

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A characterization of h-strongly porous subsets of \mathbb{R}

Maya Altınok^{a,*}, Mehmet Küçükaslan^b

^aTarsus University, Faculty of Engineering, Department of Natural and Mathematical Sciences, Turkey ^bMersin University, Faculty of Sciences and Arts, Department of Mathematics, Turkey

Abstract. In this paper, notion of *h*-porosity of the subsets of real numbers at zero is investigated. Then, a characterization for *h*-strongly porous subsets of real numbers is given.

1. Introduction

In real number system, the concept of porosity can be considered as the distribution of numbers within the set. A set is said to be porous if it contains "holes" or "gaps" in itself. More specifically, for a porous set, there exist intervals or neighborhoods that don't contain any elements of the set. First studies about set porosity was given by Denjoy in [5], [6] and Khintchine in [9]. Then, porosity arose a paper about cluster sets [7]. A lot of basic properties of porosity can be found in [10]. By the help of a special function the definition of upper porosity for a subset of real numbers at a point, redefined for the subsets of natural numbers at infinity [1]. Then, porosity convergence of real valued sequences defined by the authors in [2]. Some properties of porosity convergence was defined and studied in [3], [4]. Also, Dovgoshey and Bilet characterized the notion of strongly right upper porosity of a subset of \mathbb{R} at a point [8]. They define a new class of subsets of \mathbb{R}^+ which are strongly porous at zero. It has many nontrivial modifications of the notion of porosity.

In this study, we deal with the problem considered in [8] by using h-porosity notion instead of right upper porosity notion.

Let $h:[0,+\infty)\to\mathbb{R}$ be a nonnegative, continuous and increasing function on $[0,+\infty)$ such that

$$h(0) = 0$$
, $h(x) > 0$ for all $x > 0$

holds.

Definition 1.1. The right upper *h*-porosity of $M \subset \mathbb{R}$ at zero is defined as

$$\overline{p}_h(M) := \limsup_{\delta \to 0^+} \frac{\lambda_h(M, 0, \delta)}{h(\delta)},\tag{1}$$

where $\lambda(M, 0, \delta)$ denotes the length of the largest open subinterval of $(0, \delta)$ that contains no point of M, and $\lambda_h(M, 0, \delta) := h(\lambda(M, 0, \delta))$.

2020 Mathematics Subject Classification. Primary 28A10; Secondary 28A05.

Keywords. porosity, strongly porous sets, subsets of real numbers.

Received: 08 August 2023; Revised: 20 February 2024; Accepted: 04 March 2024

Communicated by Ljubiša D. R. Kočinac

* Corresponding author: Maya Altınok

Email addresses: mayaaltinok@tarsus.edu.tr (Maya Altınok), mkkaslan@gmail.com (Mehmet Küçükaslan)

The right lower h-porosity for $M \subset \mathbb{R}^+$ at zero can defined similarly, replaced $\lim \inf$ instead of $\lim \sup$. In this paper, we will take account only the right upper h-porosity of subsets of \mathbb{R}^+ and we will use following terminology:

A set $M \subseteq \mathbb{R}^+$ is called:

- (i) *h*-porous at zero if $\overline{p}_h(M) > 0$;
- (ii) *h*-strongly (denoted by *h*-str) porous at zero if $\overline{p}_h(M) = 1$;
- (iii) *h*-nonporous at zero if $\overline{p}_h(M) = 0$.

Let M_d be the set of all decreasing sequences $\tilde{\mu} = \{\mu_n\}$ with $\mu_n \in M$ for all $n \in \mathbb{N}$ such that $\lim \mu_n = 0$ holds.

Remark 1.2. Let's point out that $M_d = \emptyset \Leftrightarrow 0 \notin M'$ (M' denotes the set of all accumulation points of M).

Let I_M be the set of all open interval sequences $\{(k_n, l_n)\} \subseteq \mathbb{R}^+$ such that following conditions hold: (i) $k_n > 0$ for each $n \in \mathbb{N}$.

(ii) (k_n, l_n) is the interior of a connected component of *extM* (exterior of *M*) for all $n \in \mathbb{N}$, i.e., $(k_n, l_n) \cap M = \emptyset$ but for every $(k_n, l_n) \subseteq (a, b)$ we have

$$(a,b) \neq (k_n,l_n) \Rightarrow (a,b) \cap M \neq \emptyset.$$

(iii) The limit relations $\lim_{n\to\infty} h(k_n) = 0$ and $\lim_{n\to\infty} \frac{h(l_n) - h(k_n)}{h(l_n)} = 1$ hold. Let us note that if $0 \notin M'$, then we put $I_M = \emptyset$.

Now, let us define an equivalence relation, " $\stackrel{h}{\approx}$ " on the set of sequences of \mathbb{R}^+ by following way: Let $\tilde{x} = \{x_n\}$ and $\tilde{y} = \{y_n\}$, $n \in \mathbb{N}$. We write $\tilde{x} \stackrel{h}{\approx} \tilde{y}$ if there are constants $c_*, c^* > 0$ such that

$$c_*h(x_n) \le h(y_n) \le c^*h(x_n) \tag{2}$$

holds, for all $n \in \mathbb{N}$. Equivalently, we can say $\tilde{x} \stackrel{h}{\approx} \tilde{y}$ if

$$0 < \liminf_{n \to \infty} \frac{h(x_n)}{h(y_n)} \le \limsup_{n \to \infty} \frac{h(x_n)}{h(y_n)} < \infty$$
(3)

holds.

Definition 1.3. Let $M \subset \mathbb{R}^+$ be a set and $\tilde{\alpha} \in M_d$ be a sequence. If there is an interval sequence $\{(k_n, l_n)\}$ of I_M such that

$$\tilde{\alpha} \stackrel{h}{\approx} \tilde{k}$$
 (4)

where $\tilde{k} = \{k_n\}$, then the set M is called h- $\tilde{\alpha}$ -str porous at zero.

The set M is completely h-str porous at zero if M is h- $\tilde{\alpha}$ -str porous at zero for every $\tilde{\alpha} \in M_d$.

