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Chaotic behavior for the third-order partial differential equations
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Abstract. In our investigation, our primary focus has been on a third-order partial differential equation,
as expressed below:

avttt(y, t) + bvtt(y, t) + cvt(y, t) − ν2vyy(y, t) − µvyyt(y, t) = ηv(y, t). (0.1)

This equation represents the one-dimensional variant of the Moore-Gibson-Thompson equation, which
holds significance in the realms of high-intensity ultrasound and the linear vibrations of elastic structures.
Notably, our study marks a substantial advancement compared to existing literature. This is particularly
evident in our revelation that when the critical parameter γ := b − aν2

µ is negative, the equation (0.1
) exhibits noteworthy characteristics. Specifically, it manifests a uniformly continuous and chaotic
semigroup of bounded linear operators within the Hilbert space L2([0,∞),C). This discovery challenges
current knowledge and provides fresh insights into the dynamics and behavior of solutions to this
equation.

1. Introduction

Chaos theory, a mathematical discipline exploring the behavior of dynamical systems known for their
heightened sensitivity to initial conditions, has its roots in the late 19th century. French mathematician
Henri Poincaré laid the foundation by delving into the three-body problem in celestial mechanics.
However, the contemporary evolution of chaos theory gained substantial traction in the 1960s and
1970s, primarily due to the groundbreaking contributions of American meteorologist Edward Lorenz.
His revelations demonstrated that minute alterations in the initial conditions of a weather model could
yield significantly divergent outcomes, leading him to coin the term ”butterfly effect” to encapsulate
this phenomenon [22]. Since then, chaos theory has found applications across diverse fields, including
physics, biology, economics, and engineering. James Gleick’s influential popular science book, ”Chaos:
Making a New Science,” played a pivotal role in the 1980s by bringing chaos theory into the public eye.
The book emphasized the concept that apparently random systems could exhibit order and patterns
under specific circumstances. The notion of chaos is commonly linked with nonlinear systems, yet
it can also arise in linear dynamical systems within infinite-dimensional spaces. While chaos theory
has been firmly grounded in finite-dimensional spaces, notably concerning discrete maps and ordinary
differential equations, it historically faced a gap in terms of a coherent theory for partial differential
equations. Nevertheless, recent years have witnessed the development of sophisticated mathematical
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tools and techniques dedicated to unraveling chaos in infinite-dimensional spaces. These advancements
signify a crucial stride forward, opening avenues for expanded research and applications across a
spectrum of disciplines. Various definitions have been put forth by mathematicians to characterize chaos,
with Devaney’s widely adopted definition incorporating three key components. The initial component
encapsulates the core concept of the ”butterfly effect,” emphasizing that minute alterations in the initial
state can result in substantial deviations in the system’s trajectory over time. In order to accommodate
these perturbations, spaces without isolated points are taken into consideration. The exploration of
dynamic behavior in physical and natural systems has been a primary driver of mathematical research.
Throughout history, differential equations have served as crucial tools for modeling diverse physical
phenomena, including mechanics, optics, electromagnetism, and thermodynamics. Notably, equations
such as the wave equation, Schrödinger equation, and heat equation have been subjects of extensive
study. Of particular interest is the generalized Moore-Gibson-Thompson equation, which represents a
broader form of the heat equation. This equation characterizes the temporal evolution of a physical
quantity concerning both its position and time. Its applications extend to modeling phenomena like
acoustic wave propagation, mechanical vibrations, and particle diffusion in a medium [23].

Our motivation lies in studying the generalized Moore-Gibson-Thompson equation, an extension of
the classical equation given by:


avttt(y, t) + bvtt(y, t) = ν2vyy(y, t) + ηv(y, t),
v(0, y) = v1(x),
vt(0, y) = v2(x),
vtt(0, y) = v3(x),

(1.1)

where v1, v2 and v3 represent the initial contitions of temperature. We derive inspiration from Conejero’s
2014 study, wherein the equation (1.1) underwent investigation. The findings illustrated that it possesses
a semigroup on Herzog-type Banach spaces, characterized by uniform continuity, chaos, and topological
mixing.

