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Examination of the topological equivalence of some dynamical systems
on the Box fractal

Nisa Aslana

aEskişehir Technical University, Department of Mathematics, 26470, Eskişehir, Turkey

Abstract. In this paper, we examine dynamical systems obtained with the same expanding and different
numbers of folding transformations on the Box fractal (B). We express these dynamical systems through the
addresses of points by using the terms of {0, 1, 2, 3, 4}. We then compute and compare the periodic points of
the dynamical systems. Finally, we examine these systems in the sense of topological equivalence and we
investigate the chaos conditions for the dynamical systems.

1. Introduction

In the literature, it has been seen that fractals, which are popular shapes because of their different features,
have been frequently included in the many studies for a long time [1, 5, 9, 10, 13, 14, 17]. Especially, due to
the characteristic of self-similarity, the examination of the properties of many structures on the fractals can
be more systematic and comprehensible. Some maps defined on the fractals, which have many remarkable
and interesting features, are well known in the literature. For instance, the Tent map and Horse-shoe map
are favoured and distinctive examples, which are defined on the Cantor set (C) and C × C respectively (see
in [7]). Since, it can be easier to examine the properties of the dynamical systems, to define these systems on
the fractals can be more significant and sensible. There are many studies about dynamical systems defined
on many fractal sets such as Sierpinski gasket, Sierpinki tetrahedron, Cantor set, Cantor dust, Box fractal
etc. (see in [2–4, 6, 18]). It can be seen that to express these dynamical systems with the help of the code
representations of the points provides many conveniences in computing of periodic points, investigating
the topological conjugacy and other properties. Therefore, defining an intrinsic metric formula via the
addresses of points on the related self-similar set is a remarkable matter.

In [4], two dynamical systems are defined on the code sets of the Box fractal. Moreover, there is an
intrinsic metric formula, which is defined on B via code representations in [16]. Thanks to this useful
metric, it is shown that the dynamical systems defined in [4] are chaotic in the sense of Devaney. However,
there is no study about examining the topological conjugacy of any dynamical systems on the Box fractal.
As a result of this, in this study we propose to construct some dynamical systems on this self-similar set
B by using different number of folding mappings. We notice that in some cases, the number of folding
mappings and at which levels these mappings take place can effect the number of the periodic points of
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order n. These dynamical systems are defined via code representations of points to facilitate the analysis of
chaos conditions and topological equivalence.

In the present paper, we first give some necessary definitions and notions. Then, in order to obtain
different dynamical systems, we construct the functions F, G and T by using the same expanding and
different number of folding mappings on the Box fractal. One can clearly see the effects of these functions
on the code sets of B in Figure 2, Figure 3 and Figure 4 respectively. Then, we express these dynamical
systems via code representations in Proposition 2.1, Proposition 2.3 and Proposition 2.4. This new expression
enables us to determine whether these dynamical systems are chaotic or not with the help of the intrinsic
metric formula in Theorem 1.4. In addition, we find the periodic points with basic computations, we thus
get a result that these systems are not topologically equivalent. Finally, we also give an example of a
dynamical system which is topologically conjugate to {B; G} (see in Figure 5) and we find a conjugacy map
between these systems in Lemma 3.5. Through this map, we also compute the periodic points of {B; G′}
using the periodic points of {B; G}.

First of all we give some fundamental notions.

Definition 1.1. Let (X, d) be a metric space and f : X→ X be a transformation. Then f is called a dynamical
system on X which is represented by {X; f }.

Definition 1.2. Two dynamical systems {X; f } and {Y; 1} are topologically conjugate (equivalent), if there
exists a homeomorphism h : X → Y such that 1 = h ◦ f ◦ h−1 (or equivalently h( f (x)) = 1(h(x)) for every
x ∈ X) (see [10]).

Definition 1.3. A dynamical system {X; f } is called chaotic in the sense of Devaney, if it satisfies density of
periodic points, sensitivity dependence on initial conditions and topological transitivity.

Density of periodic points: If there is a periodic point of f , which is sufficiently close to any point of X,
the periodic points of f are dense on X.

Sensitivity dependence on initial conditions: If there exists an ϵ > 0 such that for any x ∈ X and any ball
B(x, δ), there exists y ∈ B(x, δ) and an integer n ≥ 0 satisfying that d( f n(x), f n(y)) > ϵ, then we call that {X; f }
has sensitive dependence on initial conditions.

