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Abstract. In this study, we assume that a perfect fluid is the source of the gravitational field while
analyzing the solutions to the Einstein field equations. With this new and innovative approach, we study
almost Schouten and gradient Schouten solitons on perfect fluid spacetimes. It is demonstrated that in a
perfect fluid spacetime obeying almost Schouten solitons the spacetime represents generalized Robertson-
Walker spacetime. Also, we study a perfect fluid spacetime satisfying almost Schouten solitons and
gradient Schouten solitons whose potential vector field is a V-Ric vector field. Finally, we study perfect
fluid spacetimes obeying almost Schouten solitons and gradient Schouten solitons whose potential vector
field is a torse-forming vector field.

1. Introduction

Schouten solitons (briefly, SS) are the solutions of an inherent flow familiar as a Schouten flow ([3], [4])
and described as

£V1 + 2St = −2β1, (1)

in which V indicates the potential vector field and the Schouten tensor St is described by

St =
1

n − 2
(S −

r
2(n − 1)

1), (2)

β ∈ R, S is the Ricci tensor and r indicates the scalar curvature. This soliton is referred to be shrinking, stable
or expanding for β < 0, β = 0 or β > 0, respectively. The Einstein manifold is the most straightforward
illustration of SS. In a Riemannian manifold, the author provided an example of a SS in [3].

We broaden the aforementioned concept, which we refer to as almost SS, by supposing that β is a
smooth function.
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The gradient SS notion was first introduced by Catino and Mazzieri [4] and described as

S + ∇2 f = {
r

2(n − 1)
+ β}1, (3)

in which f is a smooth function and β indicates a real constant. In [4] both the gradient SS and the compact
gradient SS are examined. They demonstrated that each compact gradient SS is trivial. Additionally, they
showed that if a gradient type steady SS is complete, then it is Ricci flat and trivial. Additionally, they
proved that every complete gradient shrinking SS in dimension 3 is isometric to a finite quotient of either
R3 or S3 or R × S2. Pina and Menezes have characterised gradient SS which is complete in [19]. Recently,
Borges presented a research paper [3] that used the gradient SS. If r = 0, (3) entails that gradient SS becomes
gradient Ricci soliton.

An n-dimension Lorentzian manifold M with the Lorentzian metric 1 of signature (−,+,+, · · · ,+︸       ︷︷       ︸
(n−1) times

), which

permits a globaly time oriented vector is named a spacetime.
The n-dimensional (n ≥ 3) Lorentzian manifold M is called a generalized Robertson-Walker (shortly,

GRW) spacetime [1] if it is constructed as a warped product M = −I× ϱ2M∗, where I is an open interval, M∗

is an (n−1)-dimensional Riemannian manifold and ϱ > 0 is the scalar function. If M∗ is of constant curvature
and dim. 3, then the spacetime reduces to Robertson-Walker (briefly, RW) spacetime. The properties of
GRW spacetimes have been studied in ([11], [17]). Mantica and Molinari [17] have proven the subsequent
theorem.

Theorem A.([17]) A Lorentzian manifold of dimension n (n ≥ 3) is a GRW spacetime if and only if it
admits a torse-forming vector field which is unit time-like : ∇E1 u = ϕ[E1 + A(E1)u], A is a one-form given
by 1(E1,u) = A(E1) for all E1 which is also an eigen vector of the Ricci tensor.

M is described as a perfect fluid spacetime (shortly, PF-spacetime) if its non-zero Ricci tensor S fulfills

S = bη ⊗ η + a1, (4)

in which a, b are scalars and a unit time-like vector ζ (velocity vector) is described as 1(E1, ζ) = η(E1), η is a
1-form and 1(ζ, ζ) = −1. Each and every RW spacetime is a PF-spacetime [18]. In dim. 4, the GRW space-
time turns into a PF-spacetime iff it is a RW spacetime. Many geometers have studied several properties
of PF-spacetime ([2], [20]) and many others. Geometers called a manifold to be a quasi-Einstein manifold
if S is of the shape (4).

