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Abstract. In this paper, notion of h-porosity of the subsets of real numbers at zero is investigated. Then, a
characterization for h-strongly porous subsets of real numbers is given.

1. Introduction

In real number system, the concept of porosity can be considered as the distribution of numbers within
the set. A set is said to be porous if it contains “holes” or “gaps” in itself. More specifically, for a porous
set, there exist intervals or neighborhoods that don’t contain any elements of the set. First studies about set
porosity was given by Denjoy in [5], [6] and Khintchine in [9]. Then, porosity arose a paper about cluster
sets [7]. A lot of basic properties of porosity can be found in [10]. By the help of a special function the
definition of upper porosity for a subset of real numbers at a point, redefined for the subsets of natural
numbers at infinity [1]. Then, porosity convergence of real valued sequences defined by the authors in [2].
Some properties of porosity convergence was defined and studied in [3], [4]. Also, Dovgoshey and Bilet
characterized the notion of strongly right upper porosity of a subset of R at a point [8]. They define a new
class of subsets of R+ which are strongly porous at zero. It has many nontrivial modifications of the notion
of porosity.

In this study, we deal with the problem considered in [8] by using h-porosity notion instead of right
upper porosity notion.

Let h : [0,+∞)→ R be a nonnegative, continuous and increasing function on [0,+∞) such that

h(0) = 0, h(x) > 0 for all x > 0

holds.

Definition 1.1. The right upper h-porosity of M ⊂ R at zero is defined as

ph(M) := lim sup
δ→0+

λh(M, 0, δ)
h(δ)

, (1)

where λ(M, 0, δ) denotes the length of the largest open subinterval of (0, δ) that contains no point of M, and
λh(M, 0, δ) := h(λ(M, 0, δ)).
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The right lower h-porosity for M ⊂ R+ at zero can defined similarly, replaced lim inf instead of lim sup.
In this paper, we will take account only the right upper h-porosity of subsets of R+ and we will use

following terminology:
A set M ⊆ R+ is called:
(i) h-porous at zero if ph(M) > 0;
(ii) h-strongly (denoted by h-str) porous at zero if ph(M) = 1;
(iii) h-nonporous at zero if ph(M) = 0.
Let Md be the set of all decreasing sequences µ̃ = {µn} with µn ∈ M for all n ∈ N such that lim

n→∞
µn = 0

holds.

Remark 1.2. Let’s point out that Md = ∅ ⇔ 0 <M′ (M′ denotes the set of all accumulation points of M).

Let IM be the set of all open interval sequences {(kn, ln)} ⊆ R+ such that following conditions hold:
(i) kn > 0 for each n ∈N.

(ii) (kn, ln) is the interior of a connected component of extM (exterior of M) for all n ∈N, i.e., (kn, ln)∩M = ∅
but for every (kn, ln) ⊆ (a, b) we have

(a, b) , (kn, ln)⇒ (a, b) ∩M , ∅.

(iii) The limit relations lim
n→∞

h(kn) = 0 and lim
n→∞

h(ln)−h(kn)
h(ln) = 1 hold.

Let us note that if 0 <M′, then we put IM = ∅.

Now, let us define an equivalence relation, “
h
≍” on the set of sequences of R+ by following way: Let

x̃ = {xn} and ỹ = {yn}, n ∈N. We write x̃
h
≍ ỹ if there are constants c∗, c∗ > 0 such that

c∗h(xn) ≤ h(yn) ≤ c∗h(xn) (2)

holds, for all n ∈N. Equivalently, we can say x̃
h
≍ ỹ if

0 < lim inf
n→∞

h(xn)
h(yn)

≤ lim sup
n→∞

h(xn)
h(yn)

< ∞ (3)

holds.

Definition 1.3. Let M ⊂ R+ be a set and α̃ ∈ Md be a sequence. If there is an interval sequence {(kn, ln)} of
IM such that

α̃
h
≍ k̃ (4)

where k̃ = {kn}, then the set M is called h-α̃-str porous at zero.
The set M is completely h-str porous at zero if M is h-α̃-str porous at zero for every α̃ ∈Md.

