕA(AA†M,NXAA†M,N) = A†M,NXA for X ∈ Rm×m.

Then we callϕA is ∗M, ∗N-invariant ifϕA(T∗M) =
(
ϕA(T)

)∗N
for T ∈ AA†M,NRm×mAA†M,N, that is,ϕA

(
M−1T∗M

)
=

N−1
(
ϕA(T)

)∗
N for T ∈ AA†M,NRm×mAA†M,N. If ϕA is ∗M, ∗N-invariant, then we call that A is ∗M, ∗N-invariant.

Let X ∈ Rm×m. Then we have T = AA†M,NXAA†M,N ∈ AA†M,NRm×mAA†M,N. It follows that

ϕA

(
M−1T∗M

)
= ϕA

(
M−1(AA†M,NXAA†M,N)∗M

)
= ϕA

(
(MAA†M,NXAA†M,NM−1)∗

)
= ϕA(AA†M,NM−1X∗MAA†M,N)

= A†M,NM−1X∗MA

and
N−1
(
ϕA(T)

)∗
N = N−1

(
ϕA(AA†M,NXAA†M,N)

)∗
N

= N−1(A†M,NXA)∗N

= N−1A∗X∗(A†M,N)∗N.

Hence, we obtain that ϕA is ∗M, ∗N-invariant if and only if

A†M,NM−1X∗MA = N−1A∗X∗(A†M,N)∗N.

Then taking the involution ∗ on the both sides, it follows that

A∗MXM−1(A†M,N)∗ = NA†M,NXAN−1. (3.1)

Let ψA : A†M,NARn×nA†M,NA→ AA†M,NRm×mAA†M,N be defined by

ψA(A†M,NAYA†M,NA) = AYA†M,N for Y ∈ Rn×n.
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Then it is easy to check that ϕAψA = IA†M,NARn×nA†M,NA and ψAϕA = IAA†M,NRm×mAA†M,N
.

Supposing thatϕA is ∗M, ∗N-invariant. For Y ∈ Rn×n, we have that G = A†M,NAYA†M,NA ∈ A†M,NARn×nA†M,NA,
then it follows that

M−1 (ψA(G)
)∗M = ψAϕA

(
M−1 (ψA(G)

)∗M
)

= ψA

(
N−1
(
ϕAψA(G)

)∗
N
)

= ψA(N−1G∗N).

Thus, ψA is ∗N, ∗M-invariant. Furthermore, we can obtain that

M−1 (ψA(G)
)∗M =M−1

(
ψA(A†M,NAYA†M,NA)

)∗
M

=M−1(AYA†M,N)∗M

=M−1(A†M,N)∗Y∗A∗M,

and
ψA(N−1G∗N) = ψA

(
N−1(A†M,NAYA†M,NA)∗N

)
= ψA

(
(NA†M,NAYA†M,NAN−1)∗

)
= ψA(A†M,NAN−1Y∗NA†M,NA)

= AN−1Y∗NA†M,N.

Hence, it follows that M−1(A†M,N)∗Y∗A∗M = AN−1Y∗NA†M,N. Then taking the involution ∗ on the both sides,
we have that

MAYA†M,NM−1 = (A†M,N)∗NYN−1A∗. (3.2)

Next, we relate the weighted Moore-Penrose invertibility of the corresponding elements between the
semigroup AA†M,NRm×mAA†M,N + Im − AA†M,N and the semigroup A†M,NARn×nA†M,NA + In − A†M,NA. For this
purpose, we first investigate the weighted {1, 3}-invertibility case and the weighted {1, 4}-invertibility case
as follows.

Lemma 3.1. Let A ∈ Rm×n be weighted Moore-Penrose invertible with weights (M,N) and B ∈ Rm×m. Consider the
following conditions:

(1) Γ = AA†M,NBAA†M,N + Im − AA†M,N is {1,3M}-invertible.
(2) Ω = A†M,NBA + In − A†M,NA is {1,3N}-invertible.

If A is ∗M, ∗N-invariant then (1)⇔(2), in which case

AΩ(1,3N)A†M,N + Im − AA†M,N ∈ Γ{1, 3M}

and
A†M,NΓ

(1,3M)A + In − A†M,NA ∈ Ω{1, 3N}.

Proof. (1)⇒(2). If Γ is {1, 3M}-invertible, then by Corollary 2.3, AA†M,NBAA†M,N = AA†M,NΓAA†M,N is {1, 3M}-
invertible with a {1, 3M}-inverse Γ0 in Rm×m. As

AA†M,NBAA†M,NΓ0 AA†M,NBAA†M,N = AA†M,NBAA†M,N,

then multiplying on the left side by A†M,N and on the right side by A, we can get

(A†M,NBA)A†M,NΓ0 A(A†M,NBA) = A†M,NBA.

