Filomat 38:16 (2024), 5753-5759
https://doi.org/10.2298/FIL2416753E

Published by Faculty of Sciences and Mathematics,
University of Ni§, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

2 S
) @
b, &
Ty xS’

5
TIprpor®

A variation of continuity in n-normed spaces
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Abstract. In this study, we examine the s-th forward difference sequence in an n-normed space X,
which tends to zero and is inspired by the consecutive terms of a sequence approaching zero. Functions
that transform sequences satisfying this condition into sequences that also satisfy it are called s-ward
continuous functions. Inclusion theorems related to this kind of continuity and uniform continuity are also
considered. Additionally, we investigate the concept of s-ward compactness of a subset of X via s-quasi-
Cauchy sequences. It turns out that the uniform limit of a sequence of s-ward continuous functions is also
s-ward continuous, and the set of s-ward continuous functions is a closed subset of the set of continuous
functions.

1. Introduction and preliminaries

Although some evaluations were initially made regarding the axioms of an abstract n-dimensional met-
ric, the main developments concerning the definition of the 2-metric, 2-normed spaces and their topological
properties were described by Gahler [8]. Subsequently these concepts were extended to the most general-
ized case of n-metric and n-normed spaces, where 7 is an arbitrary natural number, by Géhler[9]. Shortly
after the introduction of the concept of an n-normed space, the concept of a 2-inner product space was also
defined in [5]. Afterwards, many authors made impressive improvements in n-normed spaces and 2-inner
product spaces ([6, 10-13, 15, 17-19]). The notion of an n-normed space was conceived by considering
whether there exists a problem where the n-norm topology is effective while the norm topology is not. As
an application of the concept of an n-norm, we can examine cases where a term in the definition of the
n-norm reflects changes in shape; in such instances, the n-norm represents the associated volume of the
corresponding surface. Suppose that, for any particular output, one requires n-inputs, with one main input
and the remaining (n-1)-inputs as dummy inputs needed to complete the operation. This concept may find
applications in various scientific areas.

Definition 1.1. An n-norm on a real vector space X of dimension d, where 2 < n < d, is a real valued
function ||, ..., .|| on X" that satisfies the following conditions:

1. |lx1,x2, ..., x4|l = 0 if and only if x1, x, ..., X, are linearly dependent,
2. |lx1, x2, ..., X0l = lIxi,, ..., xi, || for every permutation (iy, ..., iy) of (1, ..., 1),
3. lx1, x2, ..., kxyll = Iklllx1, x2, ..., x,|| for any real number k,
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4. ly+z,x1, 0, Xl < Ny, X1, s Xl + 112, X1, o) Xl

A set X equipped with an n-norm ||, ..., .|| is referred to as an n-normed space.

Definition 1.2. A sequence (xx) is said to converge to an [ € X in an n-normed space X if, for each € > 0,
there exists a positive integer N such that for every k > N

llxx = Lug, ..., upqll <€, Yui,...,u,_1 € X

Definition 1.3. A sequence (xy) is called a Cauchy sequence if, for each € > 0, there exists a positive integer
N such that for every k,m > N

”xk_xmrul/---/un—lll <€/ vul,...,un,1 GX

If every Cauchy sequence in X converges to an element of X, we call X complete, and if X is complete,
then it is called an n-Banach space.

Recently, the notion of quasi-Cauchy sequences was introduced in [2]. The distance between consecutive
terms of a sequence tending to zero is expressed by Burton and Coleman through the quasi-Cauchy
sequence. Building on this concept, various types of continuity were defined in [3, 4, 7]. The aim of this
research is to generalize the notions of a quasi-Cauchy sequence and ward continuity of a function to
the concepts of an s-quasi-Cauchy sequence and s-ward continuity of a function in an n-normed space,
for any fixed positive integer s. Additionally, the paper presents interesting theorems related to ordinary
continuity, uniform continuity, compactness, and s-ward continuity. The results not only extend those of
[7] to an n-normed space but also introduce new findings in 2-normed spaces as a special case for n = 2.