Remark 1.4. If 0 <M′, then from Remark 1.2 the set M is completely h-str porous at zero.

Let us denote the set of all completely h-str porous at zero subsets of R+ with CSPh(0). Namely,
CSPh(0) := {M ⊆ R+ : M is completely h -str porous at zero}

2. A characterization of CSPh(0)

In this section, we will focus on to characterizing of the sets of CSPh(0). At first, we shall start to serve
some Lemmas for to achieve our aim.
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Lemma 2.1. Let M ⊂ R+ be a set, α̃ = {αn}n∈N, β̃ = {βk}k∈N ∈ Md be arbitrary sequences. If M is h-α̃-str porous at
zero and there is n = n(k) for every natural number k with

c∗h(αn) ≤ h(βk) ≤ c∗h(αn), (5)

hold where c∗, c∗ ∈ (0,∞) be any constants. Then M is also h-β̃-str porous at zero.

Proof. Let M ⊂ R+ be h-α̃-str porous at zero set. Then, the inequality (5) and the definition of h-α̃-str porous
at zero gives that M is h-β̃-str porous at zero.

Example 2.2. Let us consider a sequence m̃ = {mn} =
{

1
n!

}
n∈N

and h(x) = x2 for x ∈ R+. Define a set M ⊂ R+

as M := {0} ∪ {mn : n ∈N}.

Figure 1: The set M is pointed here

Obviously {(mn+1,mn)}n∈N ∈ IM and M is x2-m̃-str porous at zero. Also, every sequence β̃ ∈ Md have the
condition of Lemma 2.1 when we take α̃ = m̃, c∗ = c∗ = 1.

So, M is x2-β̃-str porous at zero for every β̃ ∈Md. Hence, M ∈ CSPh(0) holds.

Example 2.3. Let m̃ be the sequence defined in Example 2.2 and h(x) = ln(1 + x) for x ∈ [0,∞). Define the
set N as follows:

N = {0} ∪ {[mn, 2mn] : n ∈N} .

It is clear that 2mn+1 < mn for all n > 1. Basic Mathematical calculations gives that the sequence
{(2m1+n+1,m1+n)} belongs to IN. Write 2m̃ = {2mn}. Then, N is h-2m̃-str porous at zero for h(x) = ln(1+ x). Let
β̃ = {βk} ∈ Nd. For every k ∈N there exists n ∈N such that

ln(1 +mn) ≤ ln(1 + βk) ≤ ln(1 + 2mn). (6)

holds. From same reason as in Example 2.2, the inequality (6) gives that N ∈ CSPh(0).

Lemma 2.4. Let M ⊂ R+, α̃ ∈Md and {(kn, ln)} ∈ IM. Then, following expressions are equivalent:

(i) α̃
h
≍ k̃ where k̃ = {kn}.

(ii) Following inequalities

1 ≤ lim inf
n→∞

h(kn)
h(αn)

and lim sup
n→∞

h(kn)
h(αn)

< ∞

hold.
(iii)

lim sup
n→∞

h(kn)
h(αn)

< ∞ and h(αn) ≤ h(kn)

hold for sufficiently large n.
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Proof. It is easy to see that (ii) implies that (i). Let us assume that (iii) is true. Since h(αn) ≤ h(kn), then
1 ≤ h(kn)

h(αn) is true for all n ∈N. This implies that 1 ≤ lim infn→∞
h(kn)
h(αn) holds. Hence, (ii) is proved.

Now, let’s prove that (i) gives (iii). The inequality lim supn→∞
h(kn)
h(αn) < ∞ is obtained by considering the

assumption α̃
h
≍ k̃. Also, we have

lim
n→∞

h(ln)
h(kn)

= ∞, (7)

because of {(kn, ln)} ∈ IM. The condition (i) implies that the sequence
(

h(αn)
h(kn)

)
is bounded from below and

upper. So, if we consider (7), then we can say that there exists n0 ∈N such that

h(αn)
h(kn)

≤
h(ln)
h(kn)

holds for all n ≥ n0. Then, we have

h(αn) ≤ h(ln) (8)

for all n ≥ n0. From (8) it can be obtained by considering the properties of h that αn ≤ ln holds for all
n ≥ n0. In this situation, kn ≤ αn may be satisfied for all n ≥ n0. But this is not possible because αn ∈M and
(kn, ln) ∩M = ∅. So, αn ≤ kn must be hold. Hence, the proof is completed.

