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Abstract.
In this article, we introduce a McShane type integral on a complete metric space, endowed with a

Radon measure µ with a family of cells that satisfies the Vitali covering theorem with respect to µ. The
Saks-Henstock type lemma in terms of additive functions, some of the fundamental properties of such
integrals are investigated. Finally, a relationship of Lebesgue and µ-McShane integral is established.

1. Introduction and preliminaries

The Lebesgue integral is regarded as the official or standard integral in the discipline of mathematics
by a large portion of mathematicians. A significant amount of measure theory is needed to understand
Lebesgue integral. The abstract concept of measure theory makes Lebesgue integral complicated. In the
late 1960s, McShane defined a Riemann-type integral and prove that it is identical to the Lebesgue integral.
Being a Riemann-type integral, it is more user-friendly to work than Lebesgue integral. Measures and
σ-algebras are also excluded from his integral. McShane integral had undergone several extensions in [5].
Gordon [6] introduced and develop the properties of McShane integral for the case in which the function
has values in a Banach space. The main result of that paper is that, in a Banach space every measurable,
Pettis integrable function is generalized Riemann integrable. Kurzweil [9] introduced McShane integral of
Banach valued function f : I→ X on an m-dimensional interval I.A certain type of absolute continuity of the
indefinite McShane integral with respect to Lebesgue measure was also derived by him. Fremlin discussed
the relationship between the McShane and Talagrand integrals in [4]. He proved the integrability of a weak
limit of a sequence of McShane integrable functions. Fremlin et al. [2] discussed if McShane integrable
functions are Pettis integrable. It is known that every McShane integrable function is Henstock-Kurzweil
integrable but converse may not true (see [5]). One can find detail of Henstock-Kurzweil integrals, and
Henstock-Kurzweil type integrals in [8, 11, 12, 14, 15].

The construction of the µ-Henstock-Kurzweil integral of [1, 7] motivated us to constuct µ-McShane
integrals for µ-cell functions on a complete metric space X that are µ-Vitali cells also.

The paper is organized as follows: in Section 2 the basic concepts and terminology are intro- duced
together with some definitions and results. In Section 3 we introduce µ-McShane integral of a cell function
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with respect to a Radon measure µ. Several simple properties of µ-McShane integrals are also discuss
in this section. In Section 4, we establish that µ-McShane integral satisfies Saks-Henstock type Lemma.
Finally, relationship between Lebesgue and µ-McShane integral are establish in Theorem 4.5 and Theorem
4.6 respectively.

2. Preliminaries

Let X = (X, d) be a Cauchy metric space. Throughout the paper, the complete metric spaces or the
Cauchy metric spaces will be termed as Cauchy spaces.

Let C be an arbitrary collection of subsets of X. The smallest σ-algebra σ(C) containing C, called the
σ-algebra generated by C, is the intersection of all σ-algebras in Xwhich contain C.

Let M be a σ-algebra of subsets of a set X. A positive function µ : M→ [0,+∞] is called a measure if

1. µ(∅) = 0;

2. µ(
⋃
∞

j=1 A j) =
∞∑
j=1
µ(A j) for every sequences {A j} j of pointwise disjoint sets from M.

Then (X,M, µ) is termed as a measure space. Given an outer measure µ on X, a subset E of X is called
µ-measurable in the sense of Carathéodory if µ(A) = µ(A ∩ E) + µ(A \ E), for each A ⊂ X. Suppose U is
the Borel σ-algebra of X. Recall that a measure µ is called a Radon measure if µ is a Borel measure with the
followings:

1. µ(K) < ∞ for every compact set K ⊂ X.
2. µ(V) = sup{µ(K) : K ⊂ V, K is compact} for every open set V ⊂ X;
3. µ(A) = inf{µ(V) : A ⊂ V, V is open} for every A ⊂ X.

Let λ be a signed measure defined on the σ-algebra of all µ-measurable subsets of X. Then λ is called an
absolutely continuous with respect to µ if µ(E) = 0 implies |λ|(E) = 0 for each µ-measurable subset E of
X. It is denoted by λ << µ. In the entire work we consider µ a non-atomic Radon measure, D is a family
of non-empty closed subsets of X. For E ⊂ X, we denote the indicator function, diameter, interior and
the boundary of E by χE, diam(E), E0 and ∂E, respectively. Throughout the article we denote d(x,E), the
distance from x to E. Recall that Q1, Q2 ∈ D are said to be non overlapping if interiors of Q1 and Q2 are

disjoint. A finite collection
{
Q1, Q2, ...,Qm

}
of pairwise non-overlapping elements ofD is a division of Q if

m⋃
i=1
Qi = Q. Let G be a sub family ofD, then G is called a fine cover of E ⊂ X if

inf
{
diam(Q) : Q ∈ G, x ∈ Q

}
= 0

for each x ∈ E.