Also,
(MAA†M,NBAA†M,NΓ0)∗ =MAA†M,NBAA†M,NΓ0,
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then by (3.1), we have

(NA†M,NBAA†M,NΓ0 AN−1)∗ = (NA†M,NAA†M,NBAA†M,NΓ0 AA†M,NAN−1)∗

= (A∗MAA†M,NBAA†M,NΓ0 AA†M,NM−1(A†M,N)∗)∗

= A†M,NAA†M,NM−1MAA†M,NBAA†M,NΓ0 A

= A†M,NBAA†M,NΓ0 A,

that is,
(NA†M,NBAA†M,NΓ0 A)∗ = NA†M,NBAA†M,NΓ0 A.

Hence, A†M,NΓ0 A is a {1, 3N}-inverse of A†M,NBA = A†M,NAΩA†M,NA in A†M,NARn×nA†M,NA. Therefore, by
Corollary 2.3 again, we have

A†M,NΓ0 A + In − A†M,NA ∈ Ω{1, 3N}.

As AA†M,NΓ
(1,3M)AA†M,N ∈ (AA†M,NBAA†M,N){1, 3M}, it follows that

A†M,NΓ
(1,3M)A + In − A†M,NA ∈ Ω{1, 3N}.

(2)⇒(1). If Ω is {1, 3N}-invertible, then by Corollary 2.3, A†M,NBA = A†M,NAΩA†M,NA is {1, 3N}-invertible
with a {1, 3N}-inverse Ω0 in Rn×n. As

A†M,NBAΩ0 A†M,NBA = A†M,NBA,

then multiplying on the left side by A and on the right side A†M,N, we have

(AA†M,NBAA†M,N)(AΩ0 A†M,N)(AA†M,NBAA†M,N) = AA†M,NBAA†M,N.

Also,
(NA†M,NBAΩ0)∗ = NA†M,NBAΩ0,

then by (3.2), we obtain

(MAA†M,NBAA†M,NAΩ0 A†M,NM−1)∗ =
(
(A†M,N)∗NA†M,NBAA†M,NAΩ0 N−1A∗

)∗
= AN−1NA†M,NBAA†M,NAΩ0 A†M,N
= AA†M,NBAA†M,NAΩ0 A†M,N,

that is,
(MAA†M,NBAA†M,NAΩ0 A†M,N)∗ =MAA†M,NBAA†M,NAΩ0 A†M,N.

Hence, AΩ0 A†M,N is a {1, 3M}-inverse of AA†M,NBAA†M,N = AA†M,NΓAA†M,N in AA†M,NRm×mAA†M,N. Therefore,
by Corollary 2.3 again, we have

AΩ0 A†M,N + Im − AA†M,N ∈ Γ{1, 3M}.

As A†M,NAΩ(1,3N)A†M,NA ∈ (A†M,NBA){1, 3N}, it follows that AΩ(1,3N)A†M,N + Im − AA†M,N ∈ Γ{1, 3M}.

Lemma 3.2. Let A ∈ Rm×n be weighted Moore-Penrose invertible with weights (M,N) and B ∈ Rm×m. Consider the
following conditions:

(1) Γ = AA†M,NBAA†M,N + Im − AA†M,N is {1,4M}-invertible.
(2) Ω = A†M,NBA + In − A†M,NA is {1,4N}-invertible.
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If A is ∗M, ∗N-invariant then (1)⇔(2), in which case

AΩ(1,4N)A†M,N + Im − AA†M,N ∈ Γ{1, 4M}

and
A†M,NΓ

(1,4M)A + In − A†M,NA ∈ Ω{1, 4N}.

Then combining Lemmas 3.1 and 3.2, it is easy to obtain analogous results on the weighted Moore-
Penrose invertibility with weights (M,N).

Theorem 3.3. Let A ∈ Rm×n be weighted Moore-Penrose invertible with weights (M,N) and B ∈ Rm×m. Consider
the following conditions:

(1) Γ = AA†M,NBAA†M,N + Im − AA†M,N is weighted Moore-Penrose invertible with weights (M,M).
(2) Ω = A†M,NBA + In − A†M,NA is weighted Moore-Penrose invertible with weights (N,N).

If A is ∗M, ∗N-invariant then (1)⇔(2), in which case

Γ†M,M = AΩ†N,NA†M,N + Im − AA†M,N

and
Ω†N,N = A†M,NΓ

†

M,MA + In − A†M,NA.