Topological transitivity: If for any non-empty open subsets U,V ⊂ X there exists an integer n such that
U ∩ f n(V) , ∅, then {X; f } is said to have topological transitivity (see [12]).

Throughout this paper, we express the dynamical systems by using the code representations of the
points. Thus, we now define the code sets on Box fractal and the code representations of the points on B :

It is known that according to Hutchinson theory [15], Box fractal on [− 1
2 ,

1
2 ]× [− 1

2 ,
1
2 ] can be constructed

by using the following contraction mappings, where wi : R2
→ R2 (i = 0, 1, 2, 3, 4) such that
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In this case B is called as the attractor of the iterated function system (IFS) {R2; w0,w1,w2,w3,w4} that is
B =
⋃4

i=0 ωi(B). By the contraction mappings w0,w1, w2,w3 and w4 the middle part of B denoted by B0, the
upper-right part of B denoted by B1, the upper-left part of B denoted by B2, the lower-left part of B denoted
by B3 and the lower-right part of B denoted by B4 are obtained respectively (see Figure 1).

It is seen that from the above figure, the union of these code sets B0,B1,B2,B3,B4 forms the Box fractal
(B).
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Figure 1: Box fractal with contraction mappings

Let σ = x1x2 . . . xn, for all xi ∈ {0, 1, 2, 3, 4} for i = 1, 2, . . . ,n. Then any subset at level n, Bσ could be
defined as Bσ = wσ(B),where wσ = wxn ◦ . . .◦wx2 ◦wx1 , (for details see Figure 1). It is obvious that the middle
part of Bσ is Bσ0, the upper-right part of Bσ is Bσ1, the upper-left part of Bσ is Bσ2, the lower-left part of Bσ is
Bσ3 and the lower-right part of Bσ is Bσ4.

On the other hand, there is a relationship between the sets Bx1 , Bx1x2 , Bx1x2x3 , . . . as follows

Bx1 ⊃ Bx1x2 ⊃ Bx1x2x3 ⊃ . . . ⊃ Bx1x2...xn ⊃ . . . .

Then by the Cantor intersection theorem,

∞⋂
n=1

Bσ = {X}

is a point on B, say X. The address (code representation) of the point X is represented by the sequence
x1x2 . . . xn . . . (see [16]).

Bσ is also a part of B. It is quite apparent that the union of

Bσω = {σωxn+2xn+3xn+4 . . . |ω, xi ∈ {0, 1, 2, 3, 4} and i = n + 2,n + 3, . . .}

forms Bσ.
Note that for i = 0 and j , 0, the set Bσi ∩ Bσ j has only one point. Let {X} = Bσω ∩ Bσ0, then both the

nested sets

Bσ ⊃ Bσω ⊃ Bσωω′ ⊃ Bσωω′ω′ ⊃ Bσωω′ω′ω′ ⊃ . . .

and
Bσ ⊃ Bσ0 ⊃ Bσ0ω ⊃ Bσ0ωω ⊃ Bσ0ωωω ⊃ . . .

contains the junction point, X. That means X is represented by

σωω′ω′ω′ . . . and σ0ωωω . . .

where

ω′ =


3, ω = 1
4, ω = 2
1, ω = 3
2, ω = 4.
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Here, ω′ is named as the conjugate of ω. The point A in Figure 1 has two code representations which are
42222 . . . and 04444 . . ..

In the present paper, we also use the intrinsic metric formula on the Box fractal in [16] via the code
representations of the points as follows:

Theorem 1.4. ([16]) Let x1x2x3 . . . xk−1xkxk+1 . . . and y1y2y3 . . . yk−1ykyk+1 . . . be two code representations, respec-
tively, of the points X ∈ B and Y ∈ B such that xi = yi for i = 1, 2, 3, . . . k − 1 and xk , yk. Then the function
dbox : B × B→ R+ ∪ {0} such that

dbox(X,Y) =


√

2
3k +DX +DY, xk , 0 , yk

DX̃ +DY, xk = 0, yk , 0
DX +DỸ, xk , 0, yk = 0

where X̃ and Ỹ have the code representations x1x2 . . . xk−1y′kxk+1 . . . and y1y2 . . . yk−1x′kyk+1 . . . respectively, determines
the strictly intrinsic metric on the Box fractal B.