Remark 2.5. Let M ⊂ R+ is h-α̃-str porous at zero for α̃ = {αn} ∈ Md. Then there is an interval sequence
{(kn, ln)}n∈N in IM such that the conditions (ii) and (iii) of Lemma 2.4 are equivalent with the situation of
h-α̃-str porous at zero of M.

By the help of Remark 2.5 we can easily establish a set W ⊂ R+ such that W is h-str porous at zero but
W < CSPh(0)

Example 2.6. Let m̃ =
{

1
n!

}
be the sequence in Example 2.2 and h(x) = x2 for x ∈ R+. Let us establish the set

W as follows:

W = {0} ∪
{[

1
(2n + 1)!

,
1

(2n)!

]
: n ∈N

}
.

Figure 2: The set W is bold here

The sequence
{(

1
(2n+2)! ,

1
(2n+1)!

)}
belongs to IW and lim

n→∞

( 1
(2n+1)! )2

( 1
(2n+2)! )2 = ∞. So, W is x2-str porous at zero. Now, let

us take account the sequence η̃ = {ηn} with ηn =
√

m2n+1m2n =
√

1
(2n+1)!

1
(2n)! . It is clear that η̃ belongs to Wd.

Let {(kn, ln)} ∈ IW be an arbitrary interval sequence and ηn ≤ kn for all n ∈ N. Since, ηn ∈
[

1
(2n+1)! ,

1
(2n)!

]
⊆ W,

then we have ηn ≤
1

(2n)! ≤ kn. If W ∈ CSPh(0), then W is η̃-str porous at zero. Thus, by Remark 2.5, we can
take {(kn, ln)} such that ηn ≤ kn for n ∈N. So,

lim sup
n→∞

h(kn)
h(ηn)

≥ lim sup
n→∞

h(m2n)
h(ηn)

= lim sup
n→∞

[ 1
(2n)! ]

2

[ 1
(2n+1)!

1
(2n)! ]

= ∞.

Hence, we obtain from Remark 2.5 that A is not η̃-str porous at zero, contrary to the assumption. So,
W < CSPh(0).
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If a subset M ⊂ R+ is h-β̃-str porous at zero for β̃ ∈Md, then the set M is h-str porous at zero.
Also, we have following proposition.

Proposition 2.7. Let M ⊂ R+ be a set and 0 ∈ M′. If M is h-str porous at zero, then there exists β̃ ∈ Md such that
M is h-β̃-str porous at zero.

Remark 2.8. If 0 <M′, then M is h-str porous at zero but from Remark 1.2 there isn’t any β̃ ∈Md.

Definition 2.9. The set M ⊂ R+ is uniformly h-str porous at zero if there is a constant c > 0, such that for
every β̃ ∈Md there exists {(kn, ln)} ∈ IM such that

1 ≤ lim inf
n→∞

h(kn)
h(βn)

≤ lim sup
n→∞

h(kn)
h(βn)

≤ c (9)

holds, for all sufficiently large n.

Remark 2.10. If 0 <M′, then from Remark 1.2 the set M is uniformly h-str porous at zero.

Every uniformly h-str porous at zero set belongs to CSPh(0). Moreover, the converse of this fact is also
true and we will show this at the end of the paper.

A set IM(β̃) ⊂ IM for β̃ ∈Md define by the following rule:

{(kn, ln)} ∈ IM(β̃)⇔ {(kn, ln)} ∈ IM and βn ≤ kn for sufficiently large n ∈N.