2. Main results

In this paper, X represents a first countable n-normed space with an n-norm denoted by ||, ..., .||, R
denotes the set of all real numbers, and s represents a fixed positive integer.

Definition 2.1. A sequence (xx) of points in X is s-quasi-Cauchy if, for all uy, uy, ..., u,—1 € X, it satisfies

lim ”ASXk, Uy, Uz, ..., un—l“ = 0/
k—o0

where Asxy = x4s — xi for each positive integer k.

If one sets s = 1, the sequence reverts to ordinary quasi-Cauchy sequences. Additionally, utilizing the
equality
Xiers = Xk = Xrs = Xieas—1 T Xieas—1 = Xhas—2-00 = Xpr2 T Xpa2 = X1 + Xper1 — X,

we observe that any quasi-Cauchy sequence is s-quasi-Cauchy. However, the converse is not necessarily
true.

Every Cauchy sequence is s-quasi-Cauchy, as is any convergent sequence. Additionally, a sequence of
partial sums of a convergent series is s-quasi-Cauchy. One observes that the set A;(X), the set of s-quasi-
Cauchy sequences in X, forms a vector space. If (x¢) and (y) are s-quasi-Cauchy sequences in X such
that

lim ||Asxy, ut, to, ..., up-1|l = 0 and  Lim [|Asyx, w1, Uz, ..., p—1ll = 0
k— o0 k— o0

for all uy,uy, ..., u,—1 € X, then

lim ”As(xk + yk)/ Uy, Uy, ..., un—l” < lim ”ASXk, Uy, Uz, ..., un—l” + lim ||As]/k/ Uy, Uz, ..., Mn_lll =0.
k—oo k—oo k—o0

Thus, the sum of two s-quasi-Cauchy sequences is again s-quasi-Cauchy:. It is clear that (axy) is an s-quasi-
Cauchy sequence in X for any constanta € R.
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Definition 2.2. A subset A of X is termed s-ward compact if every sequence in the set A possesses an
s-quasi-Cauchy subsequence.

If a set A is an s-ward compact subset of X, then any subset of A is also s-ward compact. Furthermore,
any ward compact subset of X is s-ward compact. The union of a finite number of s-ward compact subsets
of X is s-ward compact. Additionally, any sequentially compact subset of X is s-ward compact.

For each real number a > 0, an a-ball with center a in X is defined as

Ba(a,x1, .., xp1) ={xeX:|la—x,x1—x, ..., xy-1 — x|| < a}

for x1,...,xy,-1 € X. The family of all sets W;(a) = By, (4, xiy, ..., X;,_,,), where i = 1,2, .., forms an open basis at
a. Let B,-1 be the collection of linearly independent sets B with 1 — 1 elements. For B € 8,1, the mapping

PB(X) = “X, X1y s xn—l”

forx € X, xi,...,x,-1 € B defines a seminorm on X, and the collection {pp : B € 8,-1} of seminorms makes X
a locally convex topological vector space. For each x € X, different from zero, there exist x1, ..., x,—1 € B such
that x, x1, xp, ..., x,—1 are linearly independent, so |x, x1, ..., x,-1]| # 0, which ensures that X is a Hausdorff
space. A neighborhood of the origin for this topology is in the form of a finite intersection

n

m{x € X e, xiy = x, 00, Xy — X|| <€},
i=1

where € > 0.

Now, the following theorem characterizes total boundedness, not only for n-normed spaces but also
for 2-normed spaces. It extends the results for quasi-Cauchy sequences given in [7] for 2-normed valued
sequences to n-normed valued s-quasi-Cauchy sequences, where setting s = 1 recovers earlier results for
2-normed spaces. It is worth noting that Theorem 3 in [4] can not be obtained simply by putting nn = 1 in the
n-normed space to obtain a normed space, which would be awkward. In contrast, the following theorem
is interesting for studying a new space.

