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q-integers
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Abstract. In this study, we give a specific family of q-integer-based max-product type approximation
operators having the property of pseudo-linearity, a weaker term than classical linearity. We propose a
further improvement in max-product type operators which is based on q-integers. Firstly, we construct a
new kind of nonlinear Baskakov operators. For construction we use the linear q-Baskakov polynomials
and also the max-product algebra. Then we give an error estimation for the q-Baskakov operators of
max-product kind. Also, an approximate statistical theorem is presented.

1. Introduction

In this section, it is emphasized some general notations about the max-product kind operators. Over the
set of real positive numbers,R+, we deal with the operations

∨
(maximum) and · (product). Consequently,

(R+,
∨

, ·) has a semiring structure and it is called as Max-Product algebra. Take the interval E ⊂ R which
is a bounded or unbounded, and describe the space of the function h as follows

CB+(E) = {h : E→ R+; h continuous and bounded on E}.

An approximate operator of the discrete max-product type Ln : CB+(E)→ CB+(E), has a general form

Ln (h) (x) =
n∨

i=0

Kn(x, xi) · h (xi) ,

or

Ln (h) (x) =
∞∨

i=0

Kn(x, xi) · h (xi)

where n ∈ N, h ∈ CB+(E),Kn(·, xi) ∈ CB+(E) and xi ∈ E, for all i = {0, 1, 2, · · · }. These are positive nonlinear
operators which satisfy a pseudo-linearity condition of the type

Ln(α · h ∨ β · 1)(x) = α · Ln(h)(x) ∨ β · Ln(1)(x),∀α, β ∈ R+, h, 1 : E→ R+.

In order to give some properties of the operators Ln, we present the following auxiliary Lemma.
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Lemma 1.1. ([4]) Let E ⊂ R be a bounded or unbounded interval,

CB+(E) = {h : E→ R+ : h continuous and bounded on E}

and Ln : CB+(E) → CB+(E), n ∈ N be a sequence of positive homogenous operators satisfying, in addition, the
following properties:

i. (Monotoncity) if h, 1 ∈ CB+(E) satisfy h ≤ 1, then Ln(h) ≤ Ln(1) for all n ∈N;

ii. (Sublinearity) Ln(h + 1) ≤ Ln(h) + Ln(1) for all f , 1 ∈ CB+(E).

Then for all h, 1 ∈ CB+(E), n ∈N and x ∈ Ewe have

|Ln(h)(x) − Ln(1)(x)| ≤ Ln(|h − 1|)(x).

Corollary 1.2. ([4]) Let Ln : CB+(E) → CB+(E), n ∈ N be a sequence of operators satisfying the requirements
(i)-(ii) in Lemma 1.1 and also be a positive homogenous operator. Then we get

|h(x) − Ln(h)(x)| ≤
[1
δ

Ln(φx)(x) + Ln(e0)(x)
]
ω(h; δ) + h(x) · |Ln(e0)(x) − 1| , ∀h ∈ CB+(E), n ∈N, x ∈ E,

where δ > 0, e0(t) = 1 for all t ∈ E, φx(t) = |t − x| for all t, x ∈ E. Also,

ω(h; δ) = max
x,y∈E
|x−y|≤δ

| f (x) − f (y)|

is the first modulus of continuity. If E is unbounded then we assume that there exists Ln(φx)(x) ∈ R+
⋃
{+∞}, for

any x ∈ E,n ∈N.

Corollary 1.3. ([4]) Assume, in addition to the qualifications in Corollary 1.2, the sequence (Ln)n satisfies Ln(e0) = e0,
for all n ∈N. Then for all h ∈ CB+(E), n ∈N and x ∈ E we get

| f (x) − Ln(h)(x)| ≤
[
1 +

1
δ

Ln(φx)(x)
]
ω(h; δ).

The approximation of a continuous function by a sequence of linear positive operators is fundamental
topic in the Korovkin-type approximation theory (see [1], [13]). In the paper [6], nonlinear positive operators
in place of linear positive operators has been introduced by Bede et al. They discovered that the nonlinear
operators exhibit a similar approximation behavior to the linear operators, despite the fact that the Korovkin
theorem fails for these nonlinear operators. In recent years, q-calculus has played an important role in the
approximation of functions by a linear positive operator.

