
Filomat 38:16 (2024), 5863–5874
https://doi.org/10.2298/FIL2416863L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The hyper-Wiener index of a graph G is defined as WW(G) = 1
2

∑
{u,v}⊆V(G)

(d2
G(u, v)+ dG(u, v)), where

dG(u, v) denotes the distance between u and v in G. In this paper, we determine the maximum hyper-Wiener
index of 2-connected graphs and 2-edge-connected graphs, which extends the result of Plesnik [On the sum
of all distances in a graph or digraph, J. Graph Theory 8 (1984) 1-21]. Then based on the above results,
we characterize the first two maximum graphs among the graphs with two vertices of odd degree, the
minimum graphs among the graphs with 2k (0 ≤ k ≤ ⌊ n

2 ⌋) vertices of odd degree, which extends the result
of Hou, Chen and Zhang [Hyper-Wiener index of Eulerian graphs, Appl. Math. J. Chin. Univ. 31 (2016)
248-252].

1. Introduction

The Wiener index is one of the oldest and most studied topological index from application and theoretical
viewpoints. As an extension of the Wiener index, the hyper-Wiener index is also an important topological
index.

Let G be a connected graph with vertex set V(G) and edge set E(G). The degree of vertex u in graph
G, denoted by dG(u), is the number of edges incident to u. A pendent vertex is a vertex with degree one.
If a path v1v2 · · · vk is an induced sub-path of G with dG(v1) ≥ 3, dG(v2) = dG(v3) = · · · = dG(vk−1) = 2 and
dG(vk) = 1, then we call v1v2 · · · vk is a pendent path of G.

The distance dG(u, v) between vertices u and v is the length of the shortest path between vertices u and v
in G. Let eccG(u) = max{dG(u, v)|v ∈ V(G)} be the eccentricity of vertex u in G. The Wiener index of a graph
G is defined as [31]

W(G) =
∑

{u,v}⊆V(G)

dG(u, v),
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and the hyper-Wiener index of G is defined as [16, 26]

WW(G) =
1
2

∑
{u,v}⊆V(G)

(d2
G(u, v) + dG(u, v)).

One can refer to [1, 3–6, 8, 10–14, 17, 20, 21, 24, 25, 28, 30, 33, 34] for the mathematical properties of the
hyper-Wiener index and its applications in chemistry.

Let DG(u) =
∑

v∈V(G)
dG(u, v) and DDG(u) =

∑
v∈V(G)

d2
G(u, v). Then hyper-Wiener index can also be written as

WW(G) = 1
4

∑
u∈V(G)

(DDG(u) +DG(u)).

We call a vertex u of a connected graph G with at least three vertices the cut-vertex if G−u is disconnected.
A block of a graph G is the maximal connected subgraph of G that has no cut-vertex [2]. An endblock of a
graph G is a block of G that contains only one cut-vertex of G. If v is a cut-vertex of G and H is a component
of G − v, then G[V(H) ∪ {v}] is called a branch of G at v. A graph is called k-vertex-connected (k-connected
for short) if the graph is still connected whenever fewer than k vertices are removed. Similarly, a graph is
called k-edge-connected if the graph is still connected whenever fewer than k edges are removed.

Let G(n, 2k) be the set of the connected graphs with n vertices and 2k vertices of odd degree. If k = 0,
then G(n, 0) denotes the set of Eulerian graphs with n vertices. The research of extremal graph with given
the number of vertices of even/odd degree can be found in [7, 18, 19, 22, 27, 29]. We use |U| to denote
the cardinality of the set U. We denote Cn, Pn, and Kn, the cycle, path, and complete graph of order n,
respectively. In this paper, all notations and terminologies used but not defined can refer to Bondy and
Murty [2].

The remainder of this paper is organized as follows. In Section 2, we determine the maximum hyper-
Wiener index among 2-connected graphs and 2-edge-connected graphs. In Section 3, we determine the
first two maximum graphs among G(n, 2) with respect to the hyper-Wiener index, and in Section 4, we
determine the minimum graphs among G(n, 2k) for 0 ≤ k ≤ ⌊ n

2 ⌋. In Section 5, we conclude this paper and
propose an open problem.

2. The maximum values of 2-(edge)-connected graphs

In this section, we give some sharp upper bounds about the hyper-Wiener index among 2-connected
graphs and 2-edge-connected graphs. Firstly, we give a sharp upper bound for DDG(v), where G is a
2-connected graph.

Lemma 2.1. [23] Let G be a 2-connected graph with |V(G)| = n. For any vertex v ∈ V(G), we have DG(v) ≤ ⌊ 1
4 n2
⌋.

Moreover, the equality holds for all vertices of G if and only if G � Cn.