Here, DX is computed as follows:

DX =

∞∑
n=k+1

|An|

where

|An| =


0, xn = tn
√

2
3n , xn = 0

2
√

2
3n , otherwise

such that

tn =

{
tn−1, xn = tn−1 or xn = 0
x′n, otherwise

and tk = x′k.

2. The dynamical systems {B; F}, {B; G} and {B; T}

We now intend to define dynamical systems on B via an expanding and different number of folding
mappings. These systems are defined on B, restricted on the square [− 1

2 ,
1
2 ] × [− 1

2 ,
1
2 ]. To define the first

dynamical system on B, considering the geometrical structure of the Box fractal, we firstly choose one
expanding and 4 folding mappings as given below:

fi : R2
→ R2 (i = 1, 2, 3, 4, 5)

f1(x, y) =
(
3x, 3y

)
,

f2(x, y) =
(
−

1
2

∣∣∣x + y − 1
∣∣∣ + 1

2
(x − y − 1) + 1,−

1
2

∣∣∣x + y − 1
∣∣∣ − 1

2
(x − y − 1)

)
,

f3(x, y) =
(1

2

∣∣∣x − y + 1
∣∣∣ + 1

2
(x + y + 1) − 1,−

1
2

∣∣∣x − y + 1
∣∣∣ + 1

2
(x + y + 1)

)
,

f4(x, y) =
(1

2

∣∣∣x + y + 1
∣∣∣ + 1

2
(x − y + 1) − 1,

1
2

∣∣∣x + y + 1
∣∣∣ − 1

2
(x − y + 1)

)
,

f5(x, y) =
(
−

1
2

∣∣∣x − y − 1
∣∣∣ + 1

2
(x + y − 1) + 1,

1
2

∣∣∣x − y − 1
∣∣∣ + 1

2
(x + y − 1)

)
.

We construct the function F,which is composed by f1, f2, f3, f4, f5 on B as follows

F = f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1. (1)
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Figure 2: The dynamical system {B; F} on the Box fractal

Then the dynamical system defined in this way on the Box fractal is denoted by {B; F}. We can see the
effects of these functions geometrically in the Figure 2.

Another dynamical system with an expanding and 5 folding transformations, is defined as {B; G},where
G is the composition function of the following mappings: 1i : R2

→ R2 (i = 1, 2, 3, 4, 5, 6)

11(x, y) =
(
3x, 3y

)
,

12(x, y) =
(
−

1
2

∣∣∣x + y − 2
∣∣∣ + 1

2
(x − y − 2) + 2,−

1
2

∣∣∣x + y − 2
∣∣∣ − 1

2
(x − y − 2)

)
,

13(x, y) =
(
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2
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1
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2
(x − y − 1)

)
,
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15(x, y) =
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(
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2
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1
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2
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)
such that

G = 16 ◦ 15 ◦ 14 ◦ 13 ◦ 12 ◦ 11. (2)

Note that the first mappings of both F and G are expanding transformations that expand the points
three times. The other transformations are folding mappings, indeed G has one more different mapping
from F, which is a folding transformation 12 that moves the points from the upper hand side of the line
y = −x + 2 to the lower hand side. Both f2, f3, f4, f5 and 13, 14, 15, 16 are folding mappings with respect to
the lines y = −x + 1, y = x + 1, y = −x − 1, and y = x − 1 respectively.
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Figure 3: The effect of G on the Box fractal

We define the last dynamical system on the Box fractal {B,T}with the following mappings
ti : R2

→ R2 (i = 1, 2, 3, 4, 5, 6, 7, 8, 9)

t1(x, y) =
(
3x, 3y

)
,

t2(x, y) =
(
−

1
2

∣∣∣x + y − 2
∣∣∣ + 1

2
(x − y − 2) + 2,−

1
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∣∣∣x + y − 2
∣∣∣ − 1

2
(x − y − 2)

)
,
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(
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1
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∣∣∣ + 1

2
(x − y − 1) + 1,−
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2
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)
,

t4(x, y) =
(1

2
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2
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1
2