Proof. It suffices to give the expressions of Γ†M,M and Ω†N,N. By Lemmas 3.1 and 3.2, it follows that
ΩΩ(1,3)

∈ A†M,NARn×nA†M,NA+ In −A†M,NA and ΓΓ(1,3)
∈ AA†M,NRm×mAA†M,N + Im −AA†M,N. Then A†M,NAΩΩ(1,3) =

ΩΩ(1,3)A†M,NA and AA†M,NΓΓ
(1,3) = ΓΓ(1,3)AA†M,N. Hence,

Γ†M,M =Γ
(1,4M)ΓΓ(1,3M)

=(AΩ(1,4N)A†M,N + Im − AA†M,N)(AA†M,NBAA†M,N + Im − AA†M,N)

(AΩ(1,3N)A†M,N + Im − AA†M,N)

=AΩ(1,4N)A†M,NAA†M,NBAA†M,NAΩ(1,3N)A†M,N + Im − AA†M,N
=AΩ(1,4N)A†M,NAΩΩ(1,3)A†M,N + Im − AA†M,N
=AΩ(1,4N)ΩΩ(1,3)A†M,N + Im − AA†M,N
=AΩ†N,NA†M,N + Im − AA†M,N.

Similarly,
Ω†N,N =Ω

(1,4N)ΩΩ(1,3N)

=(A†M,NΓ
(1,4M)A + In − A†M,NA)(A†M,NBA + In − A†M,NA)

(A†M,NΓ
(1,3M)A + In − A†M,NA)

=A†M,NΓ
(1,4M)AA†M,NBAA†M,NΓ

(1,3M)A + In − A†M,NA

=A†M,NΓ
(1,4M)AA†M,NΓΓ

(1,3M)A + In − A†M,NA

=A†M,NΓ
(1,4M)ΓΓ(1,3M)A + In − A†M,NA

=A†M,NΓ
†

M,MA + In − A†M,NA.

Take M = Im and N = In in Theorem 3.3. Then we have the following result given in [21].

Corollary 3.4. [21, Proposition 6] Let A ∈ Rm×n be Moore-Penrose invertible and B ∈ Rm×m. Consider the following
conditions:

(1) Γ = AA†BAA† + Im − AA† is Moore-Penrose invertible.
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(2) Ω = A†BA + In − A†A is Moore-Penrose invertible.
If A is ∗-invariant then (1)⇔(2), in which case

Γ† = AΩ†A† + Im − AA†

and
Ω† = A†Γ†A + In − A†A.

Note that [14, Example 1] showed that the equivalence that Γ = AA†BAA† + Im −AA† is core invertible if
and only ifΩ = A†BA+ In−A†A is core invertible does not hold in general when A ∈ Rm×n be Moore-Penrose
invertible and B ∈ Rm×m. Also, the ∗-invariance of A is not necessary for this equivalence is shown in [14,
Example 2]. In order to relate the equivalence for the pseudo M-core invertibility of the corresponding
elements between the semigroup AA†M,NRm×mAA†M,N + Im − AA†M,N and the semigroup A†M,NARn×nA†M,NA +
In − A†M,NA when A†M,N exists, we give a sufficient condition that A is ∗M, ∗N-invariant.

Theorem 3.5. Let A ∈ Rm×n be weighted Moore-Penrose invertible with weights (M,N) and B ∈ Rm×m. Consider
the following conditions:

(1) Γ = AA†M,NBAA†M,N + Im − AA†M,N is pseudo M-core invertible with ind(Γ) = k (M-core invertible if k = 1).
(2) Ω = A†M,NBA + In − A†M,NA is pseudo N-core invertible with ind(Ω) = k (N-core invertible if k = 1).

If A is ∗M, ∗N-invariant then (1)⇔(2), in which case

ΓM, DO = AΩN, DOA†M,N + Im − AA†M,N

and
ΩN, DO = A†M,NΓ

M, DOA + In − A†M,NA.

Proof. Let us first consider the case k = 1, i.e., Γ is M-core invertible if and only if Ω is N-core invertible.
If Γ is M-core invertible, then by Lemma 2.9, it is known that Γ is group invertible and {1, 3M}-invertible.