Lemma 2.2. Let G be a 2-connected graph with |V(G)| = n. Suppose that v ∈ V(G), eccG(v) = k and Wi =
{x|d(v, x) = i}, wi = |Wi| for 0 ≤ i ≤ k. Then

(1) wi ≥ 2 for 1 ≤ i ≤ k − 1;
(2) k ≤ ⌊ n

2 ⌋.

Proof. On the contrary, we suppose that there exists 1 ≤ i ≤ k − 1 such that wi = 1. All paths from any
v(∈W0) to any x ∈W j for i + 1 ≤ j ≤ k must through some vertex yi ∈Wi. Then the unique vertex in Wi is a
cut vertex, which is a contradiction since G is a 2-connected graph.

By w0 = 1, wk ≥ 1, and the result of (1), we have n =
k∑

i=0
wi ≥ 1 + 2(k − 1) + 1 = 2k, thus k ≤ ⌊ n

2 ⌋.

Lemma 2.3. Let G be a 2-connected graph with |V(G)| = n. For any vertex v ∈ V(G), we have

DDG(v) ≤


1
12 n(n2 + 2), i f n is even;

1
12 n(n2

− 1), i f n is odd .

Moreover, the equalities hold for all vertices of G if and only if G � Cn.
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Proof. Let v ∈ V(G), eccG(v) = k and Wi = {x|d(v, x) = i}, wi = |Wi| for 0 ≤ i ≤ k. Clearly, w0 = 1, wk ≥ 1, and by

Lemma 2.2, we have wi ≥ 2 for 1 ≤ i ≤ k−1 and k ≤ ⌊ n
2 ⌋. Since

k∑
i=0

wi = n and DDG(v) = 12w1+22w2+· · ·+k2wk,

we have

DDG(v) = 12w1 + 22w2 + · · · + k2wk

≤ (12 + 22 + · · · + (k − 1)2) × 2 + k2(n − 1 − 2(k − 1))

=
1
3

k(k − 1)(2k − 1) + k2(n − 2k + 1)

≜ ξk.

Therefore ξ′k = −4k2 + 2kn + 1
3 > 0 for k ≤ ⌊ n

2 ⌋. Thus

DDG(v) ≤


ξ n

2
= 1

12 n(n2 + 2), i f n is even;

ξ n−1
2
= 1

12 n(n2
− 1), i f n is odd .

If the equality holds, then d(v) = 2 for any vertex v ∈ V(G). Thus these upper bounds are achieved for all
v ∈ V(G) if and only if G � Cn.

Lemma 2.4. [23] Let G be a 2-connected graph with |V(G)| = n. Then W(G) ≤ 1
2 n⌊ 1

4 n2
⌋, with equality if and only

if G � Cn.

By Lemmas 2.1 and 2.3, we have

Lemma 2.5. Let G be a 2-connected graph with |V(G)| = n. Then

WW(G) ≤


1

48 n2(n + 1)(n + 2), i f n is even;

1
48 n(n + 1)(n − 1)(n + 3), i f n is odd ,

with equality if and only if G � Cn.

For 2-edge-connected graph G, the following results are useful.

Lemma 2.6. [23] Let G be a 2-edge-connected graph with |V(G)| = n. For any vertex v ∈ V(G), we have eccG(v) ≤
⌊

1
3 (2n − 2)⌋, and the equality can be achieved.

Lemma 2.7. [23] Let G be a 2-edge-connected graph with |V(G)| = n. For any vertex v ∈ V(G), we have DG(v) ≤
⌊

1
3 (n2
− n)⌋, and the equality can be achieved.

Theorem 2.8. Let G be a 2-edge-connected graph with |V(G)| = n. For any vertex v ∈ V(G), we have DDG(v) ≤
2
27 (n − 1)2(2n + 1), and the equality can be achieved.

Proof. Suppose that G is a 2-edge-connected graph and we make a mathematical induction on the number
of blocks.

Case 1. G is a block.
Since G is a block, G is a 2-connected graph. By Lemma 2.3, if n is even, then DDG(v) ≤ 1

12 n(n2 + 2) ≤
2
27 (n − 1)2(2n + 1) for n ≥ 4; if n is odd, then DDG(v) ≤ 1

12 n(n2
− 1) ≤ 2

27 (n − 1)2(2n + 1) for n ≥ 3.
Case 2. G has at least two blocks.
Let G1 be an endblock of G, G2 be the union of other blocks such that V(G1) ∩ V(G2) = {u}. For

convenience, we let Vi = V(Gi), ni = |Vi| for i = 1, 2. Then n1 + n2 − 1 = n.
Subcase 2.1. v ∈ V(G1).
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By the definition of DDG(v), Lemmas 2.3, 2.6, 2.7 and the induction hypothesis, we have

DDG(v) =
∑
x∈V1

d2
G(v, x) +

∑
x∈V2\{u}

d2
G(v, x)