Definition 2.1. [7, Definition 2.14] We sayD is a µ-Vitali family if for each subset E of X and for each subfamily G
ofD that is a fine cover of E, there exists a countable system

{
Q1,Q2, ..,Q j, ..

}
of pairwise non-overlapping elements

of G such that µ(E \ ∪Q j) = 0.

Definition 2.2. [8] Let F be a µ-Vitali family. We say F is a family of µ-cells if it satisfies the following conditions:

(a) Given Q ∈ F and a constant δ > 0, there exist a division
{
Q1,Q2, ...,Qm

}
of Q, such that diam(Qi) < δ, for

i = 1, 2, ..,m;

(b) Given A, Q ∈ F and A ⊂ Q, there exists a division
{
Q1,Q2, ...,Qm

}
of Q, such that A = Q1 ;

(c) µ(∂Q) = 0 for each Q ∈ F.
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Recalling the Vitali Carathéodory Theorem as follows.

Theorem 2.3. [13, Theorem 2.25] Let f be a real function defined on a cell Q. If f is Lebesgue integrable on Q with
respect to µ and ϵ > 0, then there exists functions 11 and 12 onQ such that 11 ≤ f ≤ 12, 11 is upper semi-continuous
and bounde above, 12 is lower semi-continuous and bounded below and (L)

∫
Q

(12 − 11)dµ < ϵ.

3. µ-McShane integral in regards to a Radon measure

In this section, we shall define McShane integral in regards to a Radon measure. We recall that, a gauge
on a set Q is any positive real function ν defined on Q.

Definition 3.1. Let Q ∈ F, let E ⊂ Q and ν be a gauge on Q. A collection P =
{
(xi,Qi)

}m

i=1
of finite ordered pairs of

points and cells is said to be

1. a free partition of Q if
{
Q1,Q2, ...,Qm

}
is a division of Q and xi ∈ Q for i = 1, 2, ...,m;

2. a free partial partition on Q if
{
Q1,Q2, ...,Qm

}
is a subsystem of a division of Q and xi ∈ Q for i = 1, 2, ...,m;

3. ν-fine if diam(Qi) < ν(xi) for i = 1, 2, ...,m;
4. E-tagged if the points x1, x2, x3, ..., xm belongs to E.

The following Cousin’s type lemma addresses the existence of ν-fine free partitions of a given cell Q.

Lemma 3.2. If ν is a gauge on Q, then there exists a ν-fine free partition of Q.

Proof. It is easy to see that if there exists a partition in such a way that the tag belongs to the respective cell
in the tagged pair, then it is also true for the free partition. So, the proof is directly follows from [1, Lemma
3.1].

Let f : Q→ R be a given function. IfP =
{
(xi,Qi)

}m

i=1
is any partition ofQ ∈ F,we define the Riemann sum

as S( f ,P) =
m∑

i=1
f (xi)µ(Qi).We are ready to define µ-McShane integral on Q as follows:

Definition 3.3. A function f : Q→ R is called µ-McShane integrable on a cell Q with respect to µ if there exists a
real number l such that for each ϵ > 0 there is a gauge ν on Q so that |S( f ,P) − l| < ϵ whenever P is a free tagged
partition of Q that is ν-fine.

We write l =
∫
Q

f dµ.We denote the collection of all µ-McShane integrable functions on Q by µ-M(Q). It is
not hard to see the number l is unique. It is clear that every µ-McShane integrable function is µ-Henstock-
Kurzweil integrable on a cell Q and that the integrals are equal. Few simple properties of µ-McShane
integrals are as follows.

Theorem 3.4. Let f , 1 ∈ µ-M(Q), then f + 1 ∈ µ-M(Q), and
∫
Q

( f + 1)dµ =
∫
Q

f dµ +
∫
Q
1dµ.

Theorem 3.5. If f ∈ µ-M(Q) and k ∈ R, then k f ∈ µ-M(Q) and
∫
Q

k f dµ = k
∫
Q

f dµ.