∣∣∣x − y + 2
∣∣∣ + 1

2
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)
,

t5(x, y) =
(1
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2
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2
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)
,

t6(x, y) =
(
−

1
2

∣∣∣x − y − 2
∣∣∣ + 1

2
(x + y − 2) + 2,

1
2

∣∣∣x − y − 2
∣∣∣ + 1

2
(x + y − 2)

)
,

t7(x, y) =
(
−

1
2
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2
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)
,

t8(x, y) =
(1

2

∣∣∣x + y + 2
∣∣∣ − 1

2
(−x + y − 2) − 2,

1
2

∣∣∣x + y + 2
∣∣∣ + 1

2
(−x + y − 2)

)
,

t9(x, y) =
(1

2

∣∣∣x + y + 1
∣∣∣ + 1

2
(x − y + 1) − 1,

1
2

∣∣∣x + y + 1
∣∣∣ − 1

2
(x − y + 1)

)
.

such that

T = t9 ◦ t8 ◦ t7 ◦ t6 ◦ t5 ◦ t4 ◦ t3 ◦ t2 ◦ t1. (3)

T has 3 more different mappings from G,which are folding transformations t4, t6 and t8. Here, t4 moves
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the points above the line y = x+ 2 to the below side. t6 and t8 move the points below the lines y = x− 2 and
y = −x − 2 to the above side respectively.

Since using the composition functions F,G and T require too many extra and compelling processes, we
state these dynamical systems via the addresses of the points on B in Proposition 2.1, Proposition 2.3 and
Proposition 2.4 given below.
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Figure 4: The dynamical system {B; T} on the Box fractal

Proposition 2.1. Let the points X,Y ∈ B be represented by x1x2x3 . . . and y1y2y3 . . . respectively where xi, yi ∈

{0, 1, 2, 3, 4} for i = 1, 2, 3, . . .. Then the function F : B→ B defined in (1) is stated as:
if x1 = 0, then

F(x1x2x3 . . .) = x2x3x4 . . .

if x1 = 1 or x1 = 3, then

F(x1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
1, xi+1 = 3
2, xi+1 = 2
3, xi+1 = 1
4, xi+1 = 4

(i ≥ 1)

if x1 = 2 or x1 = 4, then

F(x1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
1, xi+1 = 1
2, xi+1 = 4
3, xi+1 = 3
4, xi+1 = 2

(i ≥ 1)
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which implies {B; F} is a dynamical system.

Proof. We want to show that F, defined by via representations, is well-defined on B. If X ∈ B has a unique
address, then F(X) is also stated by a unique address. If X is represented by σωω′ω′ω′ . . . or σ0ωωω . . .
where σ = x1x2x3 . . . xn, then F(X) can also be stated by two different code representations. Therefore, we
investigate the images of the points, whose code representations are one of the 01, 02, 03, 04, 13, 24, 31, 42,
001, 002, 003, 004, 013, 024, 031, 042, 101, 102, 103, 104, 113, 124, 131, 142, 201, 202, 203, 204, 213, 224, 231, 242,
301, 302, 303, 304, 313, 324, 331, 342, 401, 402, 403, 404, 413, 424, 431, 442.

Under the function F, the images of these points are obtained as

F(01) = 1,
F(13) = 1,

F(02) = 2,
F(24) = 2,

F(03) = 3,
F(31) = 3,

F(04) = 4,
F(42) = 4,

F(001) = 01,
F(013) = 13,

F(002) = 02,
F(024) = 24,

F(003) = 03,
F(031) = 31,

F(004) = 04,
F(042) = 42,

F(101) = 03,
F(113) = 31,

F(102) = 02,
F(124) = 24,

F(103) = 01,
F(131) = 13,

F(104) = 04,
F(142) = 42,

F(201) = 01,
F(213) = 13,

F(202) = 04,
F(224) = 42,

F(203) = 03,
F(231) = 31,

F(204) = 02,
F(242) = 24,

F(301) = 03,
F(313) = 31,

F(302) = 02,
F(324) = 24,

F(303) = 01,
F(331) = 13,

F(304) = 04,
F(342) = 42,

F(401) = 01,
F(413) = 13,

F(402) = 04,
F(424) = 42,

F(403) = 03,
F(431) = 31,

F(404) = 02,
F(442) = 24.