Remark 1.4. If $0 \notin M'$, then from Remark 1.2 the set M is completely h-str porous at zero.

Let us denote the set of all completely h-str porous at zero subsets of \mathbb{R}^+ with $\mathsf{CSP}_h(0)$. Namely, $CSP_h(0) := \{M \subseteq \mathbb{R}^+ : M \text{ is completely } h \text{ -str porous at zero} \}$

2. A characterization of CSP_h(0)

In this section, we will focus on to characterizing of the sets of $CSP_h(0)$. At first, we shall start to serve some Lemmas for to achieve our aim.

Lemma 2.1. Let $M \subset \mathbb{R}^+$ be a set, $\tilde{\alpha} = \{\alpha_n\}_{n \in \mathbb{N}}$, $\tilde{\beta} = \{\beta_k\}_{k \in \mathbb{N}} \in M_d$ be arbitrary sequences. If M is h- $\tilde{\alpha}$ -str porous at zero and there is n = n(k) for every natural number k with

$$c_*h(\alpha_n) \le h(\beta_k) \le c^*h(\alpha_n),\tag{5}$$

hold where $c_*, c^* \in (0, \infty)$ be any constants. Then M is also h- $\tilde{\beta}$ -str porous at zero.

Proof. Let $M \subset \mathbb{R}^+$ be h- $\tilde{\alpha}$ -str porous at zero set. Then, the inequality (5) and the definition of h- $\tilde{\alpha}$ -str porous at zero gives that M is h- $\tilde{\beta}$ -str porous at zero. \square

Example 2.2. Let us consider a sequence $\tilde{m} = \{m_n\} = \left\{\frac{1}{n!}\right\}_{n \in \mathbb{N}}$ and $h(x) = x^2$ for $x \in \mathbb{R}^+$. Define a set $M \subset \mathbb{R}^+$ as $M := \{0\} \cup \{m_n : n \in \mathbb{N}\}.$

Figure 1: The set M is pointed here

Obviously $\{(m_{n+1}, m_n)\}_{n \in \mathbb{N}} \in I_M$ and M is x^2 - \tilde{m} -str porous at zero. Also, every sequence $\tilde{\beta} \in M_d$ have the condition of Lemma 2.1 when we take $\tilde{\alpha} = \tilde{m}$, $c_* = c^* = 1$.

So, M is x^2 - $\tilde{\beta}$ -str porous at zero for every $\tilde{\beta} \in M_d$. Hence, $M \in \mathbf{CSP_h}(\mathbf{0})$ holds.

Example 2.3. Let \tilde{m} be the sequence defined in Example 2.2 and $h(x) = \ln(1+x)$ for $x \in [0, \infty)$. Define the set N as follows:

$$N = \{0\} \cup \{[m_n, 2m_n] : n \in \mathbb{N}\}.$$

It is clear that $2m_{n+1} < m_n$ for all n > 1. Basic Mathematical calculations gives that the sequence $\{(2m_{1+n+1}, m_{1+n})\}$ belongs to I_N . Write $2\tilde{m} = \{2m_n\}$. Then, N is h- $2\tilde{m}$ -str porous at zero for $h(x) = \ln(1+x)$. Let $\tilde{\beta} = \{\beta_k\} \in N_d$. For every $k \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that

$$\ln(1+m_n) \le \ln(1+\beta_k) \le \ln(1+2m_n). \tag{6}$$

holds. From same reason as in Example 2.2, the inequality (6) gives that $N \in \mathbf{CSP_h(0)}$.

Lemma 2.4. Let $M \subset \mathbb{R}^+$, $\tilde{\alpha} \in M_d$ and $\{(k_n, l_n)\} \in I_M$. Then, following expressions are equivalent:

- (i) $\tilde{\alpha} \stackrel{h}{\approx} \tilde{k}$ where $\tilde{k} = \{k_n\}$.
- (ii) Following inequalities

$$1 \le \liminf_{n \to \infty} \frac{h(k_n)}{h(\alpha_n)}$$
 and $\limsup_{n \to \infty} \frac{h(k_n)}{h(\alpha_n)} < \infty$

hold.

(iii)

$$\limsup_{n\to\infty}\frac{h(k_n)}{h(\alpha_n)}<\infty\quad and\quad h(\alpha_n)\leq h(k_n)$$

hold for sufficiently large n.

Proof. It is easy to see that (*ii*) implies that (*i*). Let us assume that (*iii*) is true. Since $h(\alpha_n) \leq h(k_n)$, then $1 \leq \frac{h(k_n)}{h(\alpha_n)}$ is true for all $n \in \mathbb{N}$. This implies that $1 \leq \liminf_{n \to \infty} \frac{h(k_n)}{h(\alpha_n)}$ holds. Hence, (*ii*) is proved. Now, let's prove that (*i*) gives (*iii*). The inequality $\limsup_{n \to \infty} \frac{h(k_n)}{h(\alpha_n)} < \infty$ is obtained by considering the

Now, let's prove that (i) gives (iii). The inequality $\limsup_{n\to\infty} \frac{h(k_n)}{h(\alpha_n)} < \infty$ is obtained by considering the assumption $\tilde{\alpha} \stackrel{h}{\approx} \tilde{k}$. Also, we have

$$\lim_{n \to \infty} \frac{h(l_n)}{h(k_n)} = \infty,\tag{7}$$

because of $\{(k_n, l_n)\} \in I_M$. The condition (*i*) implies that the sequence $\left(\frac{h(\alpha_n)}{h(k_n)}\right)$ is bounded from below and upper. So, if we consider (7), then we can say that there exists $n_0 \in \mathbb{N}$ such that

$$\frac{h(\alpha_n)}{h(k_n)} \le \frac{h(l_n)}{h(k_n)}$$

holds for all $n \ge n_0$. Then, we have

$$h(\alpha_n) \le h(l_n)$$
 (8)

for all $n \ge n_0$. From (8) it can be obtained by considering the properties of h that $\alpha_n \le l_n$ holds for all $n \ge n_0$. In this situation, $k_n \le \alpha_n$ may be satisfied for all $n \ge n_0$. But this is not possible because $\alpha_n \in M$ and $(k_n, l_n) \cap M = \emptyset$. So, $\alpha_n \le k_n$ must be hold. Hence, the proof is completed. \square

Remark 2.5. Let $M \subset \mathbb{R}^+$ is h- $\tilde{\alpha}$ -str porous at zero for $\tilde{\alpha} = \{\alpha_n\} \in M_d$. Then there is an interval sequence $\{(k_n, l_n)\}_{n \in \mathbb{N}}$ in I_M such that the conditions (ii) and (iii) of Lemma 2.4 are equivalent with the situation of h- $\tilde{\alpha}$ -str porous at zero of M.