Lemma 2.3. If a subset of X is totally bounded, then every sequence in A contains an s-quasi-Cauchy subsequence.

Proof. Let A be totally bounded, and consider any sequence (x,) in A. Since A is totally bounded, it is
covered by a finite number of balls in X with diameter less than 1. Let A; be one of these sets covering A
with diameter less than 1, x,,, be an element of the sequence (x,) that lies in A;. As A is totally bounded, it
is covered by a finite number of balls with diameter less than 1/2. Choose of these balls and denote it as A;.
This ball must contain x, for infinitely many values of n. Choose a positive integer n, such that n, > #n; and
Xn, € Ap. Since A, C Ay, it follows that x,,, € A;. Continue this process iteratively. At the k-th step, choose
a ball Ay in Ay_1 of diameter less than 1/k that contains x,, for infinitely many n. Choose 7 > 1y, for any
positive integer k, such that x,, € Ax. So, Xu,, Xu.1/ s Xy, - lie in Ag. The diameter of Ay is less than 1/k,
so the distance between any two terms x,, and x,,, for s > 0is less than 1/k. As k increases, the diameter
of Ay decreases, and therefore, the distance betwen terms in the subsequence becomes arbitrarily small as
k increasess. Therefore, (x,,) is an s-quasi-Cauchy subsequence of (x,). O

Theorem 2.4. A subset of X is totally bounded if and only if it is s-ward compact for every positive integer s.

Proof. If A is totally bounded, then, according to Lemma 2.3, every sequence in A possesses an s-quasi-
Cauchy subsequence. Consequently, the set A is s-ward compact for any given positive integer s. Assume A
is not a totally bounded set. Choose any x1 € A and a > 0. Since A is not totally bounded, the neighborhood
of a point x; in A, denoted by Ba(x1, uj, .., u} ) = {y € A;llx1 —y,u; =y, ..., u} | — yll < a}, is not equal to A.
Consequently, there exists x, € A such that x, ¢ Ba(x1, uj, ..., u} ), implying, |lx — x2, u; — X2, ..., 1l | = x| >
a. As A is not totally bounded, the union of the neighborhoods Ba(x1,uj, ..., u} ;) U Ba(x2,13,...,u% )
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is not equal to A, where B,(xz, ”%""'”;21—1) is the neighborhood of a point x, in A. Continuining this

procedure, we obtain a sequence (xi) of points in A such that xy,s ¢ Uf:f -1 B (xi, ug, ey ”;71)' Consequently,

Xk — X, s = Xk, oo il — x| > @, for all nonzero ul, ..., u!_, in A, wherei=1,..,k+s—1. As a result, the

sequence (x¢) has no s-quasi-Cauchy subsequence for any positive integer s, contradicting the assumption
that A is s-ward compact for every positive integer s. Therefore, if A is not totally bounded, it can not be
s-ward compact for some positive integers. [

Definition 2.5. A function f is termed s-ward continuous on a subset A of X if
limes ool | AsXi, U1, Us, ..., Upy_1|| = 0
is satisfied, for all uq, us, ..., u,—1 € X, then
limgsoollAs f (xx), f (1), f(u2), ..., f(un-1)Il = 0.
Theorem 2.6. Any function f that is s-ward continuous function on a subset A of X is continuous on A.
Proof. Let f be s-ward continuous on A C X, and consider any sequence (x) in A converging to /, that is
limi ool — Luq, un, ..., 1| = 0
for all uy, uy, ..., uy—1 € X. Now, let’s construct a new sequence using certain terms from (xy):
(tn) = (1, ey x1, Lo, Lo, o, x0, L) Lo Xy e, X, 1,00 L)

where the same terms are repeated s-times. Since every convergent sequences is Cauchy, and moreover,
any Cauchy sequence is s-quasi-Cauchy, it follows that