Also,the results of convergence are better for q-analogues of approximation operators than for clas-
sical ones. Lupas [15] presented q-Bernstein operators and investigated their approximation and shape-
preserving properties. In the paper [18], Phillips established the use of q-integers to generalize Bernstein
polynomials. Several researchers defined and researched several unique generalizations of linear positive
operators based on q and (p, q)-integers ([7], [9], [11], [12], [15]-[18]).

2. Construction of the operators

In [2], Baskakov introduced the positive and linear operators, which are typically associated to functions
that are bounded and uniformly continuous to f ∈ C[0,+∞) and specified by

Vn
(

f
)

(x) = (1 + x)−n
∞∑

k=0

(
n + k − 1

k

)
xk(1 + x)−k f

(
k
n

)
, ∀n ∈N.
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It is known that the following pointwise approximation result exists as:

| Vn
(

f
)

(x) − f (x) |≤ Cωφ2
(

f ;
√

x(1 + x)/n
)
, x ∈ [0,∞) ,n ∈N,

where φ(x) =
√

x(1 + x) and I = [0,∞). In this case, Ih = [h2/(1 − h)2,+∞), h ≤ δ < 1.Moreover, the function
f on [0,+∞) is preserved monotonically and convexly by Vn

(
f
)

(see [14]).
The truncated Baskakov operators are identified by

Un( f )(x) = (1 + x)−n
n∑

k=0

(
n + k − 1

k

)
xk(1 + x)−k f

(
k
n

)
,

for f ∈ C[0, 1].
Truncated Baskakov operator of max product kind f : [0, 1]→ R are described by (see [3])

U(M)
n ( f )(x) =

∨n
k=0 bn,k(x) f

(
k
n

)∨n
k=0 bn,k(x)

, x ∈ [0, 1],n ∈N, n ≥ 1, (1)

where bn,k(x) =
(n+k−1

k
)
xk(1 + x)−n−k, n ≥ 1, x ∈ [0, 1].

In the paper [5], it was showed that the order of uniform approximation in the whole class C+([0, 1])
of positive continuous functions on [0, 1] cannot be improved, in the sense that there exists a function
f ∈ C+([0, 1]), for which the approximation order by the truncated max-product Baskakov operator is
Cω1( f , 1/

√
n). The fundamentally better order of approximationω1( f , 1/n) was attained for some functional

subclasses, such as the nondecreasing concave functions. Finally, some shape preserving properties were
proved.

In this section, we modify the Truncated Baskakov operator of max product kind presented in (1) by
using q-analysis. For the construction, we mainly use some properties of q- calculus given below:

Some properties of q- calculus
For the parameter q > 0 and n ∈N, the q-integers of the number n is defined by

[n]q =

{ 1−qn

1−q if q , 1
n if q = 1

, [0]q = 0.

For n ∈N, the q-factorial [n]q! is defined as follows

[n]q! = [1]q[2]q...[n]q and [0]q! = 1,

and for integers 0 ≤ k ≤ n, q-binomial coefficient is introduced as[
n
k

]
q
=

[n]q!
[k]q![n − k]q!

Finally, let q-binomial coefficient and 1 ≤ j ≤ n − 1, one get q-Pascal Rules as follows[
n
j

]
q
=

[
n − 1
j − 1

]
q
+ q j

[
n − 1

j

]
q
,

[
n
j

]
q
= qn− j

[
n − 1
j − 1

]
q
+

[
n − 1

j

]
q
.

Let us also note the following identity:

∞∑
k=0

[
n + k − 1

k

]
q
xk =

1
(x; q)n

, | x |< 1,

where (x; q)n = (1 − x)(1 − qx) · · · (1 − qn−1x)
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Lemma 2.1. ([5]) Let an arbitrary function f : [0, 1]→ R+, U(M)
n ( f )(x) is positive, continuous on [0, 1] and provides

U(M)
n ( f )(0) = f (0) for all n ∈N,n ≥ 2.

Also, U(M)
n ( f )(x) satisfies all the conditions given in Lemma 1.1.

Now, we identify our operators as follows:

U(M)
n ( f ; x; q) =

∨n
k=0 bn,k(x; q) f

(
[k]q

[n]q

)
∨n

k=0 bn,k(x; q)

where n ∈N, f ∈ C+[0, 1], x ∈ [0, 1], q ∈ (0, 1) and bn,k(x; q) is given by

bn,k(x; q) =
[
n + k − 1

k

]
q
q

k.(k−1)
2 xk

n+k∏
s=1

(1 + qs−1x)−1.