For a gravitational constant κ, the Einstein’s field equations with vanishing cosmological constant are
of the shape

S −
r
2
1 = κT, (5)

where T stands for the energy momentum tensor. In PF-spacetime, T is described by

T = (σ + p)η ⊗ η + p1, (6)

p and σ denote the isotropic pressure and energy density of the PF-spacetime[12]. Using equations (5) and
(6) in equation (4), we acquire

a =
κ(σ − p)

n − 2
, b = κ(σ + p). (7)

The equation (4) can be obtained from (5) and (6).
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Additionally, p and σ are linked by an equation of state (shortly, EoS) of the type p = p(σ), and the
PF-spacetime is said to as isentropic. Further, if σ = p, the PF-spacetime is known as stiff matter fluid. If
p = 0, σ+ p = 0, and p = σ3 , respectively, the PF-spacetime is considered to be the dust matter fluid, the dark
matter era, and the radiation era.

On the otherhand Weyl tensor plays a significant role in both geometry and relativity theory. Several
researchers have characterized spacetimes with Weyl tensor. The Weyl tensor C is defined by

C(E1,H1)G1 = R(E1,H1)G1

−
1

n − 2
[1(QH1,G1)E1 − 1(QE1,G1)H1 + 1(H1,G1)QE1 − 1(E1,G1)QH1]

+
r

(n − 1)(n − 2)
[1(H1,G1)E1 − 1(E1,G1)H1],

E1, H1, G1 any vector fields, R being the Riemann curvature tensor and Q being the Ricci operator expressed
by 1(QE1,H1) = S(E1,H1). Moreover, we known that

(div C)(E1,H1)G1 =
n − 3
n − 2

[{(∇E1 S)(H1,G1) − (∇H1 S)(E1,G1)} (8)

−
1

2(n − 1)
{(E1r)1(H1,G1) − (H1r)1(E1,G1)}],

‘div’ indicates the divergence. The Weyl tensor is called harmonic if div C = 0. The harmonicity of the tensor
appears in conservation laws of physics.

Theorem B. ([16]) On every GRW spacetime (div C)(E1,H1)G1 = 0 if and only if C(E1,H1)ζ = 0 holds for
dimension 4.

Many researchers have recently researched various types of solitons in spacetimes, including Ricci soli-
tons [6], Yamabe solitons [10], gradient Ricci solitons ( [9], [10]), gradient Yamabe solitons [10], k-almost
yamabe solitons [7], gradient m-quasi Einstein solitons[8], respectively.

The research mentioned above inspire us to characterize almost SS and gradient SS on PF-spacetimes.
To be more precise, we obtain the following results:

Theorem 1.1. If a PF-spacetime permits an almost SS, then the spacetime represents a GRW spacetime and the
integral curves generated by ζ are geodesics.

Theorem 1.2. If a PF-spacetime admits a gradient SS, then either
(i) the EoS of M is presented by the p = 3−n

n−1σ or,
(ii) it presents stiff matter era or it is trivial.

Theorem 1.3. If a PF-spacetime M permits an almost SS whose soliton vector is V-Ric, then r is constant, provided
ψ , − 1

2(n−1) .

Theorem 1.4. If a PF-spacetime M with V-Ric vector field admits a gradient SS, then r is constant and the scalar
curvature vanishes if and only if the soliton is steady, provided ψ , − n−2

2(n−1) .

Theorem 1.5. Let M be a PF-spacetime with torse-forming vector field ζ. If M admits an almost SS, then
(i) the soliton becomes SS
(ii) the scalar curvature is constant
(iii) σ = 0.

Theorem 1.6. Let M be a PF-spacetime with a torse-forming vector field ζ. If M permits a gradient SS, then either
the spacetime presents stiff matter era or the soliton is trivial.
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2. Perfect Fluid Spacetimes

Equation (4) provides the following

S(E1,H1) = a1(E1,H1) + bη(E1)η(H1). (9)

Equation (9) implies

r = na − b⇒ r is constant ⇔ n(E1a) = (E1b). (10)

Lemma 2.1. Every PF-spacetime obeys

(i) (∇E1η)ζ = 0 and (ii) η(∇E1ζ) = 0. (11)

Definition 2.2. ([14]) A vector field V is named a V-Ric vector field if

∇E1 V = ψQE1 (12)

for any E1 and ψ = constant.

