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Available at: http://www.pmf.ni.ac.rs/filomat

Nonlinear mixed triple derivable mapping on prime ∗-algebras
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Abstract. LetA be a unite prime ∗-algebra containing a non-trivial projection. In this paper, we prove that
a map ϕ : A → A satisfies ϕ([A ⋄ B,C]) = [ϕ(A) ⋄ B,C] + [A ⋄ ϕ(B),C] + [A ⋄ B, ϕ(C)] for all A,B,C ∈ A if
and only if there exists an element λ ∈ ZS(A) such that ϕ(A) = d(A) + iλA, where d : A→A is an additive
∗-derivation and A⋄B = AB∗+BA∗. Also, we give the structure of this map on factor von Neumann algebras.

1. Introduction

Let A be a ∗-algebra over the complex field C, and for A,B ∈ A, denote by [A,B]∗ = AB − BA∗ and
A • B = AB + BA∗ the skew Lie product and skew Jordan product of A and B, respectively. In some sense,
the skew Lie product and skew Jordan product are used to characterize the algebraic structure. There
is a vast of literature related to these products in many topics, (see [1–9]). Recall that an additive map
ϕ from A into itself is called an additive derivation if ϕ(AB) = ϕ(A)B + Aϕ(B) for A,B ∈ A. Besides, if
ϕ(A∗) = ϕ(A)∗ for all A ∈ A, then ϕ is an additive ∗-derivation. Let ϕ : A → A be a map (without the
additivity assumption). If ϕ([A,B]∗) = [ϕ(A),B]∗ + [A, ϕ(B)]∗ for all A,B ∈ A for A,B ∈ A, then ϕ is called a
nonlinear skew Lie derivation. If ϕ(A •B) = ϕ(A) •B+A •ϕ(B) for all A,B ∈ A, then ϕ is called a nonlinear
skew Jordan derivation. Yu and Zhang [12] proved that every nonlinear skew Lie derivation on factor von
Neumann algebras is an additive ∗-derivation. A. Taghavi et al. [10] showed that each nonlinear skew
Jordan derivation on factor von Neumann algebras is an additive ∗-derivation. In addition, these results
are extended to the cases of nonlinear ∗-Lie triple derivations and nonlinear ∗-Jordan triple derivations by
Li et al [14] and V. Darvish et al [13], respectively. Recently, many researchers have shown great interest in
the study of mixed products associated with skew Lie product or skew Jordan product, such as [[A,B],C]∗,
A•B◦C, [A•B,C]∗ and so on, where A◦B = AB+BA and [A,B] = AB−BA, (see[18–21]). Let ϕ : A→A be a
map (without the additivity assumption), then ϕ is called a second nonlinear mixed Jordan triple derivable
mapping onA if

ϕ(A ◦ B • C) = ϕ(A) ◦ B • C + A ◦ ϕ(B) • C + A ◦ B • ϕ(C)

for all A,B,C ∈ A. Pang et al [15] proved that the second nonlinear mixed Jordan triple derivable mapping
on factor von Neuamnn algebras is an additive ∗-derivation. In addition, N. Rehman et al. [16] extended
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the results of [15] on prime ∗-algebras. Let ϕ : A → A be a map (without the additivity assumption), then
ϕ is called a nonlinear mixed Jordan triple derivable mapping onA if

ϕ(A • B ◦ C) = ϕ(A) • B ◦ C + A • ϕ(B) ◦ C + A • B ◦ ϕ(C)

for all A,B,C ∈ A. Ning and Zhang [17] proved that each nonlinear mixed Jordan triple derivable mapping
on factor von Neuamnn algebras is an additive ∗-derivation.