As a result, we can easily conclude that for any points in the form x1x2x3 . . . xn01 and x1x2x3 . . . xn13,
x1x2x3 . . . xn02 and x1x2x3 . . . xn24, x1x2x3 . . . xn03 and x1x2x3 . . . xn31, x1x2x3 . . . xn04 and x1x2x3 . . . xn42, under
F correspond to the same points on B respectively.

Remark 2.2. By changing the order of the folding maps in F, it is possible to get new topologically equivalent
dynamical systems via the conjugacy map I(x). That is why, the order of these folding mappings does not
affect the function F for this structure, i.e. f2 ◦ f3 = f3 ◦ f2. Therefore, there is an identity map as a conjugacy
H = I between F and F′ such that H(F(X)) = F′(H(X)) where

F′ = f5 ◦ f4 ◦ f2 ◦ f3 ◦ f1.

Proposition 2.3. Let the points X,Y ∈ B be x1x2x3 . . . and y1y2y3 . . . respectively, where xi, yi ∈ {0, 1, 2, 3, 4} for
i = 1, 2, 3, . . .. Then the function G : B→ B defined in (2) is stated as:

if x1 = 0, then

G(x1x2x3 . . .) = x2x3x4 . . . .

if x1 = 2 or x1 = 4, then

G(x1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
1, xi+1 = 1
4, xi+1 = 2
3, xi+1 = 3
2, xi+1 = 4

(i ≥ 1)
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if x1 = 3, then

G(x1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
3, xi+1 = 1
2, xi+1 = 2
1, xi+1 = 3
4, xi+1 = 4

(i ≥ 1)

if x1 = 1, xi = 0, 2, 4 (i = 2, 3, . . . , k) and xk+1 = 1 or x1 = x2 = 1, then

G(x1x2 . . . xkxk+1xk+2xk+3 . . .) = x2x3x4 . . . ,

if x1 = 1, x2 = 3 or x1 = 1, xi = 0, 2, 4 (i = 2, 3, . . . , k) and xk+1 = 3, then

G(x1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
3, xi+1 = 1
2, xi+1 = 2
1, xi+1 = 3
4, xi+1 = 4

(i ≥ 1),

which implies {B; G} is a dynamical system.

Proof. If X ∈ B is represented by a unique address, then there is only one code representation of G(X). If
X is stated by two different addresses, then the code representations of G(X) must indicate the same point.
In order to show that the function G is well-defined on the code set of B, we check the image of the points
which is represented by two different code representations. Under the function G, the images of these
points are

G(01) = 1,
G(13) = 1,

G(02) = 2,
G(24) = 2,

G(03) = 3,
G(31) = 3,

G(04) = 4,
G(42) = 4,

G(001) = 01,
G(013) = 13,

G(002) = 02,
G(024) = 24,

G(003) = 03,
G(031) = 31,

G(004) = 04,
G(042) = 42,

G(101) = 01,
G(113) = 13,

G(102) = 02,
G(124) = 24,

G(103) = 01,
G(131) = 13,

G(104) = 04,
G(142) = 42,

G(201) = 01,
G(213) = 13,

G(202) = 04,
G(224) = 42,

G(203) = 03,
G(231) = 31,

G(204) = 02,
G(242) = 24,

G(301) = 03,
G(313) = 31,

G(302) = 02,
G(324) = 24,

G(303) = 01,
G(331) = 13,

G(304) = 04,
G(342) = 42,

G(401) = 01,
G(413) = 13,

G(402) = 04,
G(424) = 42,

G(403) = 03,
G(431) = 31,

G(404) = 02,
G(442) = 24.

In general, it is seen that the images of the points, which are represented by both x1x2x3 . . . xn01 and
x1x2x3 . . . xn13, x1x2x3 . . . xn02 and x1x2x3 . . . xn24, x1x2x3 . . . xn03 and x1x2x3 . . . xn31, x1x2x3 . . . xn04 and
x1x2x3 . . . xn42, indicate the same points on B respectively.
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Proposition 2.4. Let the points X,Y ∈ B be represented by x1x2x3 . . . and y1y2y3 . . . respectively, where xi, yi ∈

{0, 1, 2, 3, 4} for i = 1, 2, 3, . . .. Then the function T : B→ B defined in (3) is stated as:
if x1 = 0, then