Conejero’s research provides valuable insights into the dynamics and behavior of the equation (1.1) in
functional spaces. Specifically, the study establishes the existence of a semigroup with chaotic properties,
characterized by sensitivity to initial conditions and topological mixing. Moreover, the uniform conti-
nuity of the semigroup ensures stability and regularity of solutions over time. These findings deepen
our understanding of the generalized Moore-Gibson-Thompson equation and its applications in various
fields, including physics, engineering, and mathematical modeling. The knowledge gained from this
study can advance the control and manipulation of chaotic systems while laying the groundwork for
further research in related areas.

The addition of two terms in the second equation, ”cvt(y, t)” and ”ηvyyt(y, t)”, represents the novelty
of the equation (1.1). The term ”cvt(y, t)” introduces a linear temporal dependency in the equation,
representing the temporal derivative of v with respect to t. On the other hand, the term ”ηvyyt(y, t)”
accounts for the temporal variation of the curvature of the function v with respect to the y-axis. These
added terms allow for modeling more complex physical phenomena, such as temporal variations in
the velocity and curvature of the function v. In certain conditions, the solutions of the Moore-Gibson-
Thompson equation can become unstable and exhibit chaotic behavior, which intrigues mathematicians
and physicists alike.

In conclusion, the Moore-Gibson-Thompson equation, a generalization of the heat equation, finds
applications in diverse physical phenomena and exhibits intriguing chaotic behavior that has been the
focus of extensive mathematical and physical studies.

This paper is structured as follows: Section 2 provides a review of the essential definitions and
tools needed to present the main result. Specifically, we introduce a valuable spectral criterion for
identifying Devaney Chaos in C0-semigroups. Section 3 presents our primary finding, Theorem 3.1,
which demonstrates that the Moore-Gibson-Thompson equation exhibits chaos.
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2. Preliminareis

Let Y be an infinite-dimensional separable Banach space. A family {St}t≥0 of linear and continuous
operators on Y is said to be a C0-semigroup if S0 = Id,StSs = St+s for all t, s ≥ 0, and lim

t→s
Sty = Ssy for all

y ∈ Y and s ≥ 0. Given a C0-semigroup {St}t≥0 on Y, it can be shown that an operator defined by

Gy := lim
t→0+

Sty − y
t
,

exists on a dense subspace of X; denoted by D(G). Then (G,D(G)) is called the (infinitesimal)
generator of the C0-semigroup {St}t≥0. If D(G) = Y, then the C0-semigroup can be rewritten as

{
etG

}
t≥0

.
Such a semigroup is the corresponding solution C0-semigroup of the abstract Cauchy problemv′(t, y) = Gv(t, y)

v(0, y) = φ(y),

The solutions to this problem can be expressed as v(t, y) = etGφ(y), where φ(y) ∈ Y. Further information
on C0-semigroups can be found in [1].

Given a family of operators {St}t≥0 we say that it is transitive if for every pair of non-void open sets
V,W ⊂ Y there exists some t > 0 such that St(V) ∩W , ∅. Furthermore, if there is some t0 > 0 such that
the condition St(V)∩W , ∅ holds for every t ≥ t0 we say that it is topologically mixing. A C0-semigroup
is hypercyclic if there exists some y ∈ Y such that the set

{
Sty : t ≥ 0

}
is dense in Y. In this setting,

transitivity coincides with hypercyclicity, but it is strictly weaker than topologically mixing [3–6].
We recall that an element y ∈ Y is said to be a periodic point of {St}t≥0 if there exists some t0 > 0 such

that St0 y = y. A C0-semigroup {St}t≥0 is said to be chaotic in the sense of Devaney if it is hypercyclic and
there exists a dense set of periodic points in Y. The following criterion let us prove the Devaney chaos
for a C0-semigroup. This result can be compared with the Desch-Schappacher-Webb Criterion [[7] Th
3.1], or any of its extensions [8, 9]. In order to prove this chaotic behavior of solutions, we will apply the
following criterion, first stated for operators by Godefroy and Shapiro [11], see also [[12], Proposition
3.3]. This criterion is the counterpart for semigroups. More information on sufficient conditions for
hypercyclicity and chaos for semigroups and C0 operators can be found in [5, 7, 13–21] .