Let

C(h(β̃)) := inf
{(kn,ln)}∈IM(β̃)

(
lim sup

n→∞

h(kn)
h(βn)

)
and C(h(M)) := sup

β̃∈Md

(
C(h(β̃))

)
. (10)

Remark 2.11. Let M ⊂ R+ and 0 <M′. M is h-str porous at zero⇔ IM(β̃) , ∅ for every β̃ ∈Md.
M is completely h-str porous at zero⇔C(h(β̃)) < ∞ for every β̃ ∈Md.
M is uniformly h-str porous at zero⇔C(h(M)) < ∞.

Lemma 2.12. Let M ⊂ R+ be a set. If β̃ = {βn} ∈ Md and {(kn, ln)}n∈N ∈ IM is a sequence satisfying k̃
h
≍ β̃, then

k̃ := {kn} and l̃ := {ln} are decreasing sequences.

Proof. It is sufficient to prove that one of the sequence k̃ and l̃ is decreasing. Let us assume that k̃ isn’t
decreasing. Then, there is a set E ⊆N, it has infinitely many elements, with

kn+1 > kn (11)

holds for all n ∈ E. Since (kn, ln) ∩M = ∅, then (11) implies that h(kn+1) ≥ h(ln) > h(kn). By Lemma 2.4,
h(βn) ≤ h(kn) holds for all sufficiently large n. Also, for this n, we can assume that h(βn+1) ≤ h(βn) because β̃
is decreasing. So, we obtain

h(kn+1) ≥ h(ln) > h(kn) ≥ h(βn) > h(βn+1) (12)

for sufficiently large n ∈ E. From (12) we have

h(ln)
h(kn)

≤
h(kn+1)
h(βn+1)

.

Thus following inequality contradicts to Lemma 2.4

∞ = lim
n∈E
n→∞

h(ln)
h(kn)

≤ lim sup
n∈E
n→∞

h(kn+1)
h(βn+1)

≤ lim sup
n→∞

h(kn+1)
h(βn+1)

.
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Proposition 2.13. Let M ⊂ R+, β̃ ∈ Md, and {(k(1)
n , l

(1)
n )}, {(k(2)

n , l
(2)
n )} ∈ IM. If k̃1 h

≍ β̃ and k̃2 h
≍ β̃, then there exists

N0 ∈N such that

(k(2)
n , l

(2)
n ) = (k(1)

n , l
(1)
n ) (13)

for every n ≥ N0 where k̃i := {k(i)
n }, i = 1, 2.

Proof. Let k̃1 h
≍ β̃ and k̃2 h

≍ β̃ hold. Then, from Lemma 2.12, we obtain k̃i are decreasing for i = 1, 2. We also

have β̃
h
≍ k̃1 and β̃

h
≍ k̃2. Also, this implies k̃1 h

≍ k̃2 holds. From Lemma 2.4 there exists N0 ∈ N such that
k̃(1)
≤ k̃(2) and k̃(2)

≤ k̃(1) for n ≥ N0. Hence, k̃(1) = k̃(2) for every n ≥ N0 and (13) holds for such n.

Let’s define a set Id
M ⊆ IM by the following rule:

{(kn, ln)} ∈ Id
M ⇔ {(kn, ln)} and {kn} is decreasing.

Remark 2.14. If {(kn, ln)} ∈ Id
M for M ⊆ R+ then there are α̃ = {αn} and β̃ = {βn} ∈Md sucht that

lim
n→∞

h(αn)
h(kn)

= lim
n→∞

h(βn)
h(ln)

= 1, (14)

holds.

Definition 2.15. ([8]) Let K̃ := {(kn, ln)}, Ẽ := {(an, bn)} ∈ Id
M. We say K̃ ⪯ Ẽ if there are n1 = n1(K̃, Ẽ) ∈N and a

function f :Nn1 →N, whereNn1 := {n1,n1 + 1, ...}, such that

kn = a f (n) (15)

satisfied for every n ∈Nn1 .

It is called that Ẽ ∈ Id
M is universal if K̃ ⪯ Ẽ for every K̃ ∈ Id

M.
If K̃ is a subsequence of Ẽ, then K̃ ⪯ Ẽ holds.
Let us show that the converse is not true, in general:

Example 2.16. Let {mn} be a strictly decreasing sequence with lim
n→∞

h(mn+1)
h(mn) = 0 and let M = {0} ∪ {mn : n ∈N}.

