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Abstract. The rich collection of G-matrices originated in a 2012 paper by Fiedler and Hall. Let Mn be the
set of all n × n real matrices. A nonsingular matrix A ∈ Mn is called a G-matrix if there exist nonsingular
diagonal matrices D1 and D2 such that A−T = D1AD2, where A−T denotes the transpose of the inverse of
A. For fixed nonsingular diagonal matrices D1 and D2, let G(D1,D2) = {A ∈ Mn : A−T = D1AD2}, which is
called a G-class. In more recent papers, G-classes of matrices were studied. The purpose of this present
work is to find conditions on D1, D2, D3 and D4 such that the G-classes G(D1,D2) and G(D3,D4) have finite
nonempty intersection or empty intersection. A main focus of this work is the use of the diagonal matrix
D = D1/2

3 D−1/2
1 . In the case that all the Di are n×n diagonal matrices with positive diagonal entries, complete

characterizations of the G-classes are obtained for the intersection questions.

1. Introduction

All matrices in this note have real number entries. Let Mn be the set of all n × n real matrices. A matrix
J ∈Mn is said to be a signature matrix if J is diagonal and its diagonal entries are ±1; Sn is the set of all n×n
signature matrices.

A nonsingular matrix A ∈ Mn is called a G-matrix if there exist nonsingular diagonal matrices D1 and
D2 such that A−T = D1AD2, where A−T denotes the transpose of the inverse of A, see [2]. For a survey of
the basic properties of G-matrices and connections to other classes of matrices, the reader can see [2], [3],
[4], [9] and [12] and references therein. For fixed nonsingular diagonal matrices D1 and D2, let the class of
n × n G-matrices be

G(D1,D2) = {A ∈Mn : A−T = D1AD2}.

We call such a class of matrices a G-class of matrices.
For a fixed signature matrix J, Γn(J) = {A ∈Mn : A⊤ JA = J}. In fact,

Γn(J) = G(J, J).
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We mention that the matrices in Γn(J) are precisely the J-orthogonal matrices discussed in [5], [6], [7], [10]
and [11]. Also note that when J is I or −I, Γn(J) = On, the set of all n × n orthogonal matrices.

We note that the nonsingular diagonal matrices D1 and D2 satisfying A−T = D1AD2 are in general not
uniquely determined as we can multiply one of them by a nonzero real number and divide the other by the
same number. On the other hand, for nonsingular n× n diagonal matrices D1 and D2, the following known
result from [2] shows that if A−T = D1AD2 then D1 and D2 have the same inertia matrix. For the definitions
of the inertia and the corresponding inertia matrix of a general Hermitian matrix, the reader can refer to [8,
pp281–282]. Simply put, the inertia matrix of a Hermitian matrix A is the diagonal matrix

diag(1, . . . , 1,−1, . . . ,−1, 0, . . . , 0),

where the number of 1′s, −1′s , 0′s is the number of positive, negative, zero eigenvalues, respectively of A.

Proposition 1.1. Suppose A is a G-matrix and A−T = D1AD2, where D1 and D2 are nonsingular diagonal matrices.
Then the inertia of D1 is equal to the inertia of D2.

In [4] we have shown that for every n there exist two n × n G-classes having finite, nonempty intersection.
In this paper we find some conditions on D1, D2, D3 and D4 such that the G-classesG(D1,D2) andG(D3,D4)
have finite intersection. In the continuation of our work, we need the following results.

Theorem 1.2. [12, Theorem 2.2 ] Let D1 and D2 be nonsingular diagonal matrices with the same inertia matrix J.
Then there exist permutation matrices P and Q such that

G(D1,D2) = {|D1|
−1/2PTAQ|D2|

−1/2 : A ∈ Γn(J)}.

This characterization shows that G(D1,D2) is in fact nonempty.

Theorem 1.3. [12, Theorem 3.1] Assume D1, D2, D3 and D4 are real nonsingular diagonal matrices, all of which
have the same inertia matrix I or −I. Then

G(D1,D2) = G(D3,D4)

if and only if there exists a positive number d such that D3 = dD1 and D4 =
1
d D2.

2. The intersection results

In this section we discuss the intersection of G-classes and we first present a key preliminary result.

Lemma 2.1. Let D1 = [d1 j], D2 = [d2 j], D3 = [d3 j] and D4 = [d4 j], be n×n diagonal matrices with positive diagonal

entries. Let D = D
1
2
3 D

−1
2

1 and D′

= D
−1
2

2 D
1
2
4 . If D−1 = D′ and the diagonal entries of D are not distinct thenG(D1,D2)

and G(D3,D4) have infinite intersection.