Following the Lemma 3.1 and [21, Proposition 5], we can obtain that Ω is group invertible and {1, 3N}-
invertible. Moreover,Ω# = A†M,NΓ

#A+ In −A†M,NA and A†M,NΓ
(1,3M)A+ In −A†M,NA ∈ Ω{1, 3N}. By the Lemma

2.9 again, it is easy to get that Ω is N-core invertible. Since Γ#
∈ AA†M,NRm×mAA†M,N + Im − AA†M,N, it follows

that AA†M,NΓ
# = Γ#AA†M,N. For the expression of ΩN, #O, we have

ΩN, #O = Ω#ΩΩ(1,3N)

= (A†M,NΓ
#A + In − A†M,NA)(A†M,NBA + In − A†M,NA)(A†M,NΓ

(1,3M)A + In − A†M,NA)

= A†M,NΓ
#AA†M,NBAA†M,NΓ

(1,3M)A + In − A†M,NA

= A†M,NΓ
#AA†M,NΓΓ

(1,3M)A + In − A†M,NA

= A†M,NAA†M,NΓ
#ΓΓ(1,3M)A + In − A†M,NA

= A†M,NΓ
M, #OA + In − A†M,NA.

The converse is analogous. Since Ω#
∈ A†M,NARn×nA†M,NA + In − A†M,NA, it follows that A†M,NAΩ# =

Ω#A†M,NA. For the expression of ΓM, #O, we have

ΓM, #O = Γ#ΓΓ(1,3M)

= (AΩ#A†M,N + Im − AA†M,N)(AA†M,NBAA†M,N + Im − AA†M,N)(AΩ(1,3N)A†M,N + Im − AA†M,N)

= AΩ#A†M,NAA†M,NBAΩ(1,3N)A†M,N + Im − AA†M,N
= AΩ#A†M,NAΩΩ(1,3N)A†M,N + Im − AA†M,N
= AA†M,NAΩ#ΩΩ(1,3N)A†M,N + Im − AA†M,N
= AΩN, #OA†M,N + Im − AA†M,N
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For the general case, suppose that Γ is pseudo M-core invertible with ind(Γ) = k, i.e., ΓM, DO exists with

ind(Γ) = k. Then (Γk)M, #O =
(
AA†M,N(BAA†M,N)kAA†M,N + Im − AA†M,N

)M, #O
exists by Lemma 2.10. Using the first

part of the proof and keeping in mind that B is arbitrary, we can obtain thatΩk = A†M,N(BAA†M,N)kA+In−A†M,NA
is N-core invertible. Thus ΩN, DO exists with ind(Ω) ≤ k by Lemma 2.10 again. Moreover,

ΩN, DO = Ωk−1(Ωk)N, #O

= Ωk−1
(
A†M,N(BAA†M,N)kA + In − A†M,NA

)N, #O

= Ωk−1
(
A†M,N(Γk)M, #OA + In − A†M,NA

)
=
(
A†M,N(BAA†M,N)k−1A + In − A†M,NA

) (
A†M,N(Γk)M, #OA + In − A†M,NA

)
= A†M,N(BAA†M,N)k−1AA†M,N(Γk)M, #OA + In − A†M,NA

= A†M,NΓ
k−1(Γk)M, #OA + In − A†M,NA

= A†M,NΓ
M, DOA + In − A†M,NA.

The converse is analogous and ind(Γ) ≤ ind(Ω). Hence, ind(Γ) = ind(Ω). For the expression of ΓM, DO, we
have

ΓM, DO = Γk−1(Γk)M, #O

= Γk−1
(
AA†M,N(BAA†M,N)kAA†M,N + Im − AA†M,N

)M, #O

= Γk−1
(
A(Ωk)N, #OA†M,N + Im − AA†M,N

)
=
(
AA†M,N(BAA†M,N)k−1AA†M,N + Im − AA†M,N

) (
A(Ωk)N, #OA†M,N + Im − AA†M,N

)
= AA†M,N(BAA†M,N)k−1A(Ωk)N, #OA†M,N + Im − AA†M,N
= AΩk−1(Ωk)N, #OA†M,N + Im − AA†M,N
= AΩN, DOA†M,N + Im − AA†M,N.

Take M = Im and N = In in Theorem 3.5. Then we have the following corollary.

Corollary 3.6. [14, Theorem 3] Let A ∈ Rm×n be Moore-Penrose invertible and B ∈ Rm×m. Consider the following
conditions:

(1) Γ = AA†BAA† + Im − AA† is pseudo core invertible with index k (core invertible if k = 1).
(2) Ω = A†BA + In − A†A is pseudo core invertible with index k (core invertible if k = 1).

If A is ∗-invariant then (1)⇔(2), in which case

Γ DO = AΩ DOA† + Im − AA†

and
Ω DO = A†Γ DOA + In − A†A.
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