Let us take into account a sequence Ẽ = {(ek, fk)}with (ek, fk) = (mn+1,mn)⇔ n2
≤ k < (n+ 1)2. From Example

2.2, X̃ = {(mn+1,mn)} ∈ IM. By Lemma 2.1 we have Ẽ ∈ IM. So, Definition 2.15 implies that Ẽ ⪯ X̃. It is clear
that Ẽ ⊈ X̃.

Definition 2.15 can be reformulated by the following way:

Proposition 2.17. Let K̃ = {(kn, ln)}, Ẽ = {(an, bn)} ∈ Id
M. Then, K̃ ⪯ Ẽ if and only if there are n1 = n1(K̃, Ẽ) and

f :Nn1 →N such that

ln := b f (n)

holds for all n ∈Nn1 .

Proposition 2.18. Let M ⊂ R be a h-str porous set at zero and 0 <M′. The relation “ ⪯ ” is a quasi-ordering (binary
relation with reflexive and transitive) on the set Id

M.

Proof. It is clear that ⪯ is reflexive. So, we must prove that ⪯ is transitive. Let K̃ ⪯ Ẽ and Ẽ ⪯ T̃
for K̃ = {(kn, ln)}, Ẽ = {(an, bn)}, T̃ = {(tn, pn)} ∈ Id

M. From Definition 2.15 there exist f1 : Nn1 → N and
f2 :Nn2 →N increasing functions such that

kn = a f1(n) holds for n ≥ n1 and an = t f2(n) holds and n ≥ n2.
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Take m0 := max{n ∈ N : f1(n) ≤ n2}. Then, m0 < ∞ because f1 is increasing and unbounded. Let
n3 := max{m0,n1}. If {n ∈ N : f1(n) ≤ n2} = ∅, then n3 = n1. So, n3 < ∞ holds. From construction f1(n) ≥ n2
for every n ∈Nn3 . So, we have

kn = a f1(n) = t f2( f1(n))

for such n. Hence, K̃ ⪯ Ẽ ∧ Ẽ ⪯ T̃ holds and it implies K̃ ⪯ T̃.

If we use standard procedure we may obtain an equivalence relation “ ≡ ” on the set Id
M as follows:

K̃ ≡ T̃⇔ K̃ ⪯ T̃ and T̃ ⪯ K̃ (16)

Let Ũ = {(un, vn)} ∈ Id
M be universal for M ∈ R+. Define following quantity

M(Ũ) := lim sup
n→∞

h(un)
h(vn+1)

. (17)

Let Isd
M be the set of all {(kn, ln)} ∈ Id

M with {kn} is strictly decreasing sequence.

Lemma 2.19. If T̃ = {(tn, pn)} ∈ Id
M is universal for M ⊂ R+, then T̃ have a subsequence T̃′ such that T̃′ = {tnk , pnk }

is also universal and T̃′ ∈ Isd
M.

Proof. In construction of such subsequence we use mathematical induction. Since {tn} is decreasing, then
there is n1 ∈ N such that tn+1 < tn for n ≥ n1. Also, from limn→∞ tn = 0 we have, tn < tn+1 for all n ≥ n1.
Now, let us set

nk+1 := min{n ∈Nnk : tn < tnk }, for k = 1, 2, ... (18)

For every n ≥ n1 there is a unique k ∈N such that

nk ≤ n < nk+1, (19)

holds. Moreover, if n satisfies (19), then the decrease of {tn}, n ∈Nn1 implies that

tnk = tn. (20)

Now, let us define f : Nn1 → N with f (n) = k where k is the unique index satisfying (19). By the above
steps we have T̃ ⪯ T̃′. Proposition 2.18 gives that “ ⪯ ” is transitive. Also, we have L̃ ⪯ T̃ for every L̃ ∈ Id

M
because T̃ is universal. Then, L̃ ⪯ T̃′ for every L̃ ∈ Id

M. So, T̃′ is also universal. From (18) we have tnk > tnk+1

for every k ∈N. So, {tnk } is strictly decreasing, i.e., T̃′ ∈ Isd
M

Lemma 2.20. Let M ∈ CSPh(0). If T̃ = {(tn, pn)} ∈ Isd
M is universal, then

M(T̃) = C(h(M)) (21)

where C(h(M)) andM(T̃) are defined by (10) and (17), respectively.