Proof. Since here the inertia matrix of each Di is J = I, Γn(J) = On and the permutation matrices P,Q are not
needed, so that by using Theorem 1.2, there exists a matrix A ∈ G(D1,D2) ∩ G(D3,D4) if and only if there
exist V,W ∈ On such that

A = D
−1
2

1 VD
−1
2

2 = D
−1
2

3 WD
−1
2

4 ,

that is to say

W = D
1
2
3 D

−1
2

1 VD
−1
2

2 D
1
2
4 .

Thus, to have a matrix A in the intersection of the two G-classes, it is necessary and sufficient to have the
existence of orthogonal matrices W, V such that W = DVD−1. Let

V =



v11 v12 0 . . . 0
v21 v22 0 . . . 0
0 0 ±1 . . . 0
...

...

0 0
. . . ±1


∈ On,
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and let W = DVD−1. Since the diagonal entries of D = [d j] are not distinct, without loss of generality we
can assume that d1 = d2 = d. It is easy to see that W = DVD−1 = V. So we have

A := D
−1
2

1 VD
−1
2

2 = D
−1
2

3 WD
−1
2

4 .

By Theorem 1.2, A ∈ G(D1,D2) ∩ G(D3,D4). Since we have an infinite number of V, we have an infinite
number of A.

Theorem 2.2. Let D1 = [d1 j], D2 = [d2 j], D3 = [d3 j] and D4 = [d4 j], be n × n diagonal matrices with positive

diagonal entries. Let D = D
1
2
3 D

−1
2

1 and D′

= D
−1
2

2 D
1
2
4 . Assume that D−1 = D′ . Then G(D1,D2) and G(D3,D4) have

finite intersection if and only if the diagonal entries of D are distinct. Furthermore in the finite case

G(D1,D2) ∩G(D3,D4) = {diag(±
1√

d1 jd2 j
), j = 1, . . . ,n}

= {diag(±
1√

d3 jd4 j
), j = 1, . . . ,n}.

In this case, the intersection of G(D1,D2) and G(D3,D4) has 2n matrices.

Proof. The proof of the necessity follows from Lemma 2.1. We now prove the sufficiency. The inertia matrix

of each of D1,D2,D3,D4 is I. Since D = D
1
2
3 D

−1
2

1 and the diagonal entries of D are distinct, D is not a multiple
of I and hence D3 , dD1 for every d ∈ R. By using Theorem 1.3

G(D1,D2) , G(D3,D4).

Let A ∈ G(D1,D2) ∩ G(D3,D4). Since the inertia matrix of each Di is I, by the use of Theorem 1.2, there
are V,W ∈ On such that

A = D
−1
2

1 VD
−1
2

2 = D
−1
2

3 WD
−1
2

4 .

This implies that

W = D
1
2
3 D

−1
2

1 VD
−1
2

2 D
1
2
4 ∈ On.

From W = D
1
2
3 D

−1
2

1 VD
−1
2

2 D
1
2
4 , with W = [wi j], V = [vi j] and D = [α j] it follows that

wi j =
αi

α j
vi j.

Since A ∈ G(D1,D2) if and only if PTAP ∈ G(PTD1P,PTD2P) for every n×n permutation matrix P, we have
G(D1,D2)∩G(D3,D4) is finite if and only ifG(PTD1P,PTD2P)∩G(PTD3P,PTD4P) is finite. Then without loss
of generality we can assume that the diagonal entries of D are increasing (in fact there exists a permutation
matrix such that PTDP has increasing diagonal entries). Observe that, for all i < j, we have 0 < αi

α j
< 1 and

consequently when vi j = 0, wi j = 0, and when vi j , 0, wi j < vi j.
From the diagonal entries of WWT = I, we obtain for 1 ≤ i ≤ n,

1 = (WWT)ii =

n∑
j=1

wi
2
j =

n∑
j=1

αi
2

α j
2 vi

2
j . (∗i)

From the entries of VVT = I, we obtain for 1 ≤ i ≤ n,

1 = (VVT)ii =

n∑
j=1

v2
i j (∗∗i)
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and for each i and t with 1 ≤ i , t ≤ n,

0 = (VVT)i,t =

n∑
j=1

vi jvt j. (∗ ∗ ∗i,t)

Now we show that the off diagonal entries of row 1 and column 1 of V are zero. In (∗1), if at least one of
v1 j , 0 ( j = 2, . . . ,n), then the right hand sides of (∗1) and (∗∗1) are not equal, which is a contradiction. There-
fore v1 j = 0, ( j = 2, . . . ,n), and so v11 = ±1.Now relations (∗ ∗ ∗1,t) (1 < t ≤ n) imply v21 = v31 = · · · = vn1 = 0.