The objective of this paper is to investigate the form of a nonlinear mixed triple derivable mapping on
prime ∗-algebras. Let ϕ : A→A be a map (without the additivity assumption). If ϕ satisfying

ϕ([A ⋄ B,C]) = [ϕ(A) ⋄ B,C] + [A ⋄ ϕ(B),C] + [A ⋄ B, ϕ(C)]

for all A,B,C ∈ A, thenϕ is called a nonlinear mixed triple derivable mapping onA, where A⋄B = AB∗+BA∗

is the bi-skew Jordan product of A,B ∈ A. Obviously, this new product is different from the skew Lie product
and the skew Jordan product, which has received a fair amount of attentions in some research topics, (see
[22–28]). Let ϕ : A → A be a map (without the additivity assumption), ϕ is called a nonlinear bi-skew
Jordan derivation if ϕ(A ⋄ B) = ϕ(A) ⋄ B + A ⋄ ϕ(B) for all A,B ∈ A. V. Darvish et al [22] proved that each
nonlinear bi-skew Jordan derivations on prime ∗-algebra is an additive ∗-derivation. In [23], they further
study nonlinear bi-skew Jordan triple derivations on prime ∗-algebra, obtained the same result. Define a
map ϕ : A → A such that ϕ(A) = [A,T] − iA, where T∗ = −T. Obviously, ϕ is a nonlinear mixed triple
derivable mapping, but it does not an additive ∗-derivation. LetA be a prime ∗-algebra, i.e. A = 0 or B = 0
if AAB = 0, and Asa = {A ∈ A : A∗ = A}. Denote by Z(A) the central of A and ZS(A) = Z(A) ∩ Asa. In
this paper, we will give the structure of the nonlinear mixed triple derivable mapping on prime ∗-algebras.

2. Main Result

Theorem 2.1. LetA be a unite prime ∗-algebra containing a non-trivial projection, and letϕ : A→A be a nonlinear
mixed triple derivable mapping, that is, ϕ satisfies

ϕ([A ⋄ B,C]) = [ϕ(A) ⋄ B,C] + [A ⋄ ϕ(B),C] + [A ⋄ B, ϕ(C)]

for any A,B,C ∈ A if and only if there exists an element λ ∈ ZS(A) such that ϕ(A) = d(A)+ iλA, where d : A→A
is an additive ∗-derivation.

In all that follows, we assume that A is a prime ∗-algebra containing a non-trivial projection with the
unit I, and ϕ is a nonlinear mixed triple derivable mapping on A. Write P1 ∈ A to be the non-trivial
projection and P2 = I − P1. DenoteAi j = PiAP j for i, j = 1, 2. Clearly, we only need to prove the necessity.
Now we will prove Theorem 2.1 by several lemmas.

Lemma 2.2. ϕ(0) = 0, ϕ(Z(A)) ⊆ Z(A).

Proof. Clearly, ϕ(0) = 0. For any A ∈ Asa, a ∈ Z(A), we have

0 = ϕ(0) = ϕ([A ⋄ I, a]) = [A ⋄ I, ϕ(a)].

Then, [A, ϕ(a)] = 0 for any A ∈ Asa. This implies that ϕ(a) ∈ Z(A), and so ϕ(Z(A)) ⊆ Z(A).

Lemma 2.3. ϕ(
∑2

i, j=1 Ai j) =
∑2

i, j=1 ϕ(Ai j) for all Ai j ∈ Ai j with 1 ≤ i, j ≤ 2.
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Proof. Write T = ϕ(
∑2

i, j=1 Ai j)−
∑2

i, j=1 ϕ(Ai j). For 1 ≤ k , l ≤ 2, it follow from [Pk ⋄Akk,Pl] = 0, [Pk ⋄All,Pl] = 0
and [Pk ⋄ Akl,Pl] = 0 that

ϕ([Pk ⋄

2∑
i, j=1

Ai j,Pl]) = ϕ([Pk ⋄ Alk,Pl])

= [ϕ(Pk) ⋄
2∑

i, j=1

Ai j,Pl] + [Pk ⋄

2∑
i, j=1

ϕ(Ai j),Pl]

+ [Pk ⋄

2∑
i, j=1

Ai j, ϕ(Pl)]

and

ϕ([Pk ⋄

2∑
i, j=1

Ai j,Pl]) = [ϕ(Pk) ⋄
2∑

i, j=1

Ai j,Pl] + [Pk ⋄ ϕ(
2∑

i, j=1

Ai j),Pl]

+ [Pk ⋄

2∑
i, j=1

Ai j, ϕ(Pl)].