By the help of Remark 2.5 we can easily establish a set $W \subset \mathbb{R}^+$ such that W is h-str porous at zero but $W \notin \mathbf{CSP_h}(\mathbf{0})$

Example 2.6. Let $\tilde{m} = \left\{\frac{1}{n!}\right\}$ be the sequence in Example 2.2 and $h(x) = x^2$ for $x \in \mathbb{R}^+$. Let us establish the set W as follows:

$$W = \{0\} \cup \left\{ \left[\frac{1}{(2n+1)!}, \frac{1}{(2n)!} \right] : n \in \mathbb{N} \right\}.$$

Figure 2: The set W is bold here

The sequence $\left\{\left(\frac{1}{(2n+2)!},\frac{1}{(2n+1)!}\right)\right\}$ belongs to I_W and $\lim_{n\to\infty}\frac{(\frac{1}{(2n+1)!})^2}{(\frac{1}{(2n+2)!})^2}=\infty$. So, W is x^2 -str porous at zero. Now, let us take account the sequence $\tilde{\eta}=\{\eta_n\}$ with $\eta_n=\sqrt{m_{2n+1}m_{2n}}=\sqrt{\frac{1}{(2n+1)!}\frac{1}{(2n)!}}$. It is clear that $\tilde{\eta}$ belongs to W_d . Let $\{(k_n,l_n)\}\in I_W$ be an arbitrary interval sequence and $\eta_n\leq k_n$ for all $n\in\mathbb{N}$. Since, $\eta_n\in\left[\frac{1}{(2n+1)!},\frac{1}{(2n)!}\right]\subseteq W$, then we have $\eta_n\leq\frac{1}{(2n)!}\leq k_n$. If $W\in\mathbf{CSP_h}(\mathbf{0})$, then W is $\tilde{\eta}$ -str porous at zero. Thus, by Remark 2.5, we can take $\{(k_n,l_n)\}$ such that $\eta_n\leq k_n$ for $n\in\mathbb{N}$. So,

$$\limsup_{n \to \infty} \frac{h(k_n)}{h(\eta_n)} \ge \limsup_{n \to \infty} \frac{h(m_{2n})}{h(\eta_n)} = \limsup_{n \to \infty} \frac{\left[\frac{1}{(2n)!}\right]^2}{\left[\frac{1}{(2n+1)!}\frac{1}{(2n)!}\right]} = \infty.$$

Hence, we obtain from Remark 2.5 that A is not $\tilde{\eta}$ -str porous at zero, contrary to the assumption. So, $W \notin \mathbf{CSP_h}(\mathbf{0})$.

If a subset $M \subset \mathbb{R}^+$ is h- $\tilde{\beta}$ -str porous at zero for $\tilde{\beta} \in M_d$, then the set M is h-str porous at zero. Also, we have following proposition.

Proposition 2.7. Let $M \subset \mathbb{R}^+$ be a set and $0 \in M'$. If M is h-str porous at zero, then there exists $\tilde{\beta} \in M_d$ such that M is h- $\tilde{\beta}$ -str porous at zero.

Remark 2.8. If $0 \notin M'$, then M is h-str porous at zero but from Remark 1.2 there isn't any $\tilde{\beta} \in M_d$.

Definition 2.9. The set $M \subset \mathbb{R}^+$ is uniformly h-str porous at zero if there is a constant c > 0, such that for every $\tilde{\beta} \in M_d$ there exists $\{(k_n, l_n)\} \in I_M$ such that

$$1 \le \liminf_{n \to \infty} \frac{h(k_n)}{h(\beta_n)} \le \limsup_{n \to \infty} \frac{h(k_n)}{h(\beta_n)} \le c \tag{9}$$

holds, for all sufficiently large n.

Remark 2.10. If $0 \notin M'$, then from Remark 1.2 the set M is uniformly h-str porous at zero.

Every uniformly h-str porous at zero set belongs to $CSP_h(0)$. Moreover, the converse of this fact is also true and we will show this at the end of the paper.

A set $I_M(\tilde{\beta}) \subset I_M$ for $\tilde{\beta} \in M_d$ define by the following rule:

$$\{(k_n, l_n)\} \in I_M(\tilde{\beta}) \Leftrightarrow \{(k_n, l_n)\} \in I_M \text{ and } \beta_n \leq k_n \text{ for sufficiently large } n \in \mathbb{N}.$$

Let

$$C(h(\tilde{\beta})) := \inf_{\{(k_n, l_n)\} \in I_M(\tilde{\beta})} \left(\limsup_{n \to \infty} \frac{h(k_n)}{h(\beta_n)} \right) \text{ and } C(h(M)) := \sup_{\tilde{\beta} \in M_d} \left(C(h(\tilde{\beta})) \right). \tag{10}$$

Remark 2.11. Let $M \subset \mathbb{R}^+$ and $0 \notin M'$. M is h-str porous at zero $\Leftrightarrow I_M(\tilde{\beta}) \neq \emptyset$ for every $\tilde{\beta} \in M_d$. M is completely h-str porous at zero $\Leftrightarrow C(h(\tilde{\beta})) < \infty$ for every $\tilde{\beta} \in M_d$. M is uniformly h-str porous at zero $\Leftrightarrow C(h(M)) < \infty$.