So far we have:

V =


±1 0 . . . 0
0
... ⋆
0

 .
The case where i = 2 uses the above structure of V and proceeds similar to the case where i = 1. We arrive
at

V =


±1 0 0 . . . 0
0 ±1 0 . . . 0
0 0
...

... ⋆
0 0


.

The induction hypothesis is that all the off diagonal entries in V in the first k − 1 rows and columns
are zero, and each diagonal entry is ±1. Since vk1, vk2, . . . , vk k−1 are zero, in (∗k), if at least one of vk j ,
0, ( j = k + 1, . . . ,n) then the right hand sides of (∗k) and (∗∗k) are not equal, which is a contradiction.
Therefore vk,k+1 = vk,k+2 = . . . = vkn = 0, and so vkk = ±1. Now relations (∗ ∗ ∗k,t) (k < t ≤ n) imply
vk+1,k = vk+2,k = · · · = vnk = 0. So, the off diagonal entries of row k and column k of V are zero. Thus by
induction, V = diag(±1), so that W = DVD−1 = diag(±1). Hence

A = D
−1
2

1 VD
−1
2

2 = diag(±
1√

d1 jd2 j
) = diag(±

1√
d3 jd4 j

), j = 1, . . . ,n.

Therefore, the intersection of G(D1,D2) and G(D3,D4) is finite and it has 2n matrices.

The following example is a special case of Theorem 2.2 when n = 3.

Example 2.3. Let D1 =

 1 0 0
0 4 0
0 0 25

4

, D2 =

 1 0 0
0 6 0
0 0 4

, D3 =

 3 0 0
0 6 0
0 0 25

 and D4 =


1
3 0 0
0 4 0
0 0 1

 .We have

D
1
2
3 D

−1
2

1 =


√

3 0 0
0

√
6

2 0
0 0 2

 and D
−1
2

2 D
1
2
4 =


1
√

3
0 0

0 2
√

6
0

0 0 1
2

.

Let A ∈ G(D1,D2) ∩ G(D3,D4). Since the inertia matrix of each Di is I, by the use of Theorem 1.2, there are
V,W ∈ O3 such that

A = D
−1
2

1 VD
−1
2

2 = D
−1
2

3 WD
−1
2

4 .

Since D
1
2
3 D

−1
2

1 = (D
−1
2

2 D
1
2
4 )−1, by the proof of Theorem 2.2 it follows that

V =

 ±1 0 0
0 ±1 0
0 0 ±1

 .
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Hence

A = D
−1
2

1 VD
−1
2

2 = D
−1
2

3 WD
−1
2

4 = diag(±1,±
1
√

24
,±

1
5

)}.

Since D
1
2
3 D

−1
2

1 = (D
−1
2

2 D
1
2
4 )−1 has distinct diagonal entries, by Theorem 2.2 it follows that

G(D1,D2) ∩G(D3,D4) = {A : A = diag(±1,±
1
√

24
,±

1
5

)}.

When in Theorem 2.2, D1 = D−1
2 and D3 = D−1

4 we can obtain the following corollary.

Corollary 2.4. Let D1, D2, D3 and D4 be n × n diagonal matrices with positive diagonal entries. Suppose that
D1 = D−1

2 and D3 = D−1
4 . Then G(D1,D2) ∩ G(D3,D4) is nonempty and finite if and only if the diagonal entries of

D
1
2
3 D

−1
2

1 are distinct. Furthermore, G(D1,D2) ∩G(D3,D4) = Sn.

Proof. The proof follows from Theorem 2.2, since with our assumptions on the Di we have D−1 = D′

.

The n × n example in [4] illustrates the above corollary. In the following example, another special case of
the above corollary can be seen.

Example 2.5. Let D1 =


3 0

1
4

1
0 3

, D2 =


1
3 0

4
1

0 1
3

, D3 =


1 0

1
4

2
0 1

 and D4 =


1 0

4
1
2

0 1

 .