Thus [Pk ⋄ T,Pl] = PkT∗Pl − PlTPk = 0, which implies that PlTPk = 0. For any Xkl ∈ Akl with 1 ≤ k , l ≤ 2, by
[Xkl ⋄ Akk,Pl] = 0, [Xkl ⋄ Akl,Pl] = 0 and [Xkl ⋄ Alk,Pl] = 0, we have

ϕ([Xkl ⋄

2∑
i, j=1

Ai j,Pl]) = ϕ([Xkl ⋄ All,Pl])

= [ϕ(Xkl) ⋄
2∑

i, j=1

Ai j,Pl] + [Xkl ⋄

2∑
i, j=1

ϕ(Ai j),Pl]

+ [Xkl ⋄

2∑
i, j=1

Ai j, ϕ(Pl)].

On the other hand,

ϕ([Xkl ⋄

2∑
i, j=1

Ai j,Pl]) = [ϕ(Xkl) ⋄
2∑

i, j=1

Ai j,Pl] + [Xkl ⋄ ϕ(
2∑

i, j=1

Ai j),Pl]

+ [Xkl ⋄

2∑
i, j=1

Ai j, ϕ(Pl)].

Then [Xkl ⋄ T,Pl] = 0. Thus XklT∗Pl − PlTX∗kl = 0. This implies that PlTPl = 0, and so T = 0.

Lemma 2.4. For all Ai j,Bi j ∈ Ai j with (i , j), we have
(1) ϕ(A12 + B12) = ϕ(A12) + ϕ(B12);
(2) ϕ(A21 + B21) = ϕ(A21) + ϕ(B21).

Proof. (1) Write T = ϕ(A12 + B12) − (ϕ(A12) + ϕ(B12)). For any Xkl ∈ Akl with 1 ≤ k , l ≤ 2, it follows from
[Xkl ⋄ A12,Pl] = 0 that

ϕ([Xkl ⋄ (A12 + B12),Pl]) = ϕ([Xkl ⋄ A12,Pl]) + ϕ([Xkl ⋄ B12,Pl])
= [ϕ(Xkl) ⋄ (A12 + B12),Pl] + [Xkl ⋄ (ϕ(A12) + ϕ(B12)),Pl]
+ [Xkl ⋄ (A12 + B12), ϕ(Pl)]
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and

ϕ([Xkl ⋄ (A12 + B12),Pl]) = [ϕ(Xkl) ⋄ (A12 + B12),Pl] + [Xkl ⋄ ϕ(A12 + B12),Pl]
+ [Xkl ⋄ (A12 + B12), ϕ(Pl)].

Then [Xkl ⋄ T,Pl] = 0. This implies that PlTPl = 0. For any A12 ∈ A12, by [P1 ⋄ A12,P2] = 0, we have

ϕ([P1 ⋄ (A12 + B12),P2]) = ϕ([P1 ⋄ A12,P2]) + ϕ([P1 ⋄ B12,P2])
= [ϕ(P1) ⋄ (A12 + B12),P2] + [P1 ⋄ (ϕ(A12) + ϕ(B12)),P2]
+ [P1 ⋄ (A12 + B12), ϕ(P2)].

On the other hand,

ϕ([P1 ⋄ (A12 + B12),P2]) = [ϕ(P1) ⋄ (A12 + B12),P2] + [P1 ⋄ ϕ(A12 + B12),P2]
+ [P1 ⋄ (A12 + B12), ϕ(P2)].