In this case, we consider the empty product to be one. The operators U(M)
n ( f ; x; q) reduce to the operators

U(M)
n ( f ; x) given by (1), when q→ 1−. Also, U(M)

n ( f ; x; q) is well-defined.
According the definition of the operator, we get f ≤ 1 ⇒ U(M)

n ( f ; x; q) ≤ U(M)
n (1; x; q), for f , 1 ∈ C+[0, 1].

With regard to f ∈ C+[0, 1], U(M)
n ( f ; x; q) is increasing. In addition, we have U(M)

n ( f + 1; x; q) ≤ U(M)
n ( f ; x; q) +

U(M)
n (1; x; q), for any f , 1 ∈ C+[0, 1]. So the operators U(M)

n ( f ; x; q) are not linear over C+[0, 1].
Let ω( f , δ), δ > 0 indicate the modulus of continuity of f ∈ C+[0, 1], indicated by ω( f , δ) = max|x−y|≤δ |

f (x) − f (y) | .

3. An error estimation

Firstly,we need some notations and lemmas to estimate U(M)
n (φx; x; q) with φx(t) =| t − x |. We will

primarily utilize a method similar to [5] in this part, however we must modify every item to the q-calculus.
In determining all estimates, it is sufficient to take into account x ∈ (0, 1] since U(M)

n ( f ; 0; q)− f (0) = 0 for any
f ∈ C+[0, 1].

For each n ∈N, n ≥ 2, k ∈ {0, 1, 2, · · · ,n} , j ∈ {0, 1, 2, · · · ,n − 2} and x ∈
[

[ j]q

[n−1]q
,

[ j+1]q

[n−1]q

]
, let identify

Mk,n, j(x; q) = mk,n, j(x; q) |
[k]q

[n]q
− x | (2)

which

mk,n, j(x; q) =
bn,k(x; q)
bn, j(x; q)

(3)

for x ∈ (0, 1], m0,n,0(0; q) = 1 and mk,n,0(0; q) = 0 for all k ∈ {0, 1, 2, · · · ,n}.
In this case, (2) and (3) imply respectively that if k ≥ j + 2 then

Mk,n, j(x; q) = mk,n, j(x; q)
(

[k]q

[n]q
− x

)
(4)

and if k ≤ j then

Mk,n, j(x; q) = mk,n, j(x; q)
(
x −

[k]q

[n]q

)
. (5)
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Now, for each n ∈ N, n ≥ 2, k ∈ {0, 1, 2, · · · ,n}, j ∈ {0, 1, 2, · · · ,n − 2} with k ≥ j + 3 and x ∈
[

[ j]q

[n−1]q
,

[ j+1]q

[n−1]q

]
,

let identify

Mk,n, j(x; q) = mk,n, j(x; q)
(

[k]q

[n − 1]q
− x

)
(6)

and also for each n ∈ N, n ≥ 2, k ∈ {0, 1, 2, · · · ,n}, j ∈ {0, 1, 2, · · · ,n − 2} with k ≤ j − 1 and x ∈
[

[ j]q

[n−1]q
,

[ j+1]q

[n−1]q

]
,

let identify

M̂k,n, j(x; q) = mk,n, j(x; q)
(
x −

[k]q

[n − 1]q

)
(7)

Lemma 3.1. Let q ∈ (0, 1), n ∈N,n ≥ 2 and x ∈
[

[ j]q

[n−1]q
,

[ j+1]q

[n−1]q

]
. Then we obtain the following inequalities:

i. For all k ∈ {0, 1, 2, · · · ,n}, j ∈ {0, 1, 2, · · · ,n − 2} with k ≥ j + 3, we obtain

Mk,n, j(x; q) ≤Mk,n, j(x; q) ≤
(
1 +

1
qn+1 + qn+1

)
Mk,n, j(x; q)

ii. For all k ∈ {0, 1, 2, · · · ,n}, j ∈ {0, 1, 2, · · · ,n − 2} with k ≤ j − 1, we obtain

M̂k,n, j(x; q) ≤Mk,n, j(x; q) ≤
(
1 +

1
qn−1

)
M̂k,n, j(x; q)

Proof. (i) From the equations (4) and (6), we get the inequality Mk,n, j(x; q) ≤Mk,n, j(x; q). Moreover, using the
equality [n + 1]q = [n]q + qn we obtain

Mk,n, j(x; q)
Mk,n, j(x; q)

=

[k]q

[n−1]q
− x

[k]q

[n]q
− x

≤

[k]q

[n−1]q
−

[ j+1]q

[n−1]q

[k]q

[n]q
−

[ j+1]q

[n−1]q

=
[n]q

(
[k]q − [ j + 1]q

)
[k]q[n − 1]q − [ j + 1]q[n]q

= 1 +
qn−1

[k]q − [ j + 1]q − qn−1 .