Proof. Let T̃ ∈ Isd
M be universal. Firstly, we shall prove

M(T̃) ≥ C(h(M)). (22)

Equation (22) holds if and only if

M(T̃) ≥ C(h(β̃)) (23)
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for every β̃ ∈ Md and C(h(β̃)) was defined in (10). Now, let β̃ ∈ Md. By the hypothesis, M ∈ CSPh(0). So,

there exists {(kn, ln)} ∈ IM so that β̃
h
≍ k̃. By Lemma 2.4 we have

lim sup
n→∞

h(kn)
h(βn)

< ∞. (24)

Also, for sufficiently large n

h(βn) ≤ h(kn) (25)

holds. Proposition 2.13 and the definition of C(h(β̃)) imply

C(h(β̃)) = lim sup
n→∞

h(kn)
h(βn)

. (26)

So, to prove (23) we must show that

M(T̃) ≥ lim sup
n→∞

h(kn)
h(βn)

. (27)

By Lemma 2.12 we have

Ẽ := {(kn, ln)} ∈ Id
M, (28)

(28) implies that Ẽ ⪯ T̃ holds because T̃ is universal. Hence, there are n1 ∈ N and an increasing function
f :Nn1 →N such that

kn ≥ kn+1 and kn = t f (n) (29)

for every n ≥ n1. Since T̃ = {(tn, pn)} ∈ Isd
M, let us assume that t̃ = {tn} is strictly decreasing. Replacing β̃ by a

suitable subsequence we may assume that ã and β̃ are also strictly decreasing, f is strictly increasing, and

β1 ≤ t1, lim
n→∞

h(an)
h(βn)

= lim sup
n→∞

h(an)
h(βn)

(30)

hold. The intervals [pn+1, tn], for n = 1, 2, ..., together with the interval [p1,∞) are a cover of the set
M0 =M\{0}, i.e.,

M0 ⊆ [p1,∞) ∪
(
∪

n∈N
[pn+1, tn]

)
.

This cover has pairwise disjoint elements and h(β1) ≤ h(t1), n ∈N. So, there is unique s(n) ∈Nwith

βn ∈ [ps(n)+1, ts(n)]. (31)

We claim that the equality

s(n) = f (n) (32)

holds for all sufficiently large n. By using (25), (29) and (31) we obtain

βn ≤ t f (n) and βn ≥ ps(n)+1. (33)

Hence, (33) and following inequality

h(ps(n)+1) > h(ts(n)+1) > h(ts(n)+2) > h(ts(n)+3) > ...
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imply that

f (n) ≤ s(n) (34)

holds. Let us assume that (34) is strict for n ∈ E ⊆N, such that E is an infinite set. i.e.,

f (n) ≤ s(n) − 1 (35)

for n ∈ E. Since ã
h
≍ β̃ and an = t f (n), there is a constant c∗ ∈ (0, 1) such that

c∗h(t f (n)) ≤ h(βn) ≤ h(t f (n)) (36)

holds for all sufficiently large n. From (31), (34) and (36), it follows that

c∗h(t f (n)) ≤ h(βn) ≤ h(ts(n)) ≤ h(t f (n)). (37)

Since t̃ = {tn} is strictly increasing, then (ti, pi) ∩ (t j, p j) = ∅ if i , j and (35) implies that

h(ts(n)) < h(ps(n)) ≤ h(ts(n)−1) ≤ h(t f (n)) < h(p f (n)).

Together (37) and this inequality

c∗h(t f (n)) ≤ h(βn) ≤ h(ts(n)) < h(ps(n)) ≤ h(ts(n)−1) < h(t f (n))

for n ∈ E. So, we have

1
c∗
= lim

n→∞

h(t f (n))
c∗h(t f (n))

≥ lim sup
n→∞

n∈E

h(ps(n))
h(ts(n))

contrary to the limit relation

lim
n→∞

h(pn)
h(tn)

= ∞.