Let V =


v11 0 0 v14
0 ±1 0 0
0 0 ±1 0

v41 0 0 v44

 ∈ O4, and let W := D
1
2
3 D

−1
2

1 VD
−1
2

2 D
1
2
4 =


v11

1
√

3
v12

1
√

6
v13 v14

√
3v21 v22

1
√

2
v23

√
3v24

√
6v31

√
2v32 v33

√
6v34

v41
1
√

3
v42

1
√

6
v43 v44

 ∈
O4. Then D

−1
2

1 VD
−1
2

2 = D
−1
2

3 WD
−1
2

4 . Let

A := D
−1
2

1 VD
−1
2

2 = D
−1
2

3 WD
−1
2

4 .

By Theorem 1.2, A ∈ G(D1,D2) ∩G(D3,D4). Since we have an infinite number of V, we have an infinite number of
A.

Note that indeed D
1
2
3 D

−1
2

1 does not have distinct diagonal entries, so that the result also follows by Lemma 2.1.
However, it is interesting to see a closed form expression for an infinite subset of the intersection.

G-matrices have many nice properties, see [2]. For example, if A is an n × n G-matrix and P is an
n × n permutation matrix, then PA is a G-matrix. Specifically, it is easy to show that if A ∈ G(D1,D2) then
PA ∈ G(PD1PT,D2). Similarly if B ∈ G(PD1PT,D2) then PTB ∈ G(D1,D2). Hence PG(D1,D2) = G(PD1PT,D2).
Thus, we have the following result.

Proposition 2.6. With the above notation, we have that

P(G(D1,D2) ∩G(D3,D4)) = G(PD1PT,D2) ∩G(PD3PT,D4).

So, if G(D1,D2) ∩ G(D3,D4) is say a finite diagonal intersection, then for P , I, G(PD1PT,D2) ∩
G(PD3PT,D4) is a finite non-diagonal intersection!

Example 2.7. Let D1 =

 2 0 0
0 3 0
0 0 6

, D2 =


1
2 0 0
0 1

3 0
0 0 1

6

, D3 =

 1 0 0
0 2 0
0 0 5

, D4 =

 1 0 0
0 1

2 0
0 0 1

5

 and P = 0 1 0
1 0 0
0 0 1

 .ThenG(D1,D2)∩G(D3,D4) = {

 ±1 0 0
0 ±1 0
0 0 ±1

} andG(PD1PT,D2)∩G(PD3PT,D4) = {

 0 ±1 0
±1 0 0
0 0 ±1

}.
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Remark 2.8. We note that regarding the second intersection in the above example, D−1 , D′ (although it is easily
seen that D−1 = PD′PT). In general, we can have D−1 , D′ and the finite intersection property as well. Also observe
in that second intersection that the diagonal entries of D are distinct. This brings up the following question. Is
there an example where D−1 , D′ and the diagonal entries of D are not distinct, but we have the finite intersection
property? This will be resolved at the end of the paper.

We turn now to conditions which guarantee that G(D1,D2) and G(D3,D4) have empty intersection. In the
next result we are in fact able to give a sufficient condition valid for all n.

Theorem 2.9. Let D1, D2, D3 and D4 be n×n diagonal matrices with positive diagonal entries, and D = D
1
2
3 D

−1
2

1 = [d j]

and D′

= D
−1
2

2 D
1
2
4 = [d j

′

]. If dk
′

= min{d j
′

, j = 1, . . . ,n} and dkdk
′

> 1, then G(D1,D2) ∩G(D3,D4) = ∅.

Proof. Suppose G(D1,D2) ∩ G(D3,D4) , ∅ and A ∈ G(D1,D2) ∩ G(D3,D4). By using Theorem 1.2 , there are
V,W ∈ On such that

A = D
−1
2

1 VD
−1
2

2 = D
−1
2

3 WD
−1
2

4 ,

which implies that

W = D
1
2
3 D

−1
2

1 VD
−1
2

2 D
1
2
4 = DVD

′

.

From the diagonal entries of WWT = I and VVT = I, we obtain,

vk1
2 + vk2

2 + · · · + vkn
2 = 1

and
dk

2d1
′2vk1

2 + dk
2d2

′2vk2
2 + · · · + dk

2dn
′2vkn

2 = 1.

Then

(dk
2d1

′2
− dk

2dk
′2)vk1

2 + (dk
2d2

′2
− dk

2dk
′2)vk2

2 + · · ·

+(dk
2dn

′2
− dk

2dk
′2)vkn

2 = 1 − dk
2dk

′2.