By using the facts that k ≥ j + 3 and j ≤ n we obtain

[k]q − [ j + 1]q − qn−1
≥ [ j + 3]q − [ j + 1]q − qn−1

≥ q j+2 + q j+1
≥ qn+2 + qn+1.

Hence, we get the proof of (i)

Mk,n, j(x; q)
Mk,n, j(x; q)

≤ 1 +
1

qn+1 + qn+1 .

(ii) We can simply estimate M̂k,n, j(x; q) ≤ Mk,n, j(x; q) using (5) and (7). Additionally, using again the
equality [n + 1]q = [n]q + qn, we have

Mk,n, j(x; q)

M̂k,n, j(x; q)
=

x − [k]q

[n]q

x − [k]q

[n−1]q

≤

[ j]q

[n−1]q
−

[k]q

[n]q

[ j]q

[n−1]q
−

[k]q

[n−1]q

=
[ j]q.[n]q − [k]q[n − 1]q

[n]q

(
[ j]q − [k]q

) ≤
[ j]q − [k]q + qn−1

[ j]q − [k]q

= 1 +
qn−1

[ j]q − [k]q
≤ 1 +

1
[ j]q − [k]q

.

Since k ≤ j − 1 and j ≤ n, we obtain [ j]q − [k]q ≥ [ j]q − [ j − 1]q = q j−1
≥ qn−1. Hence, we obtain

Mk,n, j(x; q)

M̂k,n, j(x; q)
≤

(
1 +

1
qn−1

)
which completes the proof.
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Lemma 3.2. Let q ∈ (0, 1), n ∈ N,n ≥ 2. Then for all k ∈ {0, 1, 2, · · · ,n}, j ∈ {0, 1, 2, · · · ,n − 2} and x ∈[
[ j]q

[n−1]q
,

[ j+1]q

[n−1]q

]
, we have

mk,n, j(x; q) ≤ 1.

Proof. Let us notice that for x = 0 we necessarily have j = 0 which implies m0,n,0(x; q) = 1 and mk,n,0(x; q) = 0
for all k ∈ {1, 2, · · · ,n} . Now, assume that x > 0 when clearly mk,n, j(x; q) > 0.We have two possible cases: 1)
k ≥ j and 2) k ≤ j.

Case 1) Let k ≥ j. Since the function h(x) = 1+qn+kx
x is nonincreasing on

[
[ j]q

[n−1]q
,

[ j+1]q

[n−1]q

]
, it follows

mk,n, j(x; q)
mk+1,n, j(x; q)

=
[k + 1]q

[n + k]q
.q−k.

1 + qn+kx
x

≥
[k + 1]q

[n + k]q
.q−k.

1 + qn+k [ j+1]q

[n−1]q

[ j+1]q

[n−1]q

=
[k + 1]q

[n + k]q
.q−k.

[n − 1]q + qn+k[ j + 1]q

[ j + 1]q

≥
[k + 1]q

[ j + 1]q
.q−k.

[n − 1]q + qn+k[ j + 1]q

[k + 1]q

By using [k + 1]q ≥ [ j + 1]q, we obtain

mk,n, j(x; q)
mk+1,n, j(x; q)

≥ q−k [n − 1]q + qn+k[ j + 1]q

[k + 1]q
= q−k 1 − qn−1 + qn+k(1 − q j+1)

1 − qk+1
= 1.

Then we have the conclusion that

1 = m j,n, j(x; q) ≥ m j+1,n, j(x; q) ≥ m j+2,n, j(x; q) ≥ · · · ≥ mn,n, j(x; q),

Therefore, the proof is completed for the case (1).