Thus, the set of n ∈N has the condition f (n) < s(n) is finite. So, (32) holds.
Now we can prove (27) easily. By (29) ad (32) we have

an = t f (n) = ts(n).

Equation (32) implies that h(βn) ≥ h(ls(n)+1). Consequently

h(an)
h(βn)

≤
h(ts(n))

h(ps(n)+1)
.

So,

lim sup
n→∞

h(an)
h(βn)

≤ lim sup
n→∞

h(ts(n))
h(ps(n)+1)

≤ lim sup
n→∞

h(tn)
h(pn+1)

=M(T̃).

(27) follows, so (22) is proved.
For to prove

M(T̃) ≤ C(h(M)) (38)

let us take a sequence β̃ = {βn} ∈Md such that (31) holds for s(n) = n and

lim
n→∞

h(pn+1)
h(βn)

= 1. (39)
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β̃ can be constructed as in the proof of Proposition 2.7. The set M is β̃-str porous at zero because M ∈ CSPh(0).

So, there is ã
h
≍ β̃ such that {(an, bn)} ∈ Id

M. The sequence ã is decreasing from Lemma 2.12.
Since βn ∈ [pn+1, tn], then by using (32) we have

an = pn

for all sufficiently large n. From (26) and (39), we have also

C(h(β̃)) = lim sup
n→∞

h(an)
h(βn)

= lim sup
n→∞

h(tn)
h(pn+1)

h(pn+1)
h(βn)

= lim sup
n→∞

h(tn)
h(pn+1)

lim sup
n→∞

h(pn+1)
h(βn)

= lim sup
n→∞

h(tn)
h(pn+1)

=M(T̃). (40)

Since C(h(M)) ≥ C(h(β̃)), then (38) follows.

From (40) we have following result.

Corollary 2.21. Let M ∈ CSPh(0) for M ⊂ R+. If T̃ = {(tn, pn)} ∈ Isd
M is universal, thenM(T̃) < ∞.

Remark 2.22. From Lemma 2.20M(T̃) = C(h(M)) holds for every universal T̃ ∈ Isd
M.

Assume that T̃ ∈ Id
M is universal but T̃ < Isd

M. Describe a set E ⊆N by the rule

n ∈ E⇔ n ∈N and (tn+1, pn+1) = (tn, pn).

Let T̃′ ∈ Isd
M be the universal element of Id

M built from T̃ as in Lemma 2.19. If we use the definition of the set
E we have

M(T̃) = lim sup
n→∞

h(tn+1)
h(pn)

= lim sup
n→∞

n∈E

h(tn+1)
h(pn)

∨ lim sup
n→∞
n∈N\E

h(tn+1)
h(pn)

= lim sup
n→∞

n∈E

h(tn)
h(pn)

∨M(T̃′) = 0 ∨M(T̃′) =M(T̃′).

So, if T̃, L̃ ∈ Id
M are universal, thenM(T̃) =M(L̃).

Now, we are ready to give final theorem.

Theorem 2.23. Let M ⊆ R+ be h-str porous set at zero and 0 ∈M′. Then, following conditions are equivalent.
(i) M ∈ CSPh(0).
(ii) Id

M has a universal element L̃ = {(ln,mn)} ∈ Isd
M with

M(L̃) < ∞. (41)

(iii) M is uniformly h-str porous at zero.

Let us recall that from Remark 2.22 (ii) of Theorem 2.23 can be reformulated by the following way: The
set of universal elements T̃ ∈ Id

M is nonempty andM(T̃) < ∞ holds for every universal T̃.
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Proof. Let M ∈ CSPh(0). Firstly, we shall prove that there is a sequence w̃ = {wn} ∈ Md such that for every
β̃ = {βk} ∈Md we can find a function f :N→Nwhich is increasing and satisfy following:

{βk}
h
≍ {w f (k)}. (42)

Let us define {M j} j∈N as follows:

M1 :=M ∩ [h(1),∞),

M2 :=M ∩
[
h
(1

2

)
, h(1)

)
,

M3 :=M ∩
[
h
(1

4

)
, h

(1
2

))
,

...