Then [P1 ⋄ T,P2] = 0. Hence P2TP1 = 0.
It follows from the above expression that ϕ(A12 + B12)− (ϕ(A12)+ϕ(B12)) ∈ A12. Let T12 = ϕ(A12 + B12)−

(ϕ(A12) + ϕ(B12)). Then, there exists S21 ∈ A21 such that S21 = ϕ(−A∗12 − B∗12) − (ϕ(−A∗12) + ϕ(−B∗12)). By
[(P2 + A∗12) ⋄ (P1 + B12),P2] = A12 + B12 − A∗12 − B∗12 and Lemma 2.3, we can obtain that

ϕ(A12 + B12−A∗12 − B∗12) = ϕ([(P2 + A∗12) ⋄ (P1 + B12),P2])
= [ϕ(P2 + A∗12) ⋄ (P1 + B12),P2] + [(P2 + A∗12) ⋄ ϕ(P1 + B12),P2]
+ [(P2 + A∗12) ⋄ (P1 + B12), ϕ(P2)]
= [(ϕ(P2) + ϕ(A∗12)) ⋄ (P1 + B12),P2]
+ [(P2 + A∗12) ⋄ (ϕ(P1) + ϕ(B12)),P2] + [(P2 + A∗12) ⋄ (P1 + B12), ϕ(P2)]
= ϕ([A∗12 ⋄ P1,P2]) + ϕ([P2 ⋄ B12,P2]) = ϕ(A12 − A∗12) + ϕ(B12 − B∗12)
= ϕ(A12) + ϕ(B12) + ϕ(−A∗12) + ϕ(−B∗12).

Thus T12 + S21 = 0. It follows that T12 = 0, and so T = 0. Similarly, we can show that (2) holds.

Lemma 2.5. For all Aii,Bii ∈ Aii with (i = 1, 2), we have
(1) ϕ(A11 + B11) = ϕ(A11) + ϕ(B11);
(2) ϕ(A22 + B22) = ϕ(A22) + ϕ(B22).

Proof. (1) Write T = ϕ(A11 + B11) − (ϕ(A11) + ϕ(B11)). For any X12 ∈ A12, it follows from [X12 ⋄ A11,P2] = 0
that

ϕ([X12 ⋄ (A11 + B11),P2]) = ϕ([X12 ⋄ A11,P2]) + ϕ([X12 ⋄ B11,P2])
= [ϕ(X12) ⋄ (A11 + B11),P2] + [X12 ⋄ (ϕ(A11) + ϕ(B11)),P2]
+ [X12 ⋄ (A11 + B11), ϕ(P2)]

and

ϕ([X12 ⋄ (A11 + B11),P2]) = [ϕ(X12) ⋄ (A11 + B11),P2] + [X12 ⋄ ϕ(A11 + B11),P2]
+ [X12 ⋄ (A11 + B11), ϕ(P2)].

Then [X12 ⋄ T,P2] = 0. Hence P2TP2 = 0. For 1 ≤ k , l ≤ 2, it follows from [Pk ⋄ A11,Pl] = 0 that

ϕ([Pk ⋄ (A11 + B11),Pl]) = ϕ([Pk ⋄ A11,Pl]) + ϕ([Pk ⋄ B11,Pl])
= [ϕ(Pk) ⋄ (A11 + B11),Pl] + [Pk ⋄ (ϕ(A11) + ϕ(B11)),Pl]
+ [Pk ⋄ (A11 + B11), ϕ(Pl)].
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On the other hand,

ϕ([Pk ⋄ (A11 + B11),Pl]) = [ϕ(Pk) ⋄ (A11 + B11),Pl] + [Pk ⋄ ϕ(A11 + B11),Pl]
+ [Pk ⋄ (A11 + B11), ϕ(Pl)].

Then [Pk ⋄ T,Pl] = 0. Hence PlTPk = 0. For any X21 ∈ A21, it follows from Lemma 2.3 and Lemma 2.4 that

ϕ([X21 ⋄ (A11 + B11),P1]) = ϕ(X21A∗11 − A11X∗21 + X21B∗11 − B11X∗21)
= ϕ(X21A∗11 + X21B∗11) + ϕ(−A11X∗21 − B11X∗21)
= ϕ(X21A∗11) + Φ(X21B∗11) + ϕ(−A11X∗21) + Φ(−B11X∗21)
= ϕ(X21A∗11 − A11X∗21) + ϕ(X21B∗11 − B11X∗21)
= [ϕ(X21) ⋄ (A11 + B11),P1] + [X21 ⋄ (ϕ(A11) + ϕ(B11)),P1]
+ [X21 ⋄ (A11 + B11), ϕ(P1)].