Theorem 3.6. If f ∈ µ-M(Q) and f (x) ≥ 0 for each x ∈ Q, then
∫
Q

f dµ ≥ 0.

Corollary 3.7. Let f , 1 ∈ µ-M(Q). If f ≥ 1 for each x ∈ Q, then
∫
Q

f dµ ≥
∫
Q
1dµ.

Theorem 3.8. (The Cauchy Criterion) A function f : Q→ R is µ- McShane integrable onQ if and only if for
each ϵ > 0 there exists a gauge ν on Q such that |S( f ,P1) −S( f ,P2| < ϵ for each pair ν-fine free partitions
P1 and P2 of Q.
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Proof. Let f : Q → R be a µ-McShane integrable on Q. Then for a given ϵ > 0, there exists a gauge ν on Q
such that |S( f ,P) −

∫
Q

f dµ| < ϵ2 for each ν-fine free partitions P of Q. If P1 and P2 are two ν-fine partitions
of Q,

|S( f ,P1) −S( f ,P2)| ≤ |S( f ,P1) −
∫
Q

f dµ| + |S( f ,P2) −
∫
Q

f dµ| < ϵ.

Conversly, for each n ∈N let νn be a gauge on Q such that

|S( f ,An) −S( f ,Bn)| <
1
n

whenever for each pair νn-fine free partitions An and Bn of Q.
Let △n(x) = min{ν1(x), ..., νn(x)} be a gauge on Q. By Lemma 3.2 there exists a △n-fine free partition Pn of

Q, for each n ∈N.
Let ϵ > 0 be given and choose a positive natural N such that 1

N <
ϵ
2 . If m and n are positive natural

(n < m) such that n ≥ N, then Pn and Pm are △n-fine partition of Q;
Hence |S( f ,Pn) −S( f ,Pm)| < 1

n <
ϵ
2 .

Consequently, {S( f ,Pn)}∞n=1 is a Cauchy sequence of a real number and hence converges. If l =
lim
n→∞
S( f ,Pn), then |S( f ,Pn)− l| < ϵ2 , for each n ≥ N. LetP be a △N- fine free partition ofQ, then |S( f ,P)− l|

≤ |S( f ,P) −S( f ,PN)| + |S( f ,PN) − l| < ϵ. Thus, f is µ-McShane integrable on Q and l =
∫
Q

f dµ.

In the following theorem, we shall prove that µ-McShane integrability of f on a setQ implies its µ-McShane
integrability on each subcells of Q.

Theorem 3.9. If f ∈ µ-M(Q), and if A is a subcell of Q, then f ∈ µ-M(Q) and
∫

A f dµ =
∫
Q

fχAdµ.

Proof. Let ϵ > 0 be given. By Theorem 3.8, there exists a gauge ν on Q such that∣∣∣S( f ,P1) −S( f ,P2

∣∣∣ < ϵ
for each pair ν-fine free partitions P1 and P2 of Q.

Given that there exists a division P = {Q1, ...,Qm} of Q and A ⊂ Q, such that A = Q1. For each

k ∈ {2, ...,m}we fix ν-fine free partitionsPk ofQk. IfR1 andR2 are ν-fine free partitions of A, thenR1∪
m⋃

k=2
Pk

and R2 ∪
m⋃

k=2
Pk are ν-fine free partitions of Q. Thus

∣∣∣S( f ,R1) −S( f ,R2)
∣∣∣ = ∣∣∣S( f ,R1) +

m∑
k=2

(S( f ,Pk) −S( f ,R2) −
m∑

k=2

S( f ,Pk)
∣∣∣

=

∣∣∣∣∣S( f ,R1 ∪

m⋃
k=2

Pk

)
−S

(
f ,R2 ∪

m⋃
k=2

Pk

)∣∣∣∣∣ < ϵ.
Therefore by Theorem 3.8, it follows that f ∈ µ-M(A).

Next, we shall prove that if f is µ-McShane integrable, then | f | is also µ-McShane integrable on Q. This
property is not valid for the µ-Henstock-Kurzweil integrals (see [1, 7]). The following lemma is needed in
the proof.

Lemma 3.10. Let f : Q → R be µ-McShane integrable on Q. Given ϵ > 0, let ν-be a positive function on Q. If{
(xi,Ii) : 1 ≤ i ≤ N

}
and
{
(y j,K j) : 1 ≤ j ≤M

}
are free tagged partitions of Q that are ν-fine, then

N∑
i=1

M∑
j=1

| f (xi) − f (y j)|µ(Ii ∩K j) < ϵ.