Lemma 2.12. Let $M \subset \mathbb{R}^+$ be a set. If $\tilde{\beta} = \{\beta_n\} \in M_d$ and $\{(k_n, l_n)\}_{n \in \mathbb{N}} \in I_M$ is a sequence satisfying $\tilde{k} \stackrel{h}{\approx} \tilde{\beta}$, then $\tilde{k} := \{k_n\}$ and $\tilde{l} := \{l_n\}$ are decreasing sequences.

Proof. It is sufficient to prove that one of the sequence \tilde{k} and \tilde{l} is decreasing. Let us assume that \tilde{k} isn't decreasing. Then, there is a set $E \subseteq \mathbb{N}$, it has infinitely many elements, with

$$k_{n+1} > k_n \tag{11}$$

holds for all $n \in E$. Since $(k_n, l_n) \cap M = \emptyset$, then (11) implies that $h(k_{n+1}) \ge h(l_n) > h(k_n)$. By Lemma 2.4, $h(\beta_n) \le h(k_n)$ holds for all sufficiently large n. Also, for this n, we can assume that $h(\beta_{n+1}) \le h(\beta_n)$ because $\tilde{\beta}$ is decreasing. So, we obtain

$$h(k_{n+1}) \ge h(l_n) > h(k_n) \ge h(\beta_n) > h(\beta_{n+1})$$
 (12)

for sufficiently large $n \in E$. From (12) we have

$$\frac{h(l_n)}{h(k_n)} \le \frac{h(k_{n+1})}{h(\beta_{n+1})}.$$

Thus following inequality contradicts to Lemma 2.4

$$\infty = \lim_{\substack{n \in E \\ n \to \infty}} \frac{h(l_n)}{h(k_n)} \le \limsup_{n \in E} \frac{h(k_{n+1})}{h(\beta_{n+1})} \le \limsup_{n \to \infty} \frac{h(k_{n+1})}{h(\beta_{n+1})}.$$

Proposition 2.13. Let $M \subset \mathbb{R}^+$, $\tilde{\beta} \in M_d$, and $\{(k_n^{(1)}, l_n^{(1)})\}$, $\{(k_n^{(2)}, l_n^{(2)})\} \in I_M$. If $\tilde{k}^1 \stackrel{h}{\asymp} \tilde{\beta}$ and $\tilde{k}^2 \stackrel{h}{\asymp} \tilde{\beta}$, then there exists $N_0 \in \mathbb{N}$ such that

$$(k_n^{(2)}, l_n^{(2)}) = (k_n^{(1)}, l_n^{(1)}) \tag{13}$$

for every $n \ge N_0$ where $\tilde{k}^i := \{k_n^{(i)}\}, i = 1, 2$.

Proof. Let $\tilde{k}^1 \stackrel{h}{\asymp} \tilde{\beta}$ and $\tilde{k}^2 \stackrel{h}{\asymp} \tilde{\beta}$ hold. Then, from Lemma 2.12, we obtain \tilde{k}^i are decreasing for i=1,2. We also have $\tilde{\beta} \stackrel{h}{\asymp} \tilde{k}^1$ and $\tilde{\beta} \stackrel{h}{\asymp} \tilde{k}^2$. Also, this implies $\tilde{k}^1 \stackrel{h}{\asymp} \tilde{k}^2$ holds. From Lemma 2.4 there exists $N_0 \in \mathbb{N}$ such that $\tilde{k}^{(1)} \leq \tilde{k}^{(2)}$ and $\tilde{k}^{(2)} \leq \tilde{k}^{(1)}$ for $n \geq N_0$. Hence, $\tilde{k}^{(1)} = \tilde{k}^{(2)}$ for every $n \geq N_0$ and (13) holds for such n. \square

Let's define a set $I_M^d \subseteq I_M$ by the following rule:

$$\{(k_n, l_n)\} \in I_M^d \Leftrightarrow \{(k_n, l_n)\}$$
 and $\{k_n\}$ is decreasing.

Remark 2.14. If $\{(k_n, l_n)\} \in I_M^d$ for $M \subseteq \mathbb{R}^+$ then there are $\tilde{\alpha} = \{\alpha_n\}$ and $\tilde{\beta} = \{\beta_n\} \in M_d$ such that

$$\lim_{n \to \infty} \frac{h(\alpha_n)}{h(k_n)} = \lim_{n \to \infty} \frac{h(\beta_n)}{h(l_n)} = 1,$$
(14)

holds.

Definition 2.15. ([8]) Let $\tilde{K} := \{(k_n, l_n)\}$, $\tilde{E} := \{(a_n, b_n)\} \in I_M^d$. We say $\tilde{K} \leq \tilde{E}$ if there are $n_1 = n_1(\tilde{K}, \tilde{E}) \in \mathbb{N}$ and a function $f : \mathbb{N}_{n_1} \to \mathbb{N}$, where $\mathbb{N}_{n_1} := \{n_1, n_1 + 1, ...\}$, such that

$$k_n = a_{f(n)} (15)$$

satisfied for every $n \in \mathbb{N}_{n_1}$.

It is called that $\tilde{E} \in I_M^d$ is universal if $\tilde{K} \leq \tilde{E}$ for every $\tilde{K} \in I_M^d$.

If \tilde{K} is a subsequence of \tilde{E} , then $\tilde{K} \leq \tilde{E}$ holds.

Let us show that the converse is not true, in general:

Example 2.16. Let $\{m_n\}$ be a strictly decreasing sequence with $\lim_{n\to\infty} \frac{h(m_{n+1})}{h(m_n)} = 0$ and let $M = \{0\} \cup \{m_n : n \in \mathbb{N}\}$. Let us take into account a sequence $\tilde{E} = \{(e_k, f_k)\}$ with $(e_k, f_k) = (m_{n+1}, m_n) \Leftrightarrow n^2 \leq k < (n+1)^2$. From Example 2.2, $\tilde{X} = \{(m_{n+1}, m_n)\} \in I_M$. By Lemma 2.1 we have $\tilde{E} \in I_M$. So, Definition 2.15 implies that $\tilde{E} \leq \tilde{X}$. It is clear that $\tilde{E} \not\subseteq \tilde{X}$.