T(x1x2x3 . . .) = x2x3x4 . . . ,

if x1 = 1, xi = 0, 2, 4 (i = 2, 3, . . . , k) and xk+1 = 1 or x1 = x2 = 1, then

T(x1x2 . . . xkxk+1xk+2xk+3 . . .) = x2x3x4 . . . ,

if x1 = 1, xi = 0, 2, 4 (i = 2, 3, . . . , k) and xk+1 = 3 or x1 = 1, x2 = 3, then

T(x1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
3, xi+1 = 1
2, xi+1 = 2
1, xi+1 = 3
4, xi+1 = 4

(i ≥ 1)

if x1 = 2, xi = 0, 1, 3 (i = 2, 3, . . . , k) and xk+1 = 2 or x1 = x2 = 2, then

T(2x2 . . . xkxk+1xk+2xk+3 . . .) = x2x3x4 . . . ,

if x1 = 2, xi = 0, 1, 3 (i = 2, 3, . . . , k) and xk+1 = 4 or x1 = 2, x2 = 4, then

T(x1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
1, xi+1 = 1
4, xi+1 = 2
3, xi+1 = 3
2, xi+1 = 4

(i ≥ 1)

if x1 = 3, xi = 0, 2, 4 (i = 2, 3, . . . , k) and xk+1 = 3 or x1 = x2 = 3, then

T(3x2 . . . xkxk+1xk+2xk+3 . . .) = x2x3x4 . . .

if x1 = 3, xi = 0, 2, 4 (i = 2, 3, . . . , k) and xk+1 = 1 or x1 = 3, x2 = 1, then

T(x1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
3, xi+1 = 1
2, xi+1 = 2
1, xi+1 = 3
4, xi+1 = 4

(i ≥ 1)

if x1 = 4, xi = 0, 1, 3 (i = 2, 3, . . . , k) and xk+1 = 4 or x1 = x2 = 4, then

T(4x2 . . . xkxk+1xk+2xk+3 . . .) = x2x3x4 . . .

if x1 = 4, xi = 0, 1, 3 (i = 2, 3, . . . , k) and xk+1 = 2 or x1 = 4, x2 = 2, then

T(x1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
1, xi+1 = 1
4, xi+1 = 2
3, xi+1 = 3
2, xi+1 = 4

(i ≥ 1),

which implies {B; T} is a dynamical system.
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Proof. In order to show that T is well defined on B, we must to check the images of the points, which have
two code representations. The form of these points are σωω′ω′ω′ . . . and σ0ωωω . . .where σ = x1x2x3 . . . xn.
Therefore, we must first examine that the images of the following points indicate the same points on B :

T(01) = 1,
T(13) = 1,

T(02) = 2,
T(24) = 2,

T(03) = 3,
T(31) = 3,

T(04) = 4,
T(42) = 4,

T(001) = 01,
T(013) = 13,

T(002) = 02,
T(024) = 24,

T(003) = 03,
T(031) = 31,

T(004) = 04,
T(042) = 42,

T(101) = 01,
T(113) = 13,

T(102) = 02,
T(124) = 24,

T(103) = 01,
T(131) = 13,

T(104) = 04,
T(142) = 42,

T(201) = 01,
T(213) = 13,

T(202) = 02,
T(224) = 24,

T(203) = 03,
T(231) = 31,

T(204) = 02,
T(242) = 24,

T(301) = 03,
T(313) = 31,

T(302) = 02,
T(324) = 24,

T(303) = 03,
T(331) = 31,

T(304) = 04,
T(342) = 42,

T(401) = 01,
T(413) = 13,

T(402) = 04,
T(424) = 42,

T(403) = 03,
T(431) = 31,

T(404) = 04,
T(442) = 42.

Thus, we conclude that both T(σωω′ω′ω′ . . .) and T(σ0ωωω . . .), where σ = x1x2x3 . . . xn are the different
code representations of the same points on B respectively.

3. Investigation of the topological equivalence of some dynamical systems on the Box fractal

In this section, we compute fixed points and some periodic points of F, G and T using the Proposition
2.1, Proposition 2.3 and Proposition 2.4. The number of periodic points can guide in deciding whether
the dynamical systems are not topologically conjugate. Moreover, we give an example of topologically
equivalent dynamical system with {B; G} in Proposition 3.4.