H. Kalita et al. / Filomat 38:15 (2024), 5313–5321 5317

Proof. It is easy to see the nondegenerate subcells of the collection
{
Ii ∩K j : 1 ≤ i ≤ N; 1 ≤ j ≤ M

}
form a

partitions of Q. Let us use these subcells of Q to form two free tagged partitions P1 and P2 of Q as below:
if f (xi) ≥ f (y j), then (xi,Ii ∩ K j) in P1 and (y j,Ii ∩ K j) in P2; if f (xi) < f (y j), then (y j,Ii ∩ K j) in P1 and
(xi,Ii ∩K j) in P2.

Next, S( f ,P1) −S( f ,P2) =
N∑

i=1

M∑
j=1
| f (xi) − f (y j)|µ(Ii ∩ K j). Since P1 and P2 are free tagged partitions of

Q that are ν-fine,

S( f ,P1) −S( f ,P2) ≤
∣∣∣∣∣S( f ,P1) − l

∣∣∣∣∣ + ∣∣∣∣∣l −S( f ,P2)
∣∣∣∣∣

<
ϵ
2
+
ϵ
2

(by µ-McShane integrability of f )

= ϵ.

Theorem 3.11. Let f : Q→ R is µ-McShane integrable on Q, then | f | is also µ-McShane integrable on Q.

Proof. Let ϵ > 0 and choose a gauge ν on Q such that |S( f ,P) − l| < ϵ whenever P is a free tagged partition
of Q. Let P1 =

{
(xi,Ii) : 1 ≤ i ≤ N

}
and P2 =

{
(y j,K j) : 1 ≤ j ≤ M

}
be ν-fine free tagged partitions of Q.

Let the nondegenerate subcells of collection
{
Ii ∩K j : 1 ≤ i ≤ N; 1 ≤ j ≤M

}
to form two tagged partitions

R1 =
{
(xi,Ii ∩K j)

}
and R2 =

{
(y j,Ii ∩K j)

}
. Clearly R1 and R2 are free tagged partitions ofQ that are ν-fine

and,

S(| f |,R1) =
N∑

i=1

M∑
j=1

| f (xi)|µ(Ii ∩K j)

=

N∑
i=1

| f (xi)|µ(Ii)

= S(| f |,P1)

and

S(| f |,R2) =
N∑

i=1

M∑
j=1

| f (y j)|µ(Ii ∩K j)

=

M∑
j=1

| f (y j)|µ(K j)

= S(| f |,P2).

By Lemma 3.10, we obtain,∣∣∣∣∣S(| f |,P1) −S(| f |,P2)
∣∣∣∣∣ = ∣∣∣∣∣S(| f |,R1) −S(| f |,R2)

∣∣∣∣∣
≤

N∑
i=1

M∑
j=1

∣∣∣∣∣| f (xi)| − | f (y j)|
∣∣∣∣∣µ(Ii ∩K j)

≤

N∑
i=1

M∑
j=1

| f (xi) − f (x j)|µ(Ii ∩K j)

< ϵ.
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So, | f | is µ-McShane integrable on Q.

4. Characterization of the indefinite µ-McShane integral

In this Section, we prove Saks-Henstock type Lemma of µ-McShane integral. We start with the following
definition.

Definition 4.1. [7, Definition 2.3.1] Let π : F → R be a function. We say that π is an additive function of cell, if

for each Q ∈ F and for each division
{
Q1,Q2, ...,Qn

}
of Q, π(Q) =

n∑
i=1
π(Qi).

Proposition 4.2. Let f : Q → R be a µ-McShane integrable function on Q. If
{
Q1,Q2, ...,Qn

}
is a division of Q

then f ∈ µ-M(Q1) ∩M(Q2) ∩ ... ∩M(Qn) and
∫
Q

f dµ =
n∑

i=1

∫
Qi

f dµ.

Proof. For ϵ > 0 there exists a gauge ν onQ such that |S( f ,P)−
∫
Q

f dµ| < ϵ for each ν-fine free tagged partition
P of Q. By Theorem 3.9, f ∈ µ-M(Q) for i = 1, 2, ...,n. Then there exist gauge νi on Qi for i = 1, 2, ...,n such
that νi(x) < ν(x) for each x ∈ Qi and such that |S( f ,Pi)−

∫
Q

f dµ| < ϵn , for each νi-fine free tagged partitionsPi

ofQ so,P = P1∪P2∪P3...∪Pn is ν-fine free tagged partition ofQ. Consequently, |S( f ,P)−
n∑

i=1

∫
Qi

f dµ| < ϵ.