On the other hand,

ϕ([X21 ⋄ (A11 + B11),P1]) = [ϕ(X21) ⋄ (A11 + B11),P1] + [X21 ⋄ ϕ(A11 + B11),P1]
+ [X21 ⋄ (A11 + B11), ϕ(P1)].

Then [X21 ⋄ T,P1] = X21T∗P1 − P1TX∗21 = 0, which implies that P1TX∗21 = 0. Hence P1TP1 = 0, and so T = 0.
Similarly, we can show that (2) holds.

Lemma 2.6. ϕ is additive onA.

Proof. Let A =
∑2

i, j=1 Ai j, B =
∑2

i, j=1 Bi j, where Ai j,Bi j ∈ Ai j. It follows from Lemma 2.3-2.5 that

ϕ(A + B) = ϕ(
2∑

i, j=1

Ai j +

2∑
i, j=1

Bi j) = ϕ(
2∑

i, j=1

(Ai j + Bi j))

=

2∑
i, j=1

ϕ(Ai j + Bi j) = ϕ(
2∑

i, j=1

Ai j) + ϕ(
2∑

i, j=1

Bi j) = ϕ(A) + ϕ(B).

Hence ϕ is additive.

Lemma 2.7. P1ϕ(Pi)P2 = P1ϕ(Pi)∗P2, P2ϕ(Pi)P1 = P2ϕ(Pi)∗P1, i ∈ {1, 2}.

Proof. It follows from Lemma 2.2 and Lemma 2.6 that

0 = ϕ([P1 ⋄ P2,P1]) = [ϕ(P1) ⋄ P2,P1] + [P1 ⋄ ϕ(P2),P1]
= [ϕ(P1)P2 + P2ϕ(P1)∗,P1] + [P1ϕ(P2)∗ + ϕ(P2)P1,P1]
= P2ϕ(P1)∗P1 − P1ϕ(P1)P2 + P1ϕ(P2)∗P1 + ϕ(P2)P1 − P1ϕ(P2)∗ − P1ϕ(P2)P1

= P2ϕ(P1)∗P1 − P1ϕ(P1)P2 − P1ϕ(P2)∗P2 + P2ϕ(P2)P1.

= P2ϕ(P1)∗P1 − P1ϕ(P1)P2 + P1ϕ(P1)∗P2 − P2ϕ(P1)P1.

Hence P1ϕ(P1)P2 = P1ϕ(P1)∗P2 and P2ϕ(P1)P1 = P2ϕ(P1)∗P1. Similarly, we can obtain that

P1ϕ(P2)P2 = P1ϕ(P2)∗P2 and P2ϕ(P2)P1 = P2ϕ(P2)∗P1.
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Remark 2.1. Let T = P1ϕ(P1)P2 − P2ϕ(P1)P1. It follows from Lemma 2.7 that T∗ = −T. Defining a map
δ : A→A by δ(A) = ϕ(A) − [A,T] for all A ∈ A. By Lemma 2.6 and Lemma 2.7, it is easy to check that δ is
an additive map, and satisfies

δ([A ⋄ B,C]) = [δ(A) ⋄ B,C] + [A ⋄ δ(B),C] + [A ⋄ B, δ(C)]

for any A,B,C ∈ M. Besides,
δ(Pi) = P1δ(Pi)P1 + P2δ(Pi)P2 (2.1)

with i ∈ {1, 2}.

Lemma 2.8. δ(iA) − iδ(A) + (δ(iI) − iδ(I))A ∈ Z(A) for any A ∈ Asa.