We will look at the scenario when ζ is a torse-forming vector field ([2], [24]) of the shape:

∇E1ζ = E1 + η(E1)ζ. (13)

Lemma 2.3. ([23]) A PF-spacetime satisfies the following:

η(∇ζζ) = 0, ∇ζζ = 0, (14)

(∇E1η)H1 = 1(E1,H1) + η(E1)η(H1), (15)

R(E1,H1)ζ = η(H1)E1 − η(E1)H1, (16)

S(E1, ζ) = −(1 − n)η(E1), (17)

(£ζ1)(E1,H1) = 2[1(E1,H1) + η(E1)η(H1)]. (18)

3. Proof of the Main Theorems

Proof of Theorem 1.1. Equations (1) and (2) together imply

(£V1)(E1,H1) +
2

n − 2
S(E1,H1) + [2β −

r
(1 − n)(2 − n)

]1(E1,H1) = 0, (19)

which implies

1(∇E1 V,H1) + 1(E1,∇H1 V) +
2

n − 2
S(E1,H1) + [2β −

r
(n − 2)(n − 1)

]1(E1,H1) = 0. (20)



A. Sardar et al. / Filomat 38:16 (2024), 5827–5837 5831

Putting V = ζ in (20), we obtain

1(∇E1ζ,H1) + 1(E1,∇H1ζ) +
2

n − 2
S(E1,H1) + [2β −

r
(n − 1)(n − 2)

]1(E1,H1) = 0. (21)

Again, putting E1 = H1 = ζ in (21) entails that

β =
1

n − 2
[b − a +

r
2(n − 1)

]. (22)

Using (9) and (22) in (21), we get

1(∇E1ζ,H1) + 1(E1,∇H1ζ) +
2b

n − 2
[1(E1,H1) + η(E1)η(H1)] = 0. (23)

Putting E1 = ζ in (23), we infer

∇ζζ = 0. (24)

Contracting (23), we obtain

div ζ = −b
n − 1
n − 2

= Θ (say). (25)

Using (25) in (23) gives

1(∇E1ζ,H1) + 1(E1,∇H1ζ) −
2Θ

n − 1
[1(E1,H1) + η(E1)η(H1)] = 0. (26)

This shows that the velocity vector field is shear-free (σ(E1,H1) = 0), where

σ(E1,H1) =
1
2

[1(∇E1ζ,H1) + 1(E1,∇H1ζ) −
2Θ

n − 1
{1(E1,H1) + η(E1)η(H1)}] (27)

+
1
2

[1(∇ζζ,H1)η(E1) + 1(∇ζζ,E1)η(H1)].

If an EoS holds for the perfect fluid in the Einstein equation and it satisfies the shear-free conjucture by
Eills [21], then Θω = 0, where ω2 is the square of the vorticity tensor. With ω(E1,H1) = 0 the velocity of the
perfect fluid gives

∇E1ζ =
Θ

n − 1
[E1 + η(E1)ζ]

hence the spacetime presents a GRW spacetime.
Therefore, the proof is finished.

Proof of Theorem 1.2. Equation (3) provides

∇E1 D f +QE1 = (
r

2(n − 1)
+ β)E1. (28)

Equation (28) implies that

∇H1∇E1 D f + ∇H1 QE1 =
H1r

2(n − 1)
E1 + (

r
2(n − 1)

+ β)∇H1 E1. (29)

Interchanging E1 and H1 from the above equation, we provide

∇E1∇H1 D f + ∇E1 QH1 =
E1r

2(n − 1)
H1 + (

r
2(n − 1)

+ β)∇E1 H1. (30)
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Again, equation (28) implies

∇[E1,H1]D f +Q([E1,H1]) = (
r

2(n − 1)
+ β)([E1,H1]). (31)

Above equations together imply

R(E1,H1)D f = −(∇E1 Q)H1 + (∇H1 Q)E1 (32)

+
E1r

2(n − 1)
H1 −

H1r
2(n − 1)

E1.

Contracting E1 from (32), we infer

S(H1,D f ) = 0. (33)

Substituting E1 by D f in (9) yields

S(H1,D f ) = a(H1 f ) + b(ζ f )η(H1). (34)

In view of (33) and (34), we obtain

a(H1 f ) + b(ζ f )η(H1) = 0. (35)

Putting H1 = ζ in (35) infers

(b − a)ζ f = 0, (36)

which implies either b = a or, b , a.

Case i: If b = a, then (7) yields

p =
3 − n
n − 1

σ. (37)

Hence the EoS of the spacetime is presented by p = 3−n
n−1σ.

Case ii: If b , a, then (36) implies ζ f = 0. Hence (35) implies

a(H1 f ) = 0, (38)

which implies either a = 0 or, H1 f = 0.

Case 1: If a = 0, then from (7), we find p = σ. Hence it represents stiffmatter era [22].