Therefore,
∫
Q

f dµ =
n∑

i=1

∫
Qi

f dµ.

Definition 4.3. Let Q ∈ F and let f : Q → R be a µ-McShane integrable function on Q. We say that the map
F 7→ A⇝

∫
A f dµ, defined on each subcell of Q is the indefinite µ-McShane integral of f .

It is very straight to see that F is an additive function of cells. Next, we shall prove Saks-Henstock type
lemma for µ-McShane integral on a cell.

Theorem 4.4. A function f : Q → R is µ-McShane integrable on Q if and only if there exists an additive cell
function π defined on the family of all subcells of Q such that for each ϵ > 0 there exists a gauge ν on Q with∑

(xi,Qi)∈P

∣∣∣∣∣π(Qi) − f (xi)µ(Qi)
∣∣∣∣∣ < ϵ,

for each ν-fine free tagged partition P of Q.

In this situation π is the indefinite µ-McShane integral of f on Q.

Proof. Let f ∈ µ-M(Q), then for each ϵ > 0 there esists a gauge ν on Q such that

|

∫
Q

f dµ −S( f ,P)| <
ϵ
3
,

whenever P is a ν-fine free tagged partition of Q. Let us fix, a partition P0 of Q and let P ⊂ P0 be a ν-fine
free partition onQ. ThenP0 \P =

{
(x1,Q1), (x2,Q2), ..., (xm,Qm)

}
.Moreover by Theorem 3.9, f ∈ µ-M(Q j) for

j = 1, 2, ...,m. Therefore, given γ > 0 and j ∈ {1, 2, ...,m} there exists a gauge ν j on Q j so that ν j(x) < ν(x) for
each x ∈ Q j and such that ∣∣∣∣∣ ∫

Q j

f dµ −S( f ,P j)
∣∣∣∣∣ < γm .
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for each ν j-fine free tagged partitionP j ofQ j. ThenP0 = P∪
m⋃

j=1
P j is a tagged partition ofQ that is a ν-fine

and

∑
(xi,Qi)∈P0

f (xi)µ(Qi) =
∑

(xi,Qi)∈P

f (xi)µ(Qi) +
m∑

j=1

∑
(xi,Qi)∈P j

f (xi)µ(Qi).

Since π is an indefinite µ-McShane integral of f on Q so π(Q) =
∑

(xi,Qi)∈P
π(Qi) +

m∑
j=1
π(Q j). Consequently,

∣∣∣∣∣ ∑
(xi,Qi)∈P

(
π(Qi) − f (xi)µ(Qi)

)∣∣∣∣∣ ≤ ∣∣∣∣∣(π(Q) −
∑

(xi,Qi)∈P0

f (xi)µ(Qi)
)∣∣∣∣∣

+

m∑
j=1

∣∣∣∣∣π(Q j) −
∑

(xi,Qi)∈P j

f (xi)µ(Qi)
)∣∣∣∣∣

<
ϵ
3
+m.

γ

m

Since γ is arbitrary small number, we have∣∣∣∣∣ ∑
(xi,Qi)∈P

(
π(Qi) − f (xi)µ(Qi)

)∣∣∣∣∣ < ϵ, (1)

for each ν-fine free tagged partial partitions P on Q.

Let P+ =
{
(xi,Qi) ∈ P : π(Qi) − f (xi)µ(Qi) ≥ 0

}
and

P− =
{
(xi,Qi) ∈ P : π(Qi)− f (xi)µ(Qi) < 0

}
. ClearlyP+ andP− are ν-fine partial partitions onQ and satisfy

Equation (1). Hence,

∑
(xi,Qi)∈P

∣∣∣∣∣π(Qi) − f (xi)µ(Qi)
∣∣∣∣∣ ≤ ∑

(xi,Qi)∈P+

(
π(Qi) − f (xi)µ(Qi)

)
−

∑
(xi,Qi)∈P−

(
π(Qi) − f (xi)µ(Qi)

)
<
ϵ
2
+
ϵ
2
= ϵ.