3.1. Computing the periodic points
Thanks to the expression of {S; F} in Proposition 2.1, one can find the periodic points of this dynamical

system. The points satisfies the equation

F(x1x2x3 . . . xk . . .) = x1x2x3 . . . xk . . . .

are found as follows

•0 = 00000 . . . •13 = 131313 . . .
•24 = 242424 . . . •31 = 313131 . . .

•42 = 424242 . . . .

We now compute one of 2−periodic points of F. Suppose that x1 = 2 and x2 = 1, if we solve the following
equation as

F2(21x3x4 . . . xk . . .) = 21x3x4 . . . xk . . . ,

then it is obtained that 214321432143 . . . is a 2−periodic point of F. The other periodic points can be
computed in a similar fashion.

Furthermore, we find the periodic points of {B; G} by the help of Proposition 2.3 and it is found that
there are 6 fixed points;
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•0 = 00000 . . . •1 = 11111 . . .
•24 = 242424 . . . •31 = 313131 . . .
•42 = 424242 . . . •13 = 131313 . . . .

Finally, it is seen that the number of fixed points of {B; T} is 9, which are found as follows;

•0 = 00000 . . . •1 = 11111 . . .
•13 = 131313 . . . •2 = 2222 . . .
•24 = 242424 . . . •3 = 3333 . . .
•31 = 313131 . . . •4 = 4444 . . .

•42 = 424242 . . .

As a result, we have 3 dynamical systems, which are constructed by the different number of folding
mappings. As can be seen from the above, these dynamical systems have different number of fixed
points. By using the statement “ If the dynamical systems {X1; f1} and {X2; f2} have the different number of
n−periodic points for at least n ∈ N, then they are not topologically conjugate (see [13])”, we can deduce
the following remark:

Remark 3.1. Since {B; F}, {B; G} and {B; T} have the different number of fixed points, they are not topologi-
cally conjugate.

Theorem 3.2. {B; F} is chaotic in Devaney sense.

Proof. In order to prove that F satisfy the Devaney chaos conditions, it is sufficient to prove that F is locally
eventually onto (l.e.o.) (see [11]) and the periodic points of F are dense.

Let U be open subset of (B, dbox). We must obtain n ∈ N satisfying Fn(U) = B. Since U is an open set,
we know that there is k ∈ N such that B(X,

√
2

3k−1 ) ⊆ U, where the adress of X ∈ B is x1x2 . . . xk−1xkxk+1 . . . .
Moreover, it may easily be shown that

U′ = {x1x2x3 . . . xkzk+1zk+2zk+3 . . . |x1, . . . , xk are the first k-terms of X}

where zi ∈ {0, 1, 2, 3, 4} for i = k + 1, k + 2, k + 3, . . . , is the subset of B(X, 1
3k−1 ). Since we get Fk(U′) = B,

it obviously means Fk(U) = B. Consequently, F satisfies the l.e.o property, that means it is topologically
transitive and sensitivity to initial conditions.

To prove that the periodic points of F are dense on B, we must show the existence of a periodic point
which is sufficiently close to any points of B. We take the point A with the code representation a1a2a3 . . .

and the open set B(A,
√

2
3k−1 ) and the sets U, U′ which are defined above. Since zi’s are arbitrary for all

i = k + 1, k + 2, k + 3, . . . ,, then we can obtain

Fk(a1a2 . . . akzk+1zk+2zk+3 . . .) = z′k+1z′k+2z′k+3 . . . = a1a2 . . . akzk+1zk+2zk+3 . . . .

This completes the proof.

Remark 3.3. By following the similar lines of the proof of Theorem 3.2, it can be proven that {B; G} and
{B; T} are chaotic in the sense of Devaney.

3.2. The construction of a topologically equivalent dynamical system with {B; G}
Now, we also give an example about how to define a topologically conjugate dynamical system on Box

fractal by using similar types of folding mappings. By replacing one of the folding mappings 12 with 1′2 at
the same level of the Box fractal, we get a new dynamical system which is topologically equivalent to {B,G}
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and we find a conjugacy map between these dynamical systems. Here, 1′2 is a folding mapping that moves
the points from upper hand side of the line y = x + 2 to the lower hand side. The point is that changing
the order of related folding mappings does not affect the function for this structure, we thus construct the
topologically conjugate dynamical system {B,G′} as follows

G′ = 16 ◦ 15 ◦ 13 ◦ 14 ◦ 1
′

2 ◦ 11. (4)
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Figure 5: The effect of G′ on the Box fractal

We express this dynamical system with the following proposition using the code representations of the
points on B.