Proof. It follows from Lemma 2.2 that

0 = δ([iA ⋄ I,C]) = [δ(iA) ⋄ I,C] + [iA ⋄ δ(I),C]

and
0 = δ([A ⋄ iI,C]) = [δ(A) ⋄ iI,C] + [A ⋄ δ(iI),C]

for any A ∈ Asa, C ∈ A. Then
δ(iA) + δ(iA)∗ − i(δ(I) − δ(I)∗)A ∈ Z(A) (2.2)

and
iδ(A)∗ − iδ(A) + (δ(iI) + δ(iI)∗)A ∈ Z(A) (2.3)

for any A ∈ Asa. For any A ∈ Asa, it follows from Lemma 2.6 and iA ⋄ iI = A ⋄ I that

0 = δ([iA ⋄ iI − A ⋄ I,C]) = [δ(iA) ⋄ iI − δ(A) ⋄ I,C] + [iA ⋄ δ(iI) − A ⋄ δ(I),C].

By the above equation, we can see that

δ(iA) − δ(iA)∗ − i(δ(A) + δ(A)∗) − (δ(iI)∗ − δ(iI))A − i(δ(I)∗ + δ(I))A ∈ Z(A). (2.4)

Further more, by Eq.(2.2), Eq.(2.3) and Eq.(2.4), we can obtain that

δ(iA) − iδ(A) + (δ(iI) − iδ(I))A ∈ Z(A)

for any A ∈ Asa.

Lemma 2.9. (1) For any Ci j ∈ Ai j, δ(Ci j) ∈ Ai j with 1 ≤ i , j ≤ 2;
(2) δ(iP1) = P1δ(iP1)P1 and δ(iP2) = P2δ(iP2)P2;
(3) δ(I)∗ = −δ(I), δ(iA) − iδ(A) ∈ Z(A) for any A ∈ A.

Proof. (1) For any C12 ∈ A12,

2δ(C12) = δ([I ⋄ P1,C12]) = [δ(I) ⋄ P1,C12] + [I ⋄ δ(P1),C12] + [I ⋄ P1, δ(C12)]
= (δ(I) + δ(I)∗)C12 + (δ(P1) + δ(P1)∗)C12 − C12(δ(P1)∗ + δ(P1))
+ 2P1δ(C12) − 2δ(C12)P1. (2.5)

Multiplying Eq.(2.5) on both side by P1 and P2, respectively. It follows from Eq.(2.1) that

P1δ(C12)P1 = 0 and P2δ(C12)P2 = 0.

Multiplying Eq.(2.5) on the left-hand side by P2 and on the right-hand side by P1, then

P2δ(C12)P1 = 0.
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Hence δ(C12) = P1δ(C12)P2. Similarly, for any C21 ∈ A21, we can obtain that δ(C21) = P2δ(C21)P1.
(2) Take A = B = P2, C = iP1, it follows from Eq.(2.1) that

0 = δ([P2 ⋄ P2, iP1]) = [δ(P2) ⋄ P2, iP1] + [P2 ⋄ δ(P2), iP1]
+ [P2 ⋄ P2, δ(iP1)]
= 2(P2δ(iP1) − δ(iP1)P2).

Then P2δ(iP1)P1 = 0 and P1δ(iP1)P2 = 0. For any X12 ∈ A12, C ∈ A, it follows from [iP1 ⋄ X12,C] = 0 that

0 = δ([iP1 ⋄ X12,C]) = [δ(iP1) ⋄ X12,C]
= [δ(iP1)X∗12 + X12δ(iP1)∗,C].

Then
δ(iP1)X∗12 + X12δ(iP1)∗ ∈ Z(A) (2.6)

for any X12 ∈ A12. Multiplying Eq.(2.6) on the left-hand side by P2 and on the right-hand side by P1, we
can obtain that

P2δ(iP1)X∗12 = 0.

Sine A is prime, we have P2δ(iP1)P2 = 0. Hence δ(iP1) = P1δ(iP1)P1. In the same way, we can obtain that
δ(iP2) = P2δ(iP2)P2.