Theorem 2.1. Desch-Schappacher-Webb criterion.[7, Proposition 1.2] Let Y be a complex separable Banach
space and {St}t≥0 a C0-semigroup on Y with intinitesimal generator (G,D(G)), where D(G) denotes its domain.
Assume that there exists a nonempty open connected subset V of C and weakly holomorphic functions f j : V →
Y, j ∈ J, such that

1. V ∩ iR , ∅,
2. f j(λ) ∈ ker(λI − G) for every λ ∈ V, j ∈ J,
3. for any y∗ ∈ Y∗, if

〈
f j(λ), y∗

〉
= 0 for all λ ∈ V and j ∈ J then y∗ = 0.

Then {St}t≥0 is topologically mixing and Devaney chaotic.

Theorem 2.2. Eigenvalue Criterion for Chaos. Let Y be an infinite-dimensional separable Banach space.
Suppose that the sets

Y0 := span
{
y ∈ Y : ∃λ > 0,Sty = eλty,∀t ≥ 0

}
Y1 := span

{
y ∈ Y : ∃λ < 0,Sty = eλty,∀t ≥ 0

}
Yp := span

{
y ∈ Y : ∃λ ∈ Q,Sty = eπλity,∀t ≥ 0

}
are dense in Y, then {St}t≥0 is chaotic.

The third condition in this result is utilized to establish the density of the space generated by specific
sets of eigenvectors associated with eigenvalues of G having a real part greater than, equal to, or less
than 0. A criterion phrased in these terms was initially proposed for operators by Godefroy and Shapiro
in their article [11].

corollary 2.1. Let Y be a subspace of X. Then, Y is dense if and only if every linear form L ∈ X′ that vanishes on
Y also vanishes on the entire space X.
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3. Chaotic behavior for third order partial differential equations

In this section, we will consider the following equation in Y = L2([0,∞),C) given by the formula (0.1).

avttt(y, t) + bvtt(y, t) + cvt(y, t) − ν2vyy(y, t) − µvyyt(y, t) = ηv(y, t)

Using the notation u1 := v, u2 := vt and u3 := vtt the second order in time Cauchy problem in (0.1) can
be rewritten as a first-order differential equation.

∂
∂t

 v1
v2
v3

 =


0 I 0
0 0 I

η
a I + ν

2

a ∂yy −
c
a I + µa ∂yy

−b
a I

︸                                      ︷︷                                      ︸
G

 u1
u2
u3

 , (3.1)

where u1(0, y)
u2(0, y)
u3(0, y)

 =
 v1(y)

v2(y)
v3(y)


where We recall the definition of the space of analytic functions of Herzog type [2]. Let

Yθ =
{

f (y) =
∑
n≥0

αn

n!
(θy)n : (αn)n ∈ c0 (N0)

}
, (3.2)

with θ > 0 and being c0 (N0) the Banach space of all complex-valued sequences tending to 0. These are
Banach spaces when endowed with the norm

∥ f ∥ := sup
n∈N0

sup
y∈R
θ−ne−θ|y|

∣∣∣ f (n)(y)
∣∣∣ . (3.3)

In other words, the spaces Yθ, θ > 0, are Banach spaces of analytic functions with certain increasing
control at infinity. The spaces Yθ were introduced by Herzog [2] in connection with the study of
dynamical behaviour of the heat equation. Observe that for any θ fixed, the space Yθ is naturally
isomorphic to c0 (N0). In particular, its dual Y∗θ is isomorphic to the Banach space l1 (N0) which consists
of all complex-valued sequences (an) such that

∑
∞

n=0 |an| < ∞.

Exemple 3.1. Considiring b ∈ C, the function f (x) = sinh(
√

bx) is a member of Yθ if and only if θ2 = |b|.
Similarly, the function 1(x) = ebx also belongs to Yθ if and only if θ > |b|.

Since for each θ > 0 the operator D : Yθ → Yθ defined by D f (y) = ∂yy f (y) is clearly bounded, it
follows that the operator-valued matrix G in (3.1) is a bounded linear operator on any space Yθ⊕Yθ⊕Yθ,
θ > 0.