Case 2) Let k < j. Since h(x) = x
1+qn+k−1x is nonincreasing on

[
[ j]q

[n−1]q
,

[ j+1]q

[n−1]q

]
, it follows

mk,n, j(x; q)
mk−1,n, j(x; q)

=
[n + k − 1]q

[k]q
qk−1 x

1 + qn+k−1x
≥

[n + k − 1]q

[k]q
qk−1

[ j]q

[n−1]q

1 + qn+k−1 [ j]q

[n−1]q

=
[n + k − 1]q

[k]q
qk−1 [ j]q

[n − 1]q + qn+k−1[ j]q
≥

1 − qn+k−1

1 − qn−1 + qn+k−1(1 − q j)
= 1.

Then we easily get

1 = m j,n, j(x; q) ≥ m j−1,n, j(x; q) ≥ m j−2,n, j(x; q) ≥ · · · ≥ m0,n, j(x; q).

Therefore, the proof is completed

Lemma 3.3. Let q ∈ (0, 1), n ∈N,n ≥ 2 and x ∈
[

[ j]q

[n−1]q
,

[ j+1]q

[n−1]q

]
. Then we have

i. If k ∈
{
j + 3, j + 4, · · · ,n − 1

}
is such that [k + 1]q −

√
qk[k + 1]q ≥ [ j + 1]q, then

Mk,n, j(x; q) ≥Mk+1,n, j(x; q).

ii. If k ∈
{
1, 2, · · · , j − 2

}
is such that [k]q −

√
qk−1[k]q ≤ [ j]q, then M̂k,n, j(x; q) ≥ M̂k−1,n, j(x; q).
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Proof. (i) Let k ∈
{
j + 3, j + 4, · · · ,n − 1

}
and [k + 1]q −

√
qk[k + 1]q ≥ [ j + 1]q . We observe that

Mk,n, j(x; q)

Mk+1,n, j(x; q)
=

[k + 1]q

[n + k]q
q−k 1 + qn+kx

x
.

[k]q − x[n − 1]q

[k + 1]q − x[n − 1]q
.

Since h(x) = 1+qn+kx
x .

[k]q−x[n−1]q

[k+1]q−x[n−1]q
is nonincreasing on the interval

[
[ j]q

[n−1]q
,

[ j+1]q

[n−1]q

]
,we get

Mk,n, j(x; q)

Mk+1,n, j(x; q)
≥

[k + 1]q

[n + k]q
q−k

1 + qn+k [ j+1]q

[n−1]q

[ j+1]q

[n−1]q

.
[k]q −

[ j+1]q

[n−1]q
[n − 1]q

[k + 1]q −
[ j+1]q

[n−1]q
[n − 1]q

≥q−k [n − 1]q + qn+k[k + 1]q

[n + k]q

[k + 1]q

[ j + 1]q

[k]q − [ j + 1]q

[k + 1]q − [ j + 1]q

=q−k [k + 1]q

[ j + 1]q

[k]q − [ j + 1]q

[k + 1]q − [ j + 1]q
.

By taking into account the fact that [k + 1]q −

√
qk[k + 1]q ≥ [ j + 1]q,we have

[k + 1]q −

√
[k + 1]2

q − [k]q[k + 1]q ≥ [ j + 1]q.

By simple calculations we get

Mk,n, j(x; q)

Mk+1,n, j(x; q)
≥ 1,

which proves (i).

(ii) Let k ∈
{
1, 2, · · · , j − 2

}
is such that [k]q −

√
qk−1[k]q ≤ [ j]q. Then we have that

M̂k,n, j(x; q)

M̂k−1,n, j(x; q)
=

[n + k − 1]q

[k]q
qk−1 x

1 + qn+k−1x
.
x − [k]q

[n−1]q

x − [k−1]q

[n−1]q

.

Since f (x) = x
1+qn+k−1x .

[n−1]qx−[k]q

[n−1]qx−[k−1]q
is nondecreasing on the interval

[
[ j]q

[n−1]q
,

[ j+1]q

[n−1]q

]
,we obtain

M̂k,n, j(x; q)

M̂k−1,n, j(x; q)
≥

[n + k − 1]q

[k]q
qk−1

[ j]q

[n−1]q

1 + qn+k−1 [ j]q

[n−1]q

[ j]q − [k]q

[ j]q − [k − 1]q

=
[n + k − 1]q

[n − 1]q + qn+k−1[ j]q
qk−1 [ j]q

[k]q

[ j]q − [k]q

[ j]q − [k − 1]q

≥
[n + k − 1]q

[n − 1]q + qn+k−1[k]q
qk−1 [ j]q

[k]q

[ j]q − [k]q

[ j]q − [k − 1]q
=

[ j]q

[k]q
qk−1 [ j]q − [k]q

[ j]q − [k − 1]q
≥ 1,

which proves (ii).