(3) It follows from Lemma 2.8 that

δ(iC12 + iC∗12) − iδ(C12 + C∗12) + (δ(iI) − iδ(I))(C12 + C∗12) ∈ Z(A)

for any C12 ∈ A12. From the assert (1), we have

δ(iC12) − iδ(C12) + (δ(iI) − iδ(I))C12 = 0. (2.7)

Replacing C12 by iC12 in Eq.(2.7), then

iδ(C12) − δ(iC12) + (δ(iI) − iδ(I))C12 = 0. (2.8)

It follows from Eq.(2.7) and Eq.(2.8) that δ(iI) = iδ(I). For any C12 ∈ A12, it follows from the assert (2) that

δ(iC∗12) − δ(iC12) = δ([C12 ⋄ I, iP1]) = [δ(C12) ⋄ I, iP1] + [C12 ⋄ δ(I), iP1]
+ [C12 ⋄ I, δ(iP1)]
= iδ(C12)∗ − iδ(C12) + iδ(I)C∗12 − iδ(I)∗C12

+ δ(iI)C∗12 − δ(iI)C12.

Thus
δ(iC12) − iδ(C12) − (δ(iI) + iδ(I)∗)C12 = 0. (2.9)

It follows from Eq.(2.7) and Eq.(2.9) that δ(iI) = 1
2 (iδ(I) − iδ(I)∗). Thus δ(iI)∗ = δ(iI), and so δ(I)∗ = −δ(I). By

Lemma 2.8, we have δ(iA) − iδ(A) ∈ Z(A) for any A ∈ Asa. For any A ∈ A, write A = A1 + iA2, where
A1,A2 ∈ Asa, then

δ(iA) − iδ(A) = δ(i(A1 + iA2)) − iδ(A1 + iA2)
= δ(iA1) − δ(A2) − iδ(A1) − iδ(iA2)
= δ(iA1) − iδ(A1) + i(iδ(A2) − δ(iA2)) ∈ Z(A).
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Remark 2.2. Let Φ(A) = δ(A) − δ(I)A. Obviously, Φ : A→A is an additive map and Φ(I) = 0.

The proof of Theorem 2.1. For any B,C ∈ A, on the one hand,

δ([B∗ + B,C]) = δ([I ⋄ B,C]) = [δ(I) ⋄ B,C] + [I ⋄ δ(B),C] + [I ⋄ B, δ(C)]
= [δ(I)B∗ + δ(I)∗B,C] + [δ(B)∗ + δ(B),C]
+ [B∗ + B, δ(C)]. (2.10)

On the other hand, it follows from Lemma 2.9 that

δ([−B∗ + B,C]) = δ([iI ⋄ B, iC]) = [δ(iI) ⋄ B, iC] + [iI ⋄ δ(B), iC]
+ [iI ⋄ B, δ(iC)]
= [−δ(I)B∗ + δ(I)∗B,C] + [−δ(B)∗ + δ(B),C]
+ [−B∗ + B, δ(C)]. (2.11)

Compare Eq.(2.10) and Eq.(2.11), we have

δ([B,C]) = [δ(I)∗B + δ(B),C] + [B, δ(C)] (2.12)

for any B,C ∈ A. For any A,B,C ∈ A, it follows from Eq.(2.12) that

δ([A ⋄ B,C]) = [δ(I)∗A ⋄ B + δ(A ⋄ B),C] + [A ⋄ B, δ(C)].

On the other hand,
δ([A ⋄ B,C]) = [δ(A) ⋄ B,C] + [A ⋄ δ(B),C] + [A ⋄ B, δ(C)].

Thus
δ(I)∗A ⋄ B + δ(A ⋄ B) − δ(A) ⋄ B − A ⋄ δ(B) ∈ Z(A). (2.13)

Take B = I in Eq.(2.13), we have

δ(A∗) − δ(A)∗ + (δ(I)∗ − δ(I))A∗ ∈ Z(A). (2.14)

It follows from Eq.(2.12) and Eq.(2.14) that

Φ([A,B]) = [Φ(A),B] + [A,Φ(B)]

and
Φ(A∗) −Φ(A)∗ ∈ Z(A) (2.15)

for any A,B ∈ A. By [11, Main Theorem], there exists an additive derivation θ : A → A such that
Φ(A) = θ(A) + ξ(A), where ξ : A→Z(A) is an additive map vanishing at commutators.