M j :=M ∩
[
h
( 1

2 j−1

)
, h

( 1
2 j−2

))
, j ∈N. (43)

There is the unique subsequence {M jn }, n ∈N of the sequence {M j}, j ∈N such that

M\{0} = ∪
n∈N

M jn and M jn , ∅

for every n ∈ N. For simplicity, let us take En := M jn , n ∈ N. Let {wn} be a sequence such that wn ∈ En for
every n ∈N. Clearly, {wn} ∈Md. For every β̃ = {βk} ∈Md, let f :N→N defined as follows:

f (k) = n⇔ βk ∈ En.

M\{0} = ∪
n∈N

En and E j ∩ Ei = ∅ if i , j

imply that f is well-defined. Also, (43) gives that

f (k) ≥ 2⇒ h
(1

2

)
h(βk) ≤ h(w f (k)) ≤ h(2)h(βk)

In addition, since β̃ and w̃ are decreasing and lim
n∈N
βn = 0, the function f is increasing and the set {k ∈ N :

f (k) = 1} is finite. So, we can find constants c∗, c∗ > 0 such that

c∗h(βk) ≤ h(w f (k)) ≤ c∗h(βk)

for all k ∈N. So, (42) holds.
Let w̃ = {wn} ∈ Md be the sequence constructed above. Since M ∈ CSPh(0), then M is h-w̃-str porous at

zero. Thus, there is K̃ := {(an, bn)} ∈ IM such that

ã
h
≍ w̃. (44)

holds. Hence, Lemma 2.12 gives that ã is decreasing. Namely, K̃ ∈ Id
M. We claim that K̃ is universal. Indeed,

as we shown for every β̃ ∈Md there is f :N→N such that (42) holds. The relation {wn}
h
≍ {an} gives that

{w f (k)}
h
≍ {a f (k)}. (45)

(a f (n), b f (n)) is the interior of a connected component of ExtM and lim
n→∞

f (n) = ∞. Then, we have

{(a f (k), b f (k))} ∈ IM. (46)
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Also, since f is increasing and K̃ = {(an, bn)} ∈ Id
M, (46) implies

{(a f (k), b f (k))} ∈ Id
M. (47)

(42) and (45) gives that

{βk}
h
≍ {a f (k)}. (48)

If we use (47), (48) and Remark 2.14, we can show that T̃ ⪯ K̃ for every T̃ ∈ Id
M, as required.

By Lemma 2.19 we can find a universal element T̃ ∈ Isd
M. According to Corollary 2.21 we haveM(T̃) < ∞.

So, we have (i)⇒ (ii) holds.
(iii) ⇒ (i) is obvious. Also, if we use Lemma 2.20, we can easily see that (i)∧(ii)⇒(iii) is true. So, to

complete the proof we must show that (ii)⇒(i). Let us assume that β̃ = {βn} ∈ Md and let T̃ = {(tk, pk)} ∈ Isd
M

be universal. Like in the proof of Lemma 2.20 we can assume that {tn} is strictly decreasing and that
h(β1) ≤ h(t1). Then, there is a unique k(n) ∈N, n ∈N such that

h(pk(n)+1) ≤ h(βn) ≤ h(tk(n)) (49)

(see (31)). (49) implies

lim sup
n→∞

h(tk(n))
h(βn)

≤ lim sup
n→∞

h(tk(n))
h(pk(n)+1)

≤ lim sup
n→∞

h(tk)
h(pk+1)

=M(T̃) < ∞.

Since {(tk(n), pk(n))} ∈ Id
M, then M is h-β̃-str porous at zero from Lemma 2.4. So, (i) holds.
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[6] A. Denjoy, Leçons sur le calcul des cofficients d’une série trigonométrique, Part II, Métrique et topologie d’ensembles parfaits et de fonctions,

Gauthier-Villars, Paris, 1941.
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