limm—»oo”Astm/ Uy, Uy, ..., un—l” = limm—»oo”tmﬂ - tmr Uy, Uz, ..., un—l“ =0

where either
llmm—>00||tm+s - l/ uy, us, ..., un—l” = 0

or
llmnl—)oo”l - tm/ Uy, Uz, ...y uVIle = 0

for every uy, Uy, ..., uy—1. This result implies that (t,,) is an s-quasi Cauchy sequence. Now, since the function
f is assumed to be s-ward continuous, utilizing this assumption yields

limm—WOHAsf(tm)/ f(ul)/ f(uZ)/ oo f(un—l)“
= limm—»oo”f(tmﬂ) - f(tm)r f(ul)r f(MZ)r ceer f(un—l)” =0

where either
limp—oollf (tmss) = fF(D), f(u1), f(u2), ..., f(un-1)|l = 0

or

limp—ooll f(I) = f(tm), f(u1), f(2), .., f(un-1)Il = O.
Hence, (f(xx)) converges to f(I). O
Since the sum of two s-ward continuous functions on A is s-ward continuous, and cf is s-ward continuous
for any constant real number c, the set of s-ward continuous functions on A forms a vector subspace of the

vector space of all continuous function on A.

Theorem 2.7. Every s-ward continuous function on A C X is also ward continuous on A.
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Proof. Assume that (x¢) is a quasi-Cauchy sequence in A, and f is any s-ward continuous function on A. If
s = 1, the result is obvious. For s > 1, consider a sequence

(tm) = (X1, X1y eees X1, X2, X2, eees X2, ooy Xy Xy ooey Xy )/

s—times s—times s—times

that is, s-quasi-Cauchy, meaning

lim o ool [Astim, Ur, Uo, ..., Up_1|| = 0.
We then have

litt o llAs f(tm), f (1), f(u2), ooy f(tn-1)Il = 0
by utilizing the s-ward continuity of the function f. Therefore,

limoollAf (tm), f (1), f(12), ., f(Un-2)Il = 0.
Thus, the s-ward continuity of the function f implies the ward continuity of fon A Cc X. O
Theorem 2.8. The image of an s-ward compact subset of X under an s-ward continuous function is s-ward compact.

Proof. Assume that f is an s-ward continuous function, and A is an s-ward compact subset of X. Choose
a sequence t as t = () C f(A), where (#) = (f(xx)) with xx € A. Since A is s-ward compact, there exists a
subsequence (x,) of (xx) such that

lim ||Asxp, 1, Ua, ..., y-1l] =0
m—oo

for all uy, uy, ..., uy—1 € X. Utilizing the s-ward continuity of f, we have
Tim 1A f ), fan), flt2), -, ftn)ll = 0.

So, there exists an s-quasi-Cauchy subsequence (f(x,,)) of . This result implies that the subset f(A) C X is
s-ward compact. O

The s-ward continuous image of any compact subset of X is compact. This result follows directly from
Theorem 2.6.

Theorem 2.9. If a function f is uniformly continuous on a subset A of X, then it is also s-ward continuous on A.

Proof. Let f be a uniformly continuous function on A, and consider the sequence (xx) an s-quasi-Cauchy
sequence in A. The aim is to prove that the sequence (f(xx)) is also an s-quasi-Cauchy sequence in A. Take
any ¢ > 0. There exists a 0 > 0 such that if

e =y, u1, iz, . unall <6, then [|f(x) = f(y), f(ur), f(u2), .., fun-1)ll <e.

For this 6 > 0, there exists an N = N(0) such that
[[Asxk, U1, Uz, ..., Up—1|| < 6

for every ui, uy, ...,uy—1 € X whenever k > N. The uniform continuity of f on A for every k > N implies
As f(xi), f(ur), f(2), .., fun-1)ll < €

for every f(u1), f(u2), ..., f(un—1) € X. Consequently, the sequence (f(xx)) is s-quasi-Cauchy, demonstrating
that the function f is s-ward continuous. [
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Theorem 2.10. The uniform limit of a sequence of s-ward continuous functions is also s-ward continuous.