Proposition 3.4. Let the points X,Y ∈ B be x1x2x3 . . . and y1y2y3 . . . respectively, where xi, yi ∈ {0, 1, 2, 3, 4} for
i = 1, 2, 3, . . .. Then the function G′ : B→ B given in (4) is stated as:

if x1 = 0, then

G′(x1x2x3 . . .) = x2x3x4 . . . .

if x1 = 1 or x1 = 3, then

G′(x1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
3, xi+1 = 1
2, xi+1 = 2
1, xi+1 = 3
4, xi+1 = 4

(i ≥ 1)
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if x1 = 4, then

G′(x1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
1, xi+1 = 1
4, xi+1 = 2
3, xi+1 = 3
2, xi+1 = 4

(i ≥ 1)

if x1 = 2, xi = 0, 1, 3 (i = 2, 3, . . . , k) and xk+1 = 2 or x1 = x2 = 2, then

G′(x1x2 . . . xkxk+1xk+2xk+3 . . .) = x2x3x4 . . . ,

if x1 = 2, x2 = 4 or x1 = 2, xi = 0, 1, 3 (i = 2, 3, . . . , k) and xk+1 = 4, then

G′(x1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
1, xi+1 = 1
4, xi+1 = 2
3, xi+1 = 3
2, xi+1 = 4

(i ≥ 1),

which means {B; G′} is a dynamical system.

Lemma 3.5. Let the code representations of X,Y ∈ B be x1x2x3 . . . and y1y2y3 . . . respectively, where xi, yi ∈

{0, 1, 2, 3, 4} for i = 1, 2, 3, . . .. Then for all X ∈ B there exists H : B→ B such that

H(X) = Y, yi =


0, xi = 0
2, xi = 1
1, xi = 2
4, xi = 3
3, xi = 4

(i ≥ 1) (5)

satisfying H(G(X)) = G′(H(X)). Here H is called a conjugacy.

Proof. One can easily check this equality from the definition of G and G′.

Remark 3.6. It is clear that for all X,X′ ∈ B, d(H(X),H(X′)) = d(X,X′).Moreover, H is surjective. Thus, we
conclude that H is a homeomorphism.

Remark 3.7. The dynamical systems {B; G} and {B; G′} are topologically conjugate because there is a home-
omorphism, defined in (5) which satisfies H(G(X)) = G′(H(X)) for all X ∈ B. Moreover, {B; G′} is chaotic,
since {B; G} is chaotic, G′ is continuous and B is compact (for details, see [8, 13]).

By using the conjugacy H, the periodic points of {B; G′} can be easily calculated as long as the periodic
points of {B; G} are known. Hence, the fixed points of {B; G′} are computed as

•H(0) = 00000 . . . •H(1) = 2222 . . .
•H(24) = 131313 . . . •H(31) = 424242 . . .
•H(42) = 313131 . . . •H(13) = 242424 . . . .

Based on the example above, analogously, many dynamical systems which are topologically conjugate
to {B; G} can be defined by choosing the similar folding mappings instead of 12.
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4. Concluding remarks

We can conclude that using the same number of similar folding mappings at the same levels of Box
fractal can lead to the obtaining topologically conjugate dynamical systems. However, any generalization
of the derivation of topologically conjugate dynamical systems does not seem possible. The reason for this
is that dynamical systems can be constructed with not only through expanding and folding mappings but
also through various other ways, such as symmetry groups or rotation and translation mappings etc. The
main idea is that in order to have topologically equivalent dynamical systems, there must exist a conjugacy
map between these systems. Having the same number of n−periodic points is necessary but not sufficient
condition for equivalent systems. In other words, if you create any dynamical system with a different
number of fixed points, it is certain that these systems are not topologically conjugate. Therefore, to build
a dynamical system that may or may not be equivalent to current system, we need to carefully observe
which transformations lead to different number of fixed points (or n-periodic points) or a homeomorphism
between the systems. In this paper, we exemplify these situations for dynamical systems on the Box fractal
by using folding mappings. This study provides a guidance on which folding mappings should be used
when obtaining topologically equivalent or non-equivalent dynamical systems on a Box fractal or even on
a self-similar sets.
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