Theorem 3.1. Let a, b c and η are real numbers and µ ν > 0 be given. Assume that b− aν2

µ < 0. Then, the solution

semigroup
{
etG

}
t≥0

of (3.1) is chaotic on Yθ ⊕ Yθ ⊕ Yθ for each θ >
√

1
2 [ c
µ +

bν2

µ2 +
aν6

µ3 +
η
ν2 ].

Proof. Letting GV = λV with V =

φ1
φ2
φ3

. We have


φ2 = λφ1

φ3 = λφ2 = λ2φ1
η
aφ1 +

ν2

a φ
′′

1 −
cλ
a φ1 +

µλ
a φ
′′

1 −
bλ2

a φ1 = λ3φ1

, which

implies that (
ν2

a
+ λ
µ

a

)
φ′′1 −

(
−
η

a
+

cλ
a
+
λ2b

a
+ λ3

)
φ1 = 0.

So, (
ν2 + λµ

)
φ′′1 −

(
−η + cλ + λ2b + aλ3

)
φ1 = 0.
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Let a0, a1 ∈ R, we define the following function

φ1,λ,a0,a1 (x) = a0

∑
n≤0

(Rλ)nx2n

(2n)!
+ a1

∑
n≤0

(Rλ)nx2n+1

(2n + 1)!
,

where Rλ =
cλ+bλ2+λ3a−η
ν2+µλ . It is clear that the function φ1,λ,a0,a1 is in Yθ for all λ in, say, certain open disc Dc

of radius r < ν
2

µ centered at zero. Indeed, we have

|
Rλ

θ2 | <
c|λ| + b|λ|2 + a|λ|3 − η

ν2 + µλ

<
c nu2

µ + b nu4

µ2 + a nu8

µ3 + η

ν2 + µλ
.

Since θ >
√

1
2 [ c
µ +

bν2

µ2 +
aν6

µ3 +
η
ν2 ]. Then, |Rλθ2 | < 1. It fllows that the function φ1,λ,a0,a1 is in Yθ.

If we set

fλ,a0,a1 =
(
φ1,λ,a0,a1 , λφ1,λ,a0,a1 , λ

2φ1,λ,a0,a1

)⊺
.

Then, we have

etGφ1 = eλtφ1,

for all t ≥ 0. So that, if we prove that the sets

Y0 := span
{

fλ,a0,a1 : 0 < λ < r, a0, a1 ∈ R
}

Y1 := span
{

fλ,a0,a1 : −r < λ < 0, a0, a1 ∈ R
}

Yp := span
{

fλ,a0,a1 : λ ∈ πiQ, |λ| < r, a0, a1 ∈ R
}

are dense in Yθ ⊕ Yθ ⊕ Yθ, then the eigenvalue criterion asserts that the C0-semigroup generated by G is
chaotic on Yθ ⊕ Yθ ⊕ Yθ.

Since Y0,Y1,Yp are linear subspaces of Yθ, it suffices to prove that they are weakly dense, that is:
given f ∈ Y∗θ ⊕ Y∗θ ⊕ Y∗θ, if ⟨y, f ⟩ = 0 for all y ∈ Y (where Y is either Y0,Y1 or Yp ) then necessarily f = 0.
In other words, given f =

((
ρn

)
n , (ζn)n , (σn)n

)
∈ ℓ1 ⊕ ℓ1 ⊕ ℓ1, if

a0

∑
n≥0

R
n
λρ2n + a1

∑
n≥0

R
n
λρ2n+1 + λa0

∑
n≥0

R
n
λζ2n + λa1

∑
n≥0

R
n
λζ2n+1

+ λ2a0

∑
n≥0

R
n
λσ2n + λ

2a1

∑
n≥0

R
n
λσ2n+1 = 0 (3.4)

for all a0, a1 ∈ R and for all 0 < λ < r (respectively −r < λ < 0, µ = πiq with q ∈ Q and |λ| < r), then
ρn = ζn = σn = 0 for all n ≥ 0. Indeed, set f (µ) as the left part of (3.4). Then f (µ) is a meromorphic
function with a unique pole equals to −ν