In the above relation all coefficients are positive and hence the left side is positive. But the right side is negative,
which is a contradiction. Therefore G(D1,D2) ∩G(D3,D4) = ∅.

Corollary 2.10. Let D1, D2, D3 and D4 be n×n diagonal matrices with positive diagonal entries. Let D = D
1
2
3 D

−1
2

1 =

[d j] and D′

= D
−1
2

2 D
1
2
4 = [d j

′

]. If d jd j
′

> 1, for j = 1, . . . ,n, then G(D1,D2) ∩G(D3,D4) = ∅.

Proof. Let dk
′

= min{d j
′

, j = 1, . . . ,n}. By the assumption dkdk
′

> 1 and hence by Theorem 2.9, G(D1,D2) ∩
G(D3,D4) = ∅.

The following example shows that the converse of Theorem 2.9 is not true.

Example 2.11. Let D1 =

(
3 0
0 16

)
, D2 =

(
1 0
0 1

2

)
, D3 =

(
1 0
0 4

)
and D4 =

(
1
2 0
0 1

10

)
. We have D =( 1

√
3

0
0 1

2

)
and D′

=

 1
√

2
0

0 1
√

5

 .
Assume thatG(D1,D2)∩G(D3,D4) , ∅ and A ∈ G(D1,D2)∩G(D3,D4). By using Theorem 1.2, there are V,W ∈ O2
such that

A = D
−1
2

1 VD
−1
2

2 = D
−1
2

3 WD
−1
2

4 ,

which implies that

W = D
1
2
3 D

−1
2

1 VD
−1
2

2 D
1
2
4 .
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From the diagonal entries of WWT = I, we obtain,

1
6

v11
2 +

1
15

v12
2 = 1,

From VVT = I, we obtain
v11

2 + v12
2 = 1.

Then
−1
10

v12
2 =

5
6
,

which is a contradiction. So G(D1,D2) ∩G(D3,D4) = ∅. However, the assumption in Theorem 2.9 does not hold.

By considering the contrapositive of Theorem 2.9, we obtain the following.

Corollary 2.12. Let D1, D2, D3 and D4 be n×n diagonal matrices with positive diagonal entries. Let D = D
1
2
3 D

−1
2

1 =

[d j] and D′

= D
−1
2

2 D
1
2
4 = [d j

′

]. If G(D1,D2) and G(D3,D4) have nonempty intersection, then dkd′k ≤ 1, where
dk
′

= min{d j
′

, j = 1, . . . ,n}.

In particular, this shows a certain reliance on the matrices D and D′!
A final aim in this work is to obtain a necessary and sufficient condition for the intersection ofG(D1,D2)

and G(D3,D4) to be nonempty. In doing so we will make nice use of some previous results. The condition
that we obtain will again be in terms of the matrices D and D′. But first we need some preliminary
information.

Definition 2.13. Let A = [ai j] be an n× n matrix. If σ is a permutation on n symbols, the set a1σ(1), a2σ(2), . . . , anσ(n)
is called a diagonal of A . Each diagonal contains exactly one element from each row and from each column of A.

Proposition 2.14. [1, The Konig-Frobenius Theorem ] Let A = [ai j] be an n×n matrix. The following two statements
are equivalent:

(i) every diagonal of A contains a zero element.

(ii) A has a k × l submatrix with all entries zero for some k, l such that k + l > n.

Lemma 2.15. Let A = [ai j] be an n × n nonsingular matrix. Then A has a diagonal with all nonzero elements.

Proof. Assume if possible that every diagonal of A has at least a zero element. From Proposition 2.14 it follows that
A has a k × l submatrix with all entries zero for some k, l such that k + l > n. Then without loss of generality we can
assume that A has the following form:

A =
(

0 B
C D

)
,

where 0 is a k × l zero block. Observe that C is a (n− k)× l matrix and l > (n− k). These imply that the columns of C
are linearly dependent and hence A is a singular matrix which is a contradiction.

Theorem 2.16. Let D1, D2, D3 and D4 be n× n diagonal matrices with positive diagonal entries. Let D = D
1
2
3 D

−1
2

1 =

[d j] and D′

= D
−1
2

2 D
1
2
4 = [d j

′

].Then G(D1,D2) ∩ G(D3,D4) , ∅, if and only if for some permutation matrix P,
D−1 = PD′PT.