Case 2: If H1 f = 0, then f =constant. Hence the soliton is trivial.
This finishes the proof.

Consequently, from the foregoing theorem for r = 0, we obtain:

Corollary 3.1. If a PF-spacetime M admits a gradient Ricci soliton, then either
(i) the EoS of M is presented by the p = 3−n

n−1σ or,
(ii) it presents stiff matter era or it is trivial.

In particular, for dimension 4, we get form (37) 3p+σ = 0. Therefore, the spacetime represents Phantom
era [5]. As a result, we argue:

Corollary 3.2. If a 4-dimensional PF-spacetime permits a gradient SS, then the spacetime represents Phantom era,
provided ζ f , 0.
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Proof of Theorem 1.3. From equations (1) and (2), we provide

1(∇E1 V,H1) + 1(E1,∇H1 V) +
2

n − 2
S(E1,H1) + [2β −

r
(n − 2)(n − 1)

]1(E1,H1) = 0. (39)

Using (12) in (39) gives

[2ψ +
2

n − 2
]S(E1,H1) + [2β −

r
(n − 2)(n − 1)

]1(E1,H1) = 0. (40)

Contracting the above equation, we get

(2ψ +
1

n − 1
)r = −2βn, (41)

which implies r is constant for ψ , − 1
2(n−1) .

Hence the proof is completed.

Again for dimension 4, from Theorem B, we obtain that in a GRW spacetime, C(E1,H1)ζ = 0 iff
(div C)(E1,H1)G1 = 0. Also, C(E1,H1)ζ = 0 implies C is purely electric [13] and therefore the spacetime is of
Petrov classification I, D or O ([22], p. 73). Thus, we have:

Corollary 3.3. If a 4-dimensional PF-spacetime permits an almost SS whose soliton vector is V-Ric, then the
spacetime is of Petrov type I, D or O.

In 4-dimension, C(E1,H1)ζ = 0 is equivalent to ([15], p. 128)

η(Z5)C(E1,H1,G1,Z4) + η(E1)C(H1,Z5,G1,Z4) (42)
+η(H1)C(Z5,E1,G1,Z4) = 0,

where η(E1) = 1(E1, ζ) and C(E1,H1,G1,Z4) = 1(C(E1,H1)G1,Z4) for all E1, H1, G1, Z4, Z5.
Replacing Z5 by ζ in the last equation yields

C(E1,H1,G1,Z4) = 0, (43)

which tells that the spacetime is conformally flat. Hence, we have:

Corollary 3.4. If a PF-spacetime of dim. 4 permits an almost SS whose soliton vector is V-Ric, then the spacetime
is conformally flat.

Again, for dimension 4 and we take β = 0, equation (40) implies

(2ψ + 1)S(E1,H1) −
r
6
1(E1,H1) = 0. (44)

Contracting the above equation, we get either r = 0 or ψ = − 1
6 . Again, using r = 0 in (10) gives b − 4a = 0

and therefore from (7), we acquire σ − 3p = 0. Therefore, the spacetime presents radiation era. Hence we
have:

Corollary 3.5. If a 4-dimensional PF-spacetime admits an almost SS whose soliton vector is V-Ric, then the spacetime
represents radiation era, provided ψ , − 1

6 .
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Proof of Theorem 1.4. Equation (3) yields

∇E1 D f +QE1 = (
r

2(n − 1)
+ β)E1. (45)

Again, replacing V by D f in (12) gives

∇E1 D f = ψQE1. (46)

In view of (45) and (46), we provide

(ψ + 1)S(E1,H1) = (
r

2(n − 1)
+ β)1(E1,H1). (47)

Contracting E1 and H1 in the previous equation infers

r(ψ +
n − 2

2(n − 1)
) = βn, (48)

which means that r is constant for ψ , − n−2
2(n−1) .

Hence the proof is completed.

In particular, for n = 4 and β = 0, equation (48) implies r = 0. Hence, we get 4a − b = 0. Therefore, from
(7), we get 3p − σ = 0. Hence the spacetime represents radiation era [5]. Hence we have:

Corollary 3.6. If a 4-dimensional PF-spacetime admits a steady gradient SS whose potential vector field is V-Ric,
then the spacetime represents radiation era, provided ψ , − 1

3 .

Again, for r = 0, equation (48) implies β = 0. Hence the soliton is steady. Hence we write:

Corollary 3.7. If a PF-spacetime permits a gradient Ricci soliton whose potential vector field is V-Ric, then the
soliton is steady.