Lemma 3.4. Let q ∈ (0, 1), n ∈N,n ≥ 2 and j ∈ {0, 1, 2, · · · ,n − 2}. For all x ∈
[

[ j]q

[n−1]q
,

[ j+1]q

[n−1]q

]
, we have

n∨
k=0

bn,k(x; q) = bn, j(x; q).
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Proof. Firstly, we demonstrate that for fixed n ∈N, n ≥ 2 and 0 ≤ k < k + 1 ≤ n we get

0 ≤ bn,k+1(x; q) ≤ bn,k(x; q)⇔ x ∈
[
0,

[k + 1]q

[n − 1]q

]
. (8)

By the definition, we get

0 ≤bn,k+1(x; q) ≤ bn,k(x; q)

⇔0 ≤
[
n + k
k + 1

]
q
.q

(k+1)k
2 .xk+1.

n+k+1∏
s=1

(1 + qs−1x)−1
≤

[
n + k − 1

k

]
q
.q

(k−1)k
2 .xk.

n+k∏
s=1

(1 + qs−1x)−1

⇔0 ≤ x.

qk.

[
n + k
k + 1

]
q
− qn+k.

[
n + k − 1

k

]
q

 ≤ [
n + k − 1

k

]
q
.

Then we obtain

0 ≤ bn,k+1(x; q) ≤ bn,k(x; q)⇔ 0 ≤ x ≤
[k + 1]q

[n − 1]q

which corrects the claim (8). Therefore, by taking k = 0, 1, 2, · · · ,n − 1,we obtain that

bn,1(x; q) ≤ bn,0(x; q)⇔0 ≤ x ≤
1

[n − 1]q
,

bn,2(x; q) ≤ bn,1(x; q)⇔0 ≤ x ≤
[2]q

[n − 1]q
,

so on,

0 ≤ bn,k+1(x; q) ≤ bn,k(x; q)⇔ 0 ≤ x ≤
[k + 1]q

[n − 1]q

and so on until finally

0 ≤ bn,n−1(x; q) ≤ bn,n−2(x; q)⇔0 ≤ x ≤ 1,
0 ≤ bn,n(x; q) ≤ bn,n−1(x; q)⇔0 ≤ x ≤ 1.

Using the above inequalities, for all k = 0, 1, 2, · · · ,n,we easily get that

x ∈
[
0,

1
[n − 1]q

]
⇒bn,k(x; q) ≤ bn,0(x; q)

x ∈
[

1
[n − 1]q

,
[2]q

[n − 1]q

]
⇒bn,k(x; q) ≤ bn,1(x; q)

x ∈
[

[2]q

[n − 1]q
,

[3]q

[n − 1]q

]
⇒bn,k(x; q) ≤ bn,2(x; q)

...

x ∈
[

[ j]q

[n − 1]q
,

[ j + 1]q

[n − 1]q

]
⇒bn,k(x; q) ≤ bn, j(x; q)

Using these last implications with the ”if and only if” equivalences mentioned above and writing

n∨
k=0

bn,k(x; q) = max


j−1∨
k=0

bn,k(x; q),
n∨

k=0

bn,k(x; q)


the lemma is obvious.
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Theorem 3.5. Let f ∈ C+[0, 1], x ∈ [0, 1] and n ∈N, then we obtain

| U(M)
n ( f ; x; q) − f (x) | 24ω

 f ;
1√

[n + 1]q

 . (9)

Proof. Firstly we give an estimation for U(M)
n

(
φx; x; q

)
with φx(t) =| t − x | . By the definition we get

En(x; q) := U(M)
n

(
φx; x; q

)
=

∨n
k=0 bn,k(x; q) | [k]q

[n]q
− x |∨n

k=0 bn,k(x; q)
.

Assume that x ∈
[

[k]q

[n−1]q
,

[k+1]q

[n−1]q

]
where j ∈ {0, 1, 2, · · · ,n − 2} is fixed. By Lemma 3.4, we get

En(x; q) = max
k=0,1··· ,n

{
Mk,n, j(x; q)

}
, x ∈

[
[k]q

[n − 1]q
,

[k + 1]q

[n − 1]q

]
.