Definition 2.15 can be reformulated by the following way:

Proposition 2.17. Let $\tilde{K} = \{(k_n, l_n)\}, \tilde{E} = \{(a_n, b_n)\} \in I_M^d$. Then, $\tilde{K} \leq \tilde{E}$ if and only if there are $n_1 = n_1(\tilde{K}, \tilde{E})$ and $f : \mathbb{N}_{n_1} \to \mathbb{N}$ such that

$$l_n := b_{f(n)}$$

holds for all $n \in \mathbb{N}_{n_1}$.

Proposition 2.18. Let $M \subset \mathbb{R}$ be a h-str porous set at zero and $0 \notin M'$. The relation " \leq " is a quasi-ordering (binary relation with reflexive and transitive) on the set I_M^d .

Proof. It is clear that \leq is reflexive. So, we must prove that \leq is transitive. Let $\tilde{K} \leq \tilde{E}$ and $\tilde{E} \leq \tilde{T}$ for $\tilde{K} = \{(k_n, l_n)\}, \tilde{E} = \{(a_n, b_n)\}, \tilde{T} = \{(t_n, p_n)\} \in I_M^d$. From Definition 2.15 there exist $f_1 : \mathbb{N}_{n_1} \to \mathbb{N}$ and $f_2 : \mathbb{N}_{n_2} \to \mathbb{N}$ increasing functions such that

 $k_n = a_{f_1(n)}$ holds for $n \ge n_1$ and $a_n = t_{f_2(n)}$ holds and $n \ge n_2$.

Take $m_0 := \max\{n \in \mathbb{N} : f_1(n) \le n_2\}$. Then, $m_0 < \infty$ because f_1 is increasing and unbounded. Let $n_3 := \max\{m_0, n_1\}$. If $\{n \in \mathbb{N} : f_1(n) \le n_2\} = \emptyset$, then $n_3 = n_1$. So, $n_3 < \infty$ holds. From construction $f_1(n) \ge n_2$ for every $n \in \mathbb{N}_{n_3}$. So, we have

$$k_n = a_{f_1(n)} = t_{f_2(f_1(n))}$$

for such n. Hence, $\tilde{K} \leq \tilde{E} \wedge \tilde{E} \leq \tilde{T}$ holds and it implies $\tilde{K} \leq \tilde{T}$. \square

If we use standard procedure we may obtain an equivalence relation " \equiv " on the set I_M^d as follows:

$$\tilde{K} \equiv \tilde{T} \Leftrightarrow \tilde{K} \leq \tilde{T} \text{ and } \tilde{T} \leq \tilde{K}$$
 (16)

Let $\tilde{U} = \{(u_n, v_n)\} \in I_M^d$ be universal for $M \in \mathbb{R}^+$. Define following quantity

$$\mathcal{M}(\tilde{U}) := \limsup_{n \to \infty} \frac{h(u_n)}{h(v_{n+1})}.$$
 (17)

Let I_M^{sd} be the set of all $\{(k_n, l_n)\} \in I_M^d$ with $\{k_n\}$ is strictly decreasing sequence.

Lemma 2.19. If $\tilde{T} = \{(t_n, p_n)\} \in I_M^d$ is universal for $M \subset \mathbb{R}^+$, then \tilde{T} have a subsequence \tilde{T}' such that $\tilde{T}' = \{t_{n_k}, p_{n_k}\}$ is also universal and $\tilde{T}' \in I_M^{sd}$.

Proof. In construction of such subsequence we use mathematical induction. Since $\{t_n\}$ is decreasing, then there is $n_1 \in \mathbb{N}$ such that $t_{n+1} < t_n$ for $n \ge n_1$. Also, from $\lim_{n \to \infty} t_n = 0$ we have, $t_n < t_{n+1}$ for all $n \ge n_1$. Now, let us set

$$n_{k+1} := \min\{n \in \mathbb{N}_{n_k} : t_n < t_{n_k}\}, \quad \text{for } k = 1, 2, \dots$$
 (18)

For every $n \ge n_1$ there is a unique $k \in \mathbb{N}$ such that

$$n_k \le n < n_{k+1},\tag{19}$$

holds. Moreover, if n satisfies (19), then the decrease of $\{t_n\}$, $n \in \mathbb{N}_{n_1}$ implies that

$$t_{n_k} = t_n. ag{20}$$

Now, let us define $f: \mathbb{N}_{n_1} \to \mathbb{N}$ with f(n) = k where k is the unique index satisfying (19). By the above steps we have $\tilde{T} \leq \tilde{T}'$. Proposition 2.18 gives that " \leq " is transitive. Also, we have $\tilde{L} \leq \tilde{T}$ for every $\tilde{L} \in I_M^d$ because \tilde{T} is universal. Then, $\tilde{L} \leq \tilde{T}'$ for every $\tilde{L} \in I_M^d$. So, \tilde{T}' is also universal. From (18) we have $t_{n_k} > t_{n_{k+1}}$ for every $k \in \mathbb{N}$. So, $\{t_{n_k}\}$ is strictly decreasing, i.e., $\tilde{T}' \in I_M^d$

Lemma 2.20. Let $M \in \mathbf{CSP_h(0)}$. If $\tilde{T} = \{(t_n, p_n)\} \in I_M^{sd}$ is universal, then

$$\mathcal{M}(\tilde{T}) = C(h(M)) \tag{21}$$

where C(h(M)) and $M(\tilde{T})$ are defined by (10) and (17), respectively.