Proof. Let (f;) be a sequence of s-ward continuous functions uniformly converging to a function f. Consider
an s-quasi-Cauchy sequence (xx) in A, and choose any ¢ > 0. There exists an integer N € Z* such that

Hﬂ@—ﬂ@f@ﬂﬂm%wﬂW4m<§

for every x € A, and all f(u1), f(u2), ..., f(un—1) € X whenever t > N. Utilizing the s-ward continuity of fy,
there is a positive integer N;(¢) > N such that

€
A fe(xi), f(ur), f(u2), ..., f(un-1)Il < 3
for every t > N1. Now, for t > Nj, we have

As f(xi), f(u1), f(2), oes ftn-DIl = [1f (irs) — f(x5), f(u1), f(u2), ..., f(un-1)ll
S f (kas) = fNCkas), f(11), f(12), oos fltn-)Il + 1As fr(xx), f(u1), f(12), -.p fUtn-)ll
HlIfn () = f(xe), fun), f(u2), ooy flun-Dll < 5+ 5+ 5 =€

Therefore, the function f is s-ward continuous on A. [

Theorem 2.11. The collection of the s-ward continuous functions on A C X forms a closed subset of the collection of
all continuous functions on A.

Proof. Let E be the collection of all s-ward continuous functions on A C X, and E be the closure of E. E is
defined such that for every x € X, there exists x; € E with limy_ xx = x, and E is closed if E = E. It is

obvious that E C E. Let f be any element of the set of all closure points of E, which means there exists a
sequence of points f; in E such that

Hm (s = £, fGn), f(2), o, flatn-)ll = 0
for all f(u1), f(u2), ..., f(uyn—1) € X, and f; is a s-ward continuous. Choose the sequence (xx) as any s-quasi-

Cauchy sequence. Since (f;) converges to f, for every € > 0 and x € E, there is any N such that for every
t>N,

Hﬂw—ﬂwJWMﬂm%wﬂW4m<§

As fy is s-ward continuous, N1 > N exists such that for all f > Nj,
€
As fn(xx), f(ur), f(u2), .., fua-1)ll < 3
Hence, for all t > Ny,

1A f(xx), f(ur), f(u2), oy ftn-DIl = |If Ckrs) — fxx), f(11), f(U2), .., f(un-1)ll
Sf Kers) = fnOrs), f(un), f(uz), ooy fn=)Il + 11f(ex) — fin(xx), f(ur), f(uz), ..., fun-1)ll
HIAs fn (), f(u1), f(u2), ooy flun-DIl < 5+ 5+ 5 =€

Since the function f is s-ward continuous in E, then E = E, using Theorem 2.6, and it concludes the proof. [
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3. Conclusion

This paper investigates the generalization of the notions of quasi-Cauchy sequences and ward continu-
ous functions to the concepts of s-quasi-Cauchy sequences and s-ward continuous functions in #n-normed
spaces. Additionally, intriguing interesting inclusion theorems related to ordinary continuity, uniform con-
tinuity, s-ward continuity, and s-ward compactness are established. The paper establishes that the uniform
limit of a sequence of s-ward continuous functions is s-ward continuous, and the set of s-ward continuous
functions forms a closed subset of the set of continuous functions. We recommend further research on
s-quasi-Cauchy sequences of points and fuzzy functions in an n-normed fuzzy space as potential avenues
for further studies. However, due to structural differences, the methods of proof may differ from those
presented in this study (see [16], [1]). Additionally, we suggest investigating s-quasi-Cauchy sequences of
double sequences in n-normed spaces as another potential area for further study (see [20], [14]).
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