It follows from Lemma 2.9 and Eq.(2.15) that

θ(A∗i j) = θ(Ai j)∗ (2.16)

for any Ai j ∈ Ai j with 1 ≤ i , j ≤ 2. For any A11 ∈ A11,A12 ∈ A12, it follows from Eq. (2.16) that

θ(A∗12)A∗11 + A∗12θ(A∗11) = θ(A∗12A∗11) = θ(A11A12)∗ = θ(A∗12)A∗11 + A∗12θ(A11)∗

and
θ(A∗21)A∗11 + A∗21θ(A∗11) = θ(A∗21A∗11) = θ(A11A21)∗ = θ(A∗21)A∗11 + A∗21θ(A11)∗.

Thus
A∗12(θ(A∗11) − θ(A11)∗) = 0 and A∗21(θ(A∗11) − θ(A11)∗) = 0. (2.17)



Y. Yang, J. Zhang / Filomat 38:16 (2024), 5717–5726 5725

Write T = θ(A∗11) − θ(A11)∗. By Eq.(2.17), we have

A∗12T = 0 and A∗21T = 0.

Since A is prime, we can obtain that P1T = 0 and P2T = 0. Hence θ(A∗11) = θ(A11)∗. In the same way,
θ(A∗22) = θ(A22)∗. It follows that θ(A∗) = θ(A)∗. Since δ(A) = δ(I)A + θ(A) + ξ(A) for all A ∈ A. For any
A,B,C ∈ A, on the one hand,

δ([A ⋄ B,C]) = δ(I)[A ⋄ B,C] + θ([A ⋄ B,C]).

On the other hand,

δ([A ⋄ B,C]) = [(δ(I)A + θ(A) + ξ(A)) ⋄ B,C] + [A ⋄ (δ(I)B + θ(B) + ξ(B)),C]
+ [A ⋄ B, δ(I)C + θ(C) + ξ(C)]

Thus
[(δ(I)A + ξ(A)) ⋄ B,C] + [A ⋄ (δ(I)B + ξ(B)),C] = 0

for any A,B,C ∈ A. It follows from Lemma 2.9 that

[ξ(A) ⋄ B,C] + [A ⋄ ξ(B),C] = 0. (2.18)

For any X12 ∈ A12, take B = X12, C = P1 in Eq.(2.18), we have

[ξ(A) ⋄ X12,P1] = 0,

which implies that ξ(A)X∗12 − ξ(A)∗X12 = 0. Thus{
ξ(A)X∗12 = 0,
ξ(A)∗X12 = 0.

SinceA is prime, we have{
ξ(A)P1 = 0,
ξ(A)P2 = 0.

Thus ξ(A) = 0 for any A ∈ A. Since ϕ(A) = θ(A)+ [A,T]+ δ(I)A, it follows from Lemma 2.9 that there exists
an element λ ∈ Zs(A) such thatϕ(A) = d(A)+ iλA, where d(A) = θ(A)+[A,T] is an additive ∗-derivation.

Let M be a factor von Neumann algebra. It is well known that a factor von Neumann algebra M is
prime and its center is CI. As a consequence of Theorem 2.1, we have the following corollary.

Corollary 2.10. Let M be a factor von Neumann algebra with dimM > 1, and let ϕ : M → M be a nonlinear
mixed triple derivable mapping, that is, ϕ satisfies

ϕ([A ⋄ B,C]) = [ϕ(A) ⋄ B,C] + [A ⋄ ϕ(B),C] + [A ⋄ B, ϕ(C)]

for any A,B,C ∈ M if and only if there exists a real number λ such that ϕ(A) = d(A) + iλA, where d :M→M is
an additive ∗-derivation.
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