Proof. Let $\tilde{T} \in I_M^{sd}$ be universal. Firstly, we shall prove

$$\mathcal{M}(\tilde{T}) \ge C(h(M)).$$
 (22)

Equation (22) holds if and only if

$$\mathcal{M}(\tilde{T}) \ge C(h(\tilde{\beta}))$$
 (23)

for every $\tilde{\beta} \in M_d$ and $C(h(\tilde{\beta}))$ was defined in (10). Now, let $\tilde{\beta} \in M_d$. By the hypothesis, $M \in \mathbf{CSP_h}(\mathbf{0})$. So, there exists $\{(k_n, l_n)\} \in I_M$ so that $\tilde{\beta} \stackrel{h}{\approx} \tilde{k}$. By Lemma 2.4 we have

$$\limsup_{n\to\infty} \frac{h(k_n)}{h(\beta_n)} < \infty. \tag{24}$$

Also, for sufficiently large *n*

$$h(\beta_n) \le h(k_n) \tag{25}$$

holds. Proposition 2.13 and the definition of $C(h(\tilde{\beta}))$ imply

$$C(h(\tilde{\beta})) = \limsup_{n \to \infty} \frac{h(k_n)}{h(\beta_n)}.$$
 (26)

So, to prove (23) we must show that

$$\mathcal{M}(\tilde{T}) \ge \limsup_{n \to \infty} \frac{h(k_n)}{h(\beta_n)}.$$
 (27)

By Lemma 2.12 we have

$$\tilde{E} := \{ (k_n, l_n) \} \in I_M^d,$$
 (28)

(28) implies that $\tilde{E} \leq \tilde{T}$ holds because \tilde{T} is universal. Hence, there are $n_1 \in \mathbb{N}$ and an increasing function $f : \mathbb{N}_{n_1} \to \mathbb{N}$ such that

$$k_n \ge k_{n+1}$$
 and $k_n = t_{f(n)}$ (29)

for every $n \ge n_1$. Since $\tilde{T} = \{(t_n, p_n)\} \in I^{sd}_{M'}$ let us assume that $\tilde{t} = \{t_n\}$ is strictly decreasing. Replacing $\tilde{\beta}$ by a suitable subsequence we may assume that \tilde{a} and $\tilde{\beta}$ are also strictly decreasing, f is strictly increasing, and

$$\beta_1 \le t_1, \lim_{n \to \infty} \frac{h(a_n)}{h(\beta_n)} = \limsup_{n \to \infty} \frac{h(a_n)}{h(\beta_n)} \tag{30}$$

hold. The intervals $[p_{n+1}, t_n]$, for n = 1, 2, ..., together with the interval $[p_1, \infty)$ are a cover of the set $M_0 = M \setminus \{0\}$, i.e.,

$$M_0 \subseteq [p_1, \infty) \cup \left(\bigcup_{n \in \mathbb{N}} [p_{n+1}, t_n] \right).$$

This cover has pairwise disjoint elements and $h(\beta_1) \le h(t_1)$, $n \in \mathbb{N}$. So, there is unique $s(n) \in \mathbb{N}$ with

$$\beta_n \in [p_{s(n)+1}, t_{s(n)}].$$
 (31)

We claim that the equality

$$s(n) = f(n) \tag{32}$$

holds for all sufficiently large n. By using (25), (29) and (31) we obtain

$$\beta_n \le t_{f(n)} \text{ and } \beta_n \ge p_{s(n)+1}.$$
 (33)

Hence, (33) and following inequality

$$h(p_{s(n)+1}) > h(t_{s(n)+1}) > h(t_{s(n)+2}) > h(t_{s(n)+3}) > \dots$$

imply that

$$f(n) \le s(n) \tag{34}$$

holds. Let us assume that (34) is strict for $n \in E \subseteq \mathbb{N}$, such that E is an infinite set. i.e.,

$$f(n) \le s(n) - 1 \tag{35}$$

for $n \in E$. Since $\tilde{a} \stackrel{h}{\approx} \tilde{\beta}$ and $a_n = t_{f(n)}$, there is a constant $c^* \in (0,1)$ such that

$$c^*h(t_{f(n)}) \le h(\beta_n) \le h(t_{f(n)}) \tag{36}$$

holds for all sufficiently large n. From (31), (34) and (36), it follows that

$$c^* h(t_{f(n)}) \le h(\beta_n) \le h(t_{s(n)}) \le h(t_{f(n)}). \tag{37}$$

Since $\tilde{t} = \{t_n\}$ is strictly increasing, then $(t_i, p_i) \cap (t_j, p_j) = \emptyset$ if $i \neq j$ and (35) implies that

$$h(t_{s(n)}) < h(p_{s(n)}) \le h(t_{s(n)-1}) \le h(t_{f(n)}) < h(p_{f(n)}).$$

Together (37) and this inequality

$$c^*h(t_{f(n)}) \le h(\beta_n) \le h(t_{s(n)}) < h(p_{s(n)}) \le h(t_{s(n)-1}) < h(t_{f(n)})$$

for $n \in E$. So, we have

$$\frac{1}{c^*} = \lim_{n \to \infty} \frac{h(t_{f(n)})}{c^* h(t_{f(n)})} \ge \limsup_{n \to \infty} \frac{h(p_{s(n)})}{h(t_{s(n)})}$$

contrary to the limit relation

$$\lim_{n\to\infty}\frac{h(p_n)}{h(t_n)}=\infty.$$

Thus, the set of $n \in \mathbb{N}$ has the condition f(n) < s(n) is finite. So, (32) holds.

Now we can prove (27) easily. By (29) ad (32) we have

$$a_n = t_{f(n)} = t_{s(n)}.$$

Equation (32) implies that $h(\beta_n) \ge h(l_{s(n)+1})$. Consequently

$$\frac{h(a_n)}{h(\beta_n)} \le \frac{h(t_{s(n)})}{h(p_{s(n)+1})}.$$

So,

$$\limsup_{n\to\infty}\frac{h(a_n)}{h(\beta_n)}\leq \limsup_{n\to\infty}\frac{h(t_{s(n)})}{h(p_{s(n)+1})}\leq \limsup_{n\to\infty}\frac{h(t_n)}{h(p_{n+1})}=\mathcal{M}(\tilde{T}).$$

(27) follows, so (22) is proved.