Therefore, obtaining an upper estimate for each Mk,n, j(x; q) is remained when j ∈ {1, 2, · · · ,n − 2} is fixed,

x ∈
[

[k]q

[n−1]q
,

[k+1]q

[n−1]q

]
and k = {0, 1 · · · ,n} .

For the proof, we take the following cases: 1)k ∈
{
j, j + 1, j + 2

}
, 2)k ≥ j + 3 3)k ≤ j − 1.

Case 1) If k = j then M j,n, j(x; q) =| [ j]q

[n]q
− x |= x− [ j]q

[n]q
. Since x ∈

[
[k]q

[n−1]q
,

[k+1]q

[n−1]q

]
, It is obvious that M j,n, j(x; q) ≤

1+q j

[n]q
≤

2
[n]q

. If k = j+1 then M j+1,n, j(x; q) = m j+1,n, j(x; q) | [ j+1]q

[n]q
−x | . From Lemma 3.2, we have m j+1,n, j(x; q) ≤ 1.

Since x ∈
[

[k]q

[n−1]q
,

[k+1]q

[n−1]q

]
, it easily follows that M j+1,n, j(x; q) ≤ q j

[n]q
≤

1
[n]q

. If k = j + 2 then M j+2,n, j(x; q) =

m j+2,n, j(x; q)
(

[ j+2]q

[n]q
− x

)
. For the interval x ∈

[
[k]q

[n−1]q
,

[k+1]q

[n−1]q

]
,we obtain M j+2,n, j(x; q) ≤ 2

[n]q
.

Case2) Subcase a) Suppose first [k + 1]q −

√
qk[k + 1]q < [ j + 1]q. Then we get

Mk,n, j(x; q) = mk,n, j(x; q).
(

[k]q

[n − 1]q
− x

)
≤

[k]q

[n − 1]q
−

[ j]q

[n − 1]q
.

By the hypothesis, since q[ j]q > q[k]q −

√
qk[k + 1]q,we obtain

Mk,n, j(x; q) ≤
[k]q

[n − 1]q
−

[k]q − 1/q
√

qk[k + 1]q

[n − 1]q
=

√
qk−2([k]q + qk)

[n − 1]q
≤

3
√

2√
[n + 1]q

.

Subcase b) Suppose now that [k+1]q−

√
qk[k + 1]q ≥ [ j+1]q. In this case, the function1(k) = [k+1]q−

√
qk[k + 1]q

is nondecreasing, there exists k ∈ {0, 1, 2, · · · ,n} , of maximum value, such that

[k + 1]q −

√
qk[k + 1]q < [ j + 1]q.

Let k1 = k + 1. Then for all k ≥ k1,we obtain [k + 1]q −

√
qk[k + 1]q ≥ [ j + 1]q.

Mk,n, j(x; q) =mk,n, j(x; q).

 [k + 1]q

[n − 1]q
− x

 ≤ [k + 1]q

[n − 1]q
− x ≤

[k + 1]q

[n − 1]q
−

[ j]q

[n − 1]q

≤
[k + 1]q

[n − 1]q
−

[k + 1]q − q j
−

√
qk[k + 1]q

[n − 1]q
=

q j +

√
qk([k]q + qk)

[n − 1]q
≤

3
√

2 +
√

3√
[n + 1]q

.
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Also it is easy to check that k1 ≥ j + 3, since 1 is nondecreasing function, then we get 1( j + 2) < [ j]q. By
Lemma 3.3 (i) it follows that

Mk,n, j(x; q) ≥Mk+2,n, j(x; q) ≥ · · ·Mn,n, j(x; q).

Hence, we get Mk,n, j(x; q) ≤ 3
√

2+
√

3
√

[n+1]q
for any k ∈

{
k + 1, k + 2, · · · ,n

}
. By Lemma 3.1 (i) we obtain

Mk,n, j(x; q) ≤
3
√

2 +
√

3√
[n + 1]q

.

Case 3) Subcase a) Suppose first that [k]q +
√

qk−1[k]q ≥ [ j]q. Then we get

M̂k,n, j(x; q) =mk,n, j(x; q)
(
x −

[k]q

[n − 1]q

)
≤

[ j + 1]q

[n − 1]q
−

[k]q

[n − 1]q
≤

[ j]q + q j

[n − 1]q
−

[k]q

[n − 1]q

≤

q j +
√

qk−1([k − 1]q + qk−1)

[n − 1]q
≤

√
2 + 1√

[n − 1]q
.