2

µ . Since r < ν
2

µ , then this function is a holomorphic function that
vanishes on open disc Dc, the subset of C with an accumulation point. Therefore, all coefficients of its
power series should be 0 . The independent coefficient is a0ρ0 + a1ρ1, and this should be zero for any
choice of a0, a1 ∈ R, therefore ρ0 = ρ1 = 0. Now, since P(λ) = λ3 + bλ2 + acλ−η is a polynomial of order 3,
then the equation P(λ) = 0 has three solutions λ1, λ2 and λ3 in C. Then, if λ = λ1 or λ = λ2, then Rλ = 0
and we havea0ζ0 + a1ζ1 + λ1(a0σ0 + a1σ1) = 0,

a0ζ0 + a1ζ1 + λ2(a0σ0 + a1σ1) = 0,
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for all a0, a1 ∈ R. This yields ζ0 = ζ1 = σ0 = σ1 = 0.
Suppose that all ρ0 = · · · = ρ2n−1 = 0, ζ0 = · · · = ζ2n−1 = 0 and all σ0 = · · · = σ2n−1 = 0. If we divide f (λ)

by Rn
λ then we obtain an entire function that vanishes on a set with an accumulation point. Therefore,

all its coefficients should be 0 . The independent coefficient is a0ρ2n + a1ρ2n+1 with a0, a1 ∈ R. A similar
argument as before yields ρ2n = ρ2n+1 = 0. Finally, taking λ = λ1 and λ = λ2 we geta0ζ2n + a1ζ2n+1 + λ1(a0σ2n + a1σ2n+1) = 0,

a0ζ2n + a1ζ2n+1 + λ2(a0σ2n + a1σ2n+1) = 0,

for any choice of a0, a1, and then ζ2n = ζ2n+1 = σ2n = σ2n+1 = 0.
If we consider Yθ just as the corresponding space containing only the real sequences, the hypercyclicity

of
{
etG

}
t≥0

can be deduced on Yθ ⊕Yθ ⊕Yθ. with a similar proof, avoiding the part of proving the density

of Yp. Accordin to Thoerem 2.2, then
{
etG

}
t≥0

is chaotic.

Remark 3.1. In the context of problem (0.1), setting c = η = 0, we have that the associated uniformly continuous
semigroup of

avttt(y, t) + bvtt(y, t) − ν2vyy(y, t) − µvyyt(y, t) = 0. (3.5)

is chaotic on Yθ ⊕ Yθ ⊕ Yθ for all θ > 0, see [24].

4. Conclusion

The Moore-Gibson-Thompson equation, a generalization of the heat equation, has proven to be a
versatile model for various physical phenomena. However, it was also revealed in the article that the
solutions to this equation can display instability and chaotic behavior under specific circumstances.
This intriguing chaotic nature has captured the attention of numerous mathematicians and physicists,
leading to extensive research in the field. The article provided a comprehensive overview of the essential
definitions and tools necessary to comprehend this phenomenon. Ultimately, the article successfully
demonstrated that the Moore-Gibson-Thompson equation does indeed exhibit chaotic behavior. This
significant conclusion adds valuable insights to the realm of chaos theory, and it further solidifies the
equation’s importance as a dynamic and complex model in the study of physical systems [1–5].

Acknowledgements

The authors would like to thank the anonymous referees for their constructive comments and valuable
suggestions, which are helpful to improve the quality of this paper.

Funding statement

Authors state no funding involved.

Conflict of interest statement

Authors state no conflict of interest.

Data Availability statement

Data sharing is not applicable to this article as no datasets were generated or analysed during the
current study.



M. Chaima et al. / Filomat 38:16 (2024), 5567–5573 5573

References

[1] K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in
Mathematics. Springer-Verlag, New York,.With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D.
Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt, (2000).

[2] G. Herzog, On a universality of the heat equation. Math. Nachr., 188, 169–171 (1997).
[3] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney’s definition of chaos. Amer. Math. Monthly, 99(4):332–334

(1992).
[4] J. Banasiak and M. Lachowicz, Chaotic linear dynamical systems with applications. In Semigroups of operators: theory and

applications (Rio de Janeiro, 2001), pages 32–44. Optimization Software, New York, (2002).
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