For to prove

$$\mathcal{M}(\tilde{T}) \le C(h(M)) \tag{38}$$

let us take a sequence $\tilde{\beta} = \{\beta_n\} \in M_d$ such that (31) holds for s(n) = n and

$$\lim_{n \to \infty} \frac{h(p_{n+1})}{h(\beta_n)} = 1. \tag{39}$$

 $\tilde{\beta}$ can be constructed as in the proof of Proposition 2.7. The set M is $\tilde{\beta}$ -str porous at zero because $M \in \mathbf{CSP_h}(\mathbf{0})$. So, there is $\tilde{a} \stackrel{h}{\times} \tilde{\beta}$ such that $\{(a_n, b_n)\} \in I_M^d$. The sequence \tilde{a} is decreasing from Lemma 2.12. Since $\beta_n \in [p_{n+1}, t_n]$, then by using (32) we have

$$a_n = p_n$$

for all sufficiently large n. From (26) and (39), we have also

$$C(h(\tilde{\beta})) = \limsup_{n \to \infty} \frac{h(a_n)}{h(\beta_n)}$$

$$= \limsup_{n \to \infty} \frac{h(t_n)}{h(p_{n+1})} \frac{h(p_{n+1})}{h(\beta_n)}$$

$$= \limsup_{n \to \infty} \frac{h(t_n)}{h(p_{n+1})} \limsup_{n \to \infty} \frac{h(p_{n+1})}{h(\beta_n)}$$

$$= \limsup_{n \to \infty} \frac{h(t_n)}{h(p_{n+1})} = \mathcal{M}(\tilde{T}). \tag{40}$$

Since $C(h(M)) \ge C(h(\tilde{\beta}))$, then (38) follows. \square

From (40) we have following result.

Corollary 2.21. Let $M \in \mathbf{CSP_h}(\mathbf{0})$ for $M \subset \mathbb{R}^+$. If $\tilde{T} = \{(t_n, p_n)\} \in I_M^{sd}$ is universal, then $\mathcal{M}(\tilde{T}) < \infty$.

Remark 2.22. From Lemma 2.20 $\mathcal{M}(\tilde{T}) = C(h(M))$ holds for every universal $\tilde{T} \in I_M^{sd}$. Assume that $\tilde{T} \in I_M^d$ is universal but $\tilde{T} \notin I_M^{sd}$. Describe a set $E \subseteq \mathbb{N}$ by the rule

$$n \in E \Leftrightarrow n \in \mathbb{N}$$
 and $(t_{n+1}, p_{n+1}) = (t_n, p_n)$.

Let $\tilde{T}' \in I_M^{sd}$ be the universal element of I_M^d built from \tilde{T} as in Lemma 2.19. If we use the definition of the set E we have

$$\mathcal{M}(\tilde{T}) = \limsup_{n \to \infty} \frac{h(t_{n+1})}{h(p_n)} = \limsup_{\substack{n \to \infty \\ n \in \mathbb{E}}} \frac{h(t_{n+1})}{h(p_n)} \vee \limsup_{\substack{n \to \infty \\ n \in \mathbb{N} \setminus \mathbb{E}}} \frac{h(t_{n+1})}{h(p_n)}$$
$$= \limsup_{\substack{n \to \infty \\ n \in \mathbb{N}}} \frac{h(t_n)}{h(p_n)} \vee \mathcal{M}(\tilde{T}') = 0 \vee \mathcal{M}(\tilde{T}') = \mathcal{M}(\tilde{T}').$$

So, if $\tilde{T}, \tilde{L} \in I_M^d$ are universal, then $\mathcal{M}(\tilde{T}) = \mathcal{M}(\tilde{L})$.

Now, we are ready to give final theorem.

Theorem 2.23. Let $M \subseteq \mathbb{R}^+$ be h-str porous set at zero and $0 \in M'$. Then, following conditions are equivalent.

- (i) $M \in \mathbf{CSP_h(0)}$.
- (ii) I_M^d has a universal element $\tilde{L} = \{(l_n, m_n)\} \in I_M^{sd}$ with

$$\mathcal{M}(\tilde{L}) < \infty.$$
 (41)

(iii) M is uniformly h-str porous at zero.

Let us recall that from Remark 2.22 (ii) of Theorem 2.23 can be reformulated by the following way: The set of universal elements $\tilde{T} \in I_M^d$ is nonempty and $\mathcal{M}(\tilde{T}) < \infty$ holds for every universal \tilde{T} .

Proof. Let $M \in \mathbf{CSP_h}(\mathbf{0})$. Firstly, we shall prove that there is a sequence $\tilde{w} = \{w_n\} \in M_d$ such that for every $\tilde{\beta} = \{\beta_k\} \in M_d$ we can find a function $f : \mathbb{N} \to \mathbb{N}$ which is increasing and satisfy following:

$$\{\beta_k\} \stackrel{h}{\approx} \{w_{f(k)}\}.$$
 (42)

Let us define $\{M_j\}_{j\in\mathbb{N}}$ as follows:

$$M_{1} := M \cap [h(1), \infty),$$

$$M_{2} := M \cap \left[h\left(\frac{1}{2}\right), h(1)\right),$$

$$M_{3} := M \cap \left[h\left(\frac{1}{4}\right), h\left(\frac{1}{2}\right)\right),$$
...
$$M_{j} := M \cap \left[h\left(\frac{1}{2^{j-1}}\right), h\left(\frac{1}{2^{j-2}}\right)\right), \ j \in \mathbb{N}.$$

$$(43)$$

There is the unique subsequence $\{M_{j_n}\}$, $n \in \mathbb{N}$ of the sequence $\{M_j\}$, $j \in \mathbb{N}$ such that

$$M\setminus\{0\} = \bigcup_{n\in\mathbb{N}} M_{j_n}$$
 and $M_{j_n} \neq \emptyset$

for every $n \in \mathbb{N}$. For simplicity, let us take $E_n := M_{j_n}$, $n \in \mathbb{N}$. Let $\{w_n\}$ be a sequence such that $w_n \in E_n$ for every $n \in \mathbb{N}$. Clearly, $\{w_n\} \in M_d$. For every $\tilde{\beta} = \{\beta_k\} \in M_d$, let $f : \mathbb{N} \to \mathbb{N}$ defined as follows:

$$f(k) = n \Leftrightarrow \beta_k \in E_n$$
.