Conversely, suppose there exists an additive cell function π defined on the family of all subcells of Q such

that
∑

(xi,Qi)∈P

∣∣∣∣∣π(Qi) − f (xi)µ(Qi)
∣∣∣∣∣ < ϵ whenever P is a ν-fine free tagged partial partitions on Q. In particular,

this inequality holds for a ν-fine partition P0 = {(xi,Q1), ..., (xm,Qm)} of Q. Then

∣∣∣∣∣π(Q) −
m∑

i=1

f (xi)µ(Qi)
∣∣∣∣∣ = ∣∣∣∣∣ m∑

i=1

π(Qi) −
m∑

i=1

f (xi)µ(Qi)
∣∣∣∣∣

≤

m∑
i=1

∣∣∣∣∣π(Qi) − f (xi)µ(Qi)
∣∣∣∣∣

< ϵ.

Hence f ∈ µ-M(Q).
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4.1. Relation with the Lebesgue integral
It is well known that in a real line, Lebesgue and McShane integrals are equivalent. One can see [5,

Theorem 10.11]. Next, we shall discuss the relationship of Lebesgue and µ-McShane integrals on Q. We
denote the Lebesgue integral of f : Q→ R with respect to µ by (L)

∫
Q

f dµ.

Theorem 4.5. Let f : Q→ R be a function. If f is Lebesgue integrable onQ with respect to µ, then f is µ-McShane
integral on Q and (L)

∫
Q

f dµ =
∫
Q

f dµ.

Proof. This is an adaptation of proof of Theorem 4.1 in [1]. By Theorem 2.3, for a given ϵ > 0 there exist
functions 11 and 12 onQ that are upper and lower semicontinuos respectively such that −∞ ≤ 11 ≤ f ≤ 12 ≤

+∞ and (L)
∫
Q

f dµ=
∫
Q

f dµ. To claim this, define a gauge ν onQ such that 11(t) ≤ f (x)+ϵ and 12(t) ≥ f (x)−ϵ,
for each t ∈ Qwith d(x, t) < ν(x).

Let P =
{
(x1,Q1), ..., (xm,Qm)

}
be a ν-fine free partition of Q. Then, for each i ∈ {1, 2, . . . , p},we have

L
∫

Qi

11dµ ≤ L
∫

Qi

f dµ ≤ L
∫

Qi

12dµ (2)

Moreover, by 11(t) ≤ f (xi) + ϵ for each t ∈ (Qi), it follows (L)
∫
Qi

(11 − ϵ)dµ ≤ (L)
∫
Qi

f (xi)dµ and

therefore (L)
∫
Qi
11dµ − ϵµ(Qi) ≤ f (xi)µ(Qi). Similarly, by 12(t) ≥ f (xi) + ϵ for each t ∈ (Qi), it follows

f (xi)µ(Qi) ≤ (L)
∫
Qi
12dµ + ϵµ(Qi). So, for i = 1, 2, ..., p, we have (L)

∫
Qi
11dµ − ϵµ(Qi) ≤ f (xi)µ(Qi) ≤

(L)
∫
Qi
12dµ+ ϵµ(Qi).Hence, (L)

∫
Q
11dµ− ϵ ≤ S( f ,P) ≤ (L)

∫
Q
12dµ. By (2), (L)

∫
Q
11dµ ≤ (L)

∫
Q

f dµ ≤
∫
Q
12dµ.

Thus, |S( f ,P) − (L)
∫
Q

f dµ| ≤ (L)
∫
Q

(12 − 11)dµ + 2ϵ < 3ϵ.

Next, we aim to find if the opposite inclusion of Theorem 4.5 true, as the case is for the real line. Next,
we prove that µ-McShane integrability implies Lebesgue integrability in our settings.

Theorem 4.6. If f is µ-McShane integrable on Q, then it is Lebesgue integrable on Q.

Proof. Let f : Q → R be µ-McShane integrable function on Q. By Theorem 3.11, | f | is McShane integrable.
It is clear that | f | is µ-Henstock-Kurzweil integrable. Finally, by [7, Theorem 2.64], f is Lebesgue integrable
on Q.

5. Conclusion

In this article we defined the µ-McShane integral on a complete metric measure space. We described
some basic properties of µ-McShane integrals on a complete metric measure space with a non-atomic Radon
measure µ, associate with a family of µ-cell functions in respect to the Vitali covering theorem. The relation
of Lebesgue and µ-McShane integral is also discussed.
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