Proof of Theorem 1.5. Equations (1) and (2) together provide

(£V1)(E1,H1) +
2

n − 2
S(E1,H1) + [2β −

r
(1 − n)(2 − n)

]1(E1,H1) = 0. (49)

Putting V = ζ in (49) and using (18) yields

2[1(E1,H1) + η(E1)η(H1)] +
2

n − 2
S(E1,H1) + [2β −

r
(n − 2)(n − 1)

]1(E1,H1) = 0. (50)

Contracting E1 and H1 in (50) gives

2βn + 2(n + 1) +
r

n − 1
= 0. (51)

Setting H1 = ζ in (50) entails that

2β =
r

(1 − n)(2 − n)
−

2(1 − n)
2 − n

. (52)

In view of (51) and (52), we provide

r = 2(n − 1) = constnat and hence β = constant. (53)
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Hence from (10), we find

na − b = 2(n − 1). (54)

Again, putting H1 = ζ in (9) and comparing with (17), we obtain

a − b = n − 1. (55)

From (54) and (55), we infer

a = 1 and b = 2 − n. (56)

Equations (7) and (56) together imply σ = 0.
This finishes the proof.

Now, we state a theorem:
Theorem C. ([22], p. 601) All conformally flat perfect fluid spacetime with non-zero energy density are
of embedding class one (that is, can be embedded as a hypersurface of a Minkowski spacetime), and are
hence all contained either in the generalized Schwarzschild metrics or generalized Friedmann metrics. All
conformally flat solutions with zero energy density are flat (Minkowski spacetime).
Hence, from the above result, we have:

Corollary 3.8. Let M be a conformally flat PF-spacetime with torse-forming vector field ζ. If M admits an almost
SS, then
(i) the soliton becomes SS
(ii) the scalar curvature is constant
(iii) the spacetime becomes flat.

Proof of Theorem 1.6. Equation (3) implies

∇E1 D f +QE1 = (
r

2(n − 1)
+ β)E1. (57)

The above equation implies

∇H1∇E1 D f + ∇H1 QE1 =
1
2

[
H1r

(n − 1)
E1 + (

r
(n − 1)

+ 2β)∇H1 E1]. (58)

Interchanging E1 and H1 from the foregoing equation, we acquire

∇E1∇H1 D f + ∇E1 QH1 =
1
2

[
E1r

(n − 1)
H1 + (

r
(n − 1)

+ 2β)∇E1 H1]. (59)

Equation (57) implies

∇[E1,H1]D f +Q([E1,H1]) = (
r

2(n − 1)
+ β)([E1,H1]). (60)

Above equations together imply

R(E1,H1)D f = −(∇E1 Q)H1 + (∇H1 Q)E1 (61)

+
1
2

[
E1r

(n − 1)
H1 −

H1r
(n − 1)

E1].

Contracting E1 from (61), we obtain

S(H1,D f ) = 0. (62)
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From (17) and (62), we get

ζ f = 0. (63)

Replacing E1 by D f in (9) and comparing with (62), we get

a(H1 f ) + b(ζ f )η(H1) = 0. (64)

Using (63) in (64), we get

a(H1 f ) = 0. (65)

which implies either a = 0 or, H1 f = 0.

Case 1: If a = 0, then from (7), we find p = σ. Hence it represents stiffmatter era [22].

Case 2: If H1 f = 0, then f =constant. Hence the soliton is trivial.
Thus, the proof is completed.

Conclusions

In their purest form, solitons are nothing more than waves. After colliding with another wave of the
same kind, waves physically propagate with the least amount of energy loss and maintain their speed and
shape. Solitons play a key role in the resolution of initial-value problems for wave propagation-related
nonlinear PDEs.

Several researchers have studied different types of solitons in PF-spacetime. In this study, we investigate
the almost SS and gradient SS in PF-spacetime.

In this article it is proved that if a PF-spacetime admits an almost SS then the spacetime presents a
GRW spacetime and the integral curves generated by ζ are geodesics. Also, we show that if a PF-spacetime
admits an almost SS whose soliton vector is V-Ric, then the scalar curvature is constant. Next, we show
that if M be a PF-spacetime equipped with a torse-forming vector field ζ and M admits a gradient SS, then
either M represents a stiffmatter era or the soliton is trivial.
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