$$M\setminus\{0\} = \bigcup_{n\in\mathbb{N}} E_n$$
 and $E_j \cap E_i = \emptyset$ if $i \neq j$

imply that f is well-defined. Also, (43) gives that

$$f(k) \ge 2 \Rightarrow h\left(\frac{1}{2}\right)h(\beta_k) \le h(w_{f(k)}) \le h(2)h(\beta_k)$$

In addition, since $\tilde{\beta}$ and \tilde{w} are decreasing and $\lim_{n\in\mathbb{N}}\beta_n=0$, the function f is increasing and the set $\{k\in\mathbb{N}:f(k)=1\}$ is finite. So, we can find constants $c_*,c^*>0$ such that

$$c^*h(\beta_k) \le h(w_{f(k)}) \le c_*h(\beta_k)$$

for all $k \in \mathbb{N}$. So, (42) holds.

Let $\tilde{w} = \{w_n\} \in M_d$ be the sequence constructed above. Since $M \in \mathbf{CSP_h}(\mathbf{0})$, then M is h- \tilde{w} -str porous at zero. Thus, there is $\tilde{K} := \{(a_n, b_n)\} \in I_M$ such that

$$\tilde{a}\stackrel{h}{symp}\tilde{w}.$$
 (44)

holds. Hence, Lemma 2.12 gives that \tilde{a} is decreasing. Namely, $\tilde{K} \in I_M^d$. We claim that \tilde{K} is universal. Indeed, as we shown for every $\tilde{\beta} \in M_d$ there is $f : \mathbb{N} \to \mathbb{N}$ such that (42) holds. The relation $\{w_n\} \stackrel{h}{\approx} \{a_n\}$ gives that

$$\{w_{f(k)}\}\stackrel{h}{\approx} \{a_{f(k)}\}.$$
 (45)

 $(a_{f(n)},b_{f(n)})$ is the interior of a connected component of ExtM and $\lim_{n\to\infty}f(n)=\infty$. Then, we have

$$\{(a_{f(k)}, b_{f(k)})\} \in I_M.$$
 (46)

Also, since f is increasing and $\tilde{K} = \{(a_n, b_n)\} \in I^d_{M'}$ (46) implies

$$\{(a_{f(k)}, b_{f(k)})\} \in I_M^d. \tag{47}$$

(42) and (45) gives that

$$\{\beta_k\} \stackrel{h}{\approx} \{a_{f(k)}\}. \tag{48}$$

If we use (47), (48) and Remark 2.14, we can show that $\tilde{T} \leq \tilde{K}$ for every $\tilde{T} \in I_M^d$, as required.

By Lemma 2.19 we can find a universal element $\tilde{T} \in I_M^{sd}$. According to Corollary 2.21 we have $\mathcal{M}(\tilde{T}) < \infty$. So, we have $(i) \Rightarrow (ii)$ holds.

(iii) \Rightarrow (i) is obvious. Also, if we use Lemma 2.20, we can easily see that (i) \land (ii) \Rightarrow (iii) is true. So, to complete the proof we must show that (ii) \Rightarrow (i). Let us assume that $\tilde{\beta} = \{\beta_n\} \in M_d$ and let $\tilde{T} = \{(t_k, p_k)\} \in I_M^{sd}$ be universal. Like in the proof of Lemma 2.20 we can assume that $\{t_n\}$ is strictly decreasing and that $h(\beta_1) \leq h(t_1)$. Then, there is a unique $k(n) \in \mathbb{N}$, $n \in \mathbb{N}$ such that

$$h(p_{k(n)+1}) \le h(\beta_n) \le h(t_{k(n)}) \tag{49}$$

(see (31)). (49) implies

$$\limsup_{n\to\infty}\frac{h(t_{k(n)})}{h(\beta_n)}\leq \limsup_{n\to\infty}\frac{h(t_{k(n)})}{h(p_{k(n)+1})}\leq \limsup_{n\to\infty}\frac{h(t_k)}{h(p_{k+1})}=\mathcal{M}(\tilde{T})<\infty.$$

Since $\{(t_{k(n)}, p_{k(n)})\} \in I_M^d$, then M is h- $\tilde{\beta}$ -str porous at zero from Lemma 2.4. So, (i) holds. \square

References

- [1] M. Altınok, O. Dovgoshey, M. Küçükaslan, Local one-sided porosity and pretangent spaces, Analysis 36 (2016), 147–171.
- [2] M. Altınok, M. Küçükaslan, On porosity-convergence of real valued sequences, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 65 (2019), 181–193
- [3] M. Altınok, M. Küçükaslan, A relation between porosity convergence and pretangent spaces, Publ. Inst. Math. 110(124) (2021), 41-46.
- [4] M. Altınok, Porosity Supremum-Infimum and Porosity Convergence, Konuralp J. Math. 6 (2018), 163–170.
- [5] A. Denjoy, Sur une propriété des séries trigonométriques, Verlag v.d. G. V. der Wie-en Natuur. Afd. 29 (1920), 220–232.
- [6] A. Denjoy, Leçons sur le calcul des cofficients d'une série trigonométrique, Part II, Métrique et topologie d'ensembles parfaits et de fonctions, Gauthier-Villars, Paris, 1941.
- [7] E. P. Dolženko, Boundary properties of arbitrary functions, (Russian), Izv. Akad. Nauk SSSR Ser. Math. 31 (1967), 3–14.
- [8] O. Dovgoshey, V. Bilet, Investigation of strong right upper porosity at a point, Real Analysis Exchange 39 (2013/2014), 1–32.
- [9] A. Khintchine, An investigation of the structure of measurable functions, (Russian), Mat. Sbornik 31 (1924), 265–285.
- [10] B. S. Thomson, Real Functions, Lecture Notes in Mathematics 1170, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.