Proof. To prove the sufficiency assume that D−1 = PD′PT. Consider G(D1,PD2PT) ∩G(D3,PD4PT). Observe that

(PD2PT)−1/2(PD4PT)1/2 = PD′PT.
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So, in this case, the condition D−1 = D′ is replaced by D−1 = PD′PT. Hence, using Lemma 2.1 and Theorem 2.2
together, we have that if D−1 = PD′PT, then G(D1,PD2PT) ∩G(D3,PD4PT) is nonempty.

Also, a variation of Proposition 2.6 says that

G(D1,PD2PT) ∩G(D3,PD4PT) = (G(D1,D2) ∩G(D3,D4))P.

Thus, if D−1 = PD′PT for some permutation matrix P, then G(D1,D2) ∩G(D3,D4) , ∅.
To prove the necessity assume thatG(D1,D2)∩G(D3,D4) , ∅. Let A = [ai j] ∈ G(D1,D2)∩G(D3,D4) and hence

A−T = D1AD2 = D3AD4.

Then
AD2D−1

4 = D−1
1 D3A,

and hence
A(D′)−2 = D2A.

So we have 
a11(d1

′

)−2 a12(d2
′

)−2 . . . a1n(dn
′

)−2

a21(d1
′

)−2 a22(d2
′

)−2 . . . a2n(dn
′

)−2

...
...

...
an1(d1

′

)−2 an2(d2
′

)−2 . . . ann(dn
′

)−2

 =


a11d1
2 a12d1

2 . . . a1nd1
2

a21d2
2 a22d2

2 . . . a2nd2
2

...
...

...
an1dn

2 an2dn
2 . . . anndn

2

 .
Since A is nonsingular, by the use of Lemma 2.15, A has a diagonal say a1σ(1), . . . , anσ(n) with all nonzero elements.
Thus we obtain for all 1 ≤ j ≤ n, d2

j = (d′σ( j))−2. Since the entries of D and D′ are positive, we have d j = (d′σ( j))−1, for
all 1 ≤ j ≤ n. If P is the permutation matrix corresponding to σ, then D−1 = PD′PT.

Note that D−1 = PD′PT simply means that the diagonal matrices D−1 and D′

have the same collection of
diagonal entries, including their multiplicities.

Corollary 2.17. Let D1, D2, D3 and D4 be n × n diagonal matrices with positive diagonal entries. Let D = D
1
2
3 D

−1
2

1

and D′

= D
−1
2

2 D
1
2
4 . ThenG(D1,D2)∩G(D3,D4) = ∅ if and only if D−1 , PD′PT for all n×n permutation matrices P.

We are now able to obtain a further culminating result. Suppose for some permutation matrix P we
have that D−1 = PD′PT as in Theorem 2.16. Assume that the diagonal entries of D are not distinct. Then, as
in the proof of Lemma 2.1, we arrive at the fact that the intersection of G(D1,PD2PT) and G(D3,PD4PT) is
infinite. We then employ again the identity

G(D1,PD2PT) ∩G(D3,PD4PT) = [G(D1,D2) ∩G(D3,D4)]P

to see that the intersection of G(D1,D2) and G(D3,D4) is infinite.
On the other hand, assume that the diagonal entries of D are distinct. Then, as in the proof of Theorem

2.2, it follows that the intersection of G(D1,PD2PT) and G(D3,PD4PT) is finite, with 2n matrices in the
intersection.

We again use the identity

G(D1,PD2PT) ∩G(D3,PD4PT) = [G(D1,D2) ∩G(D3,D4)]P

to see that in this case G(D1,D2) ∩G(D3,D4) is finite, with 2n matrices in the intersection.
Then, in view of Theorem 2.16, we can say the following.

Theorem 2.18. Let D1, D2, D3 and D4 be n × n diagonal matrices with positive diagonal entries. Let D = D
1
2
3 D

−1
2

1

and D′

= D
−1
2

2 D
1
2
4 . Further suppose that G(D1,D2) ∩G(D3,D4) , ∅. Then

(i) if the diagonal entries of D are not distinct, the intersection of G(D1,D2) and G(D3,D4) is infinite.

(ii) if the diagonal entries of D are distinct, G(D1,D2) ∩G(D3,D4) is finite with 2n matrices in the intersection.

Thus, whenG(D1,D2)∩G(D3,D4) , ∅,G(D1,D2)∩G(D3,D4) is finite nonempty if and only if the diagonal
entries of D are distinct!
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