Subcase b) Suppose now that [k]q +
√

qk−1[k]q < [ j]q. Let k̃ ∈ {0, 1, 2, · · · ,n} be the minimum value such

that [k̃]q +
√

qk̃−1[k̃]q ≥ [ j]q. Then k2 = k̃ − 1 satisfies [k2]q +
√

qk−1[k2]q < [ j]q. Then

M̂k̃−1,n, j(x; q) = mk̃−1,n, j(x; q)

x −
[k̃ − 1]q

[n − 1]q

 ≤ [ j + 1]q

[n − 1]q
−

[k̃ − 1]q

[n − 1]q
≤

[ j]q + q j

[n − 1]q
−

[k̃ − 1]q

[n − 1]q
.

Since [k̃]q +
√

qk̃−1[k̃]q ≥ [ j]q we get

M̂k̃−1,n, j(x; q) ≤
[k̃]q + q j +

√
qk̃−1[k̃]q

[n − 1]q
−

[k̃ − 1]q

[n − 1]q
=
1 j + qk̃−1 +

√
qk̃−1[k̃]q

[n − 1]q
≤

√
2 + 2√

[n − 1]q
.

Moreover the inequality k2 ≤ j − 1 is obvious from the case j ≥ 1. Using Lemma 3.3 (ii), we have

M̂k̃−1,n, j(x; q) ≥ M̂k̃−2,n, j(x; q) ≥ · · · M̂0,n, j(x; q).

So, we get M̂k−1,n, j(x; q) ≤
√

2+2
√

[n−1]q
for any k2 ≤ j − 1. In both subcases, by Lemma 3.1 (ii) we get Mk,n, j(x; q) ≤

2
√

3(
√

2+2)
√

[n+1]q
. Therefore, collect all estimations in the previous cases and subcases we easily complete the

proof.

4. A-statistical approximation

We will find an approximation theorem for the operators U(M)
n ( f ; x; q). But in order to obtain such an

approximation, we must substitute a suitable sequence (qn) whose terms are in the interval (0, 1) for a given
q ∈ (0, 1) described in the preceding sections. Phillips [18] used this concept for the q-Bernstein polynomials
first.

Now let (qn) is a real sequence satisfying the following conditions:

0 < qn < 1 for every n ∈N, (10)
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stA − lim
n

qn = 1, (11)

and

stA − lim qn
n = 1. (12)

The notations given in (11) and (12) denote the A-statistical limit of (qn), where A = [a jn] ( j,n ∈ N) is an
infinite nonnegative regular summability matrix, i.e., a jn ≥ 0 for every j,n ∈ N and lim j

∑
∞

n=1 a jnxn = L
whenever limn xn = L provided that the series

∑
∞

n=1 a jnxn is convergent for each j ∈N.
We claim that a particular sequence (xn) is A-statistically convergent to a number L if, for every ϵ >

0, lim j
∑

n:|xn−L|≥ϵ a jn = 0 (see [10]). We should note that Fast [8] first presented the idea of statistical
convergence, and this method of convergence generalizes both of these ideas.

Lemma 4.1. Let A = [a jn] nonnegative regular summability matrix. If lim j maxn

{
a jn

}
= 0 then A-statistical

convergence stronger than classical convergence.

Theorem 4.2. Let (qn) be a sequence satisfying (10)- (12), and let A = [a jn] be a nonnegative regular summability
matrix . Then for every f ∈ C+[0, 1] we have

stA − lim
n

 sup
x∈[0,1]

| U(M)
n ( f ; x; qn) − f (x) |

 = 0. (13)

Proof. Let f ∈ C+[0, 1]. By replacing q with (qn), taking supremum over x ∈ [0, 1], and also utilizing the
monotonicity of the modulus of continuity, we get from Theorem 3.5 that

En := sup
x∈[0,1]

| U(M)
n ( f ; x; qn) − f (x) |≤ 24ω

 f ;
1√

[n + 1]q

 , n ∈N. (14)

Then it is enough to prove stA − limn En = 0. The hypotheses (10)-(12) imply that

stA − lim
n

1√
[n + 1]q

= 0.

Also, we can write that

stA − lim
n
ω

 f ;
1√

[n + 1]q

 = 0. (15)

So, the proof follows from (10)-(15) immediately.
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