=
∑
x∈V1

d2
G(v, x) +

∑
x∈V2\{u}

(dG(v,u) + dG(u, x))2

= DDG1 (v) +
∑

x∈V2\{u}

d2
G(v,u) +

∑
x∈V2\{u}

d2
G(u, x) + 2

∑
x∈V2\{u}

dG(v,u) · dG(u, x)

≤ DDG1 (v) + (n2 − 1)(eccG1 (v))2 +DDG2 (u) + 2eccG1 (v) ·DG2 (u)

≤
1

12
n1(n2

1 + 2) + (n2 − 1)
(1

3
(2n1 − 2)

)2
+

2
27

(n2 − 1)2(2n2 + 1)

+2
(1

3
(2n1 − 2)

) (1
3

(n2
2 − n2)

)
=

1
12

n1(n2
1 + 2) +

4
9

(n − n1)(n1 − 1)2 +
2

27
(n − n1)2(2n − 2n1 + 3)

+
4
9

(n1 − 1)(n − n1)(n − n1 + 1).

If n1 ≥ 4, we have 2
27 (n − 1)2(2n + 1) −DDG(v) ≥ 7

108 n3
1 −

2
9 n2

1 −
1
6 n1 +

2
27 ≥ 0.

If n1 = 3, then DDG1 (v) ≤ 1
12 n1(n2

1 − 1) = 2, we can similarly prove that 2
27 (n − 1)2(2n + 1) −DDG(v) > 0.

Subcase 2.2. v ∈ V(G2).
By the definition of DDG(v), Lemmas 2.3, 2.6, 2.7 and the induction hypothesis, we have

DDG(v) =
∑
x∈V2

d2
G(v, x) +

∑
x∈V1\{u}

d2
G(v, x)

=
∑
x∈V2

d2
G(v, x) +

∑
x∈V1\{u}

(dG(v,u) + dG(u, x))2

= DDG2 (v) +
∑

x∈V1\{u}

d2
G(v,u) +

∑
x∈V1\{u}

d2
G(u, x) + 2

∑
x∈V1\{u}

dG(v,u) · dG(u, x)

≤ DDG2 (v) + (n1 − 1)(eccG2 (v))2 +DDG1 (u) + 2eccG2 (v) ·DG1 (u)

≤
2

27
(n2 − 1)2(2n2 + 1) + (n1 − 1)

(1
3

(2n2 − 2)
)2
+

1
12

n1(n2
1 + 2)

+2
(1

3
(2n2 − 2)

) (1
3

(n2
1 − n1)

)
=

2
27

(n − n1)2(2n − 2n1 + 3) +
4
9

(n1 − 1)(n − n1)2 +
1

12
n1(n2

1 + 2)

+
4
9

(n − n1)(n2
1 − n1).

If n1 ≥ 4, we have 2
27 (n − 1)2(2n + 1) −DDG(v) ≥ 7

108 n3
1 −

2
9 n2

1 −
1
6 n1 +

2
27 ≥ 0.

If n1 = 3, then DDG1 (u) ≤ 1
12 n1(n2

1 − 1) = 2, we can similarly prove that 2
27 (n − 1)2(2n + 1) −DDG(v) > 0.

Combining the above arguments, we complete the proof.

Theorem 2.9. Let G be a 2-edge-connected graph with |V(G)| = n. Then

WW(G) ≤


1

48 n2(n + 1)(n + 2), i f n is even;

1
48 n(n + 1)(n − 1)(n + 3), i f n is odd ,

with equality if and only if G � Cn.
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Proof. We can verify the conclusion directly for n ≤ 5. Next we only consider n ≥ 6. We make a mathematical
induction on the number of blocks.

Case 1. G is a block.
Since G is a block, then G is a 2-connected graph. By Lemma 2.5, the conclusion holds.
Case 2. G has at least two blocks.
Let G1 be an endblock of G, G2 be the union of other blocks such that V(G1) ∩ V(G2) = {u}. For

convenience, we let Vi = V(Gi), ni = |Vi| for i = 1, 2. Then n1 + n2 − 1 = n. We choose the G1 such that
n1 ≤

1
2 (n + 1). For convenience, we let ϕ(x, y) = dG(x, y) + d2

G(x, y).
Subcase 2.1. n1 is even.
By the definition of DDG(v), WW(G), Lemmas 2.1, 2.3, 2.5, 2.7, Theorem 2.8 and the induction hypothesis,

we have WW(G1) ≤
n2

1
48 (n1 + 1)(n1 + 2) and

2WW(G) =
∑
x∈V1
y∈V1

ϕ(x, y) +
∑
x∈V2
y∈V2

ϕ(x, y) +
∑

x∈V1\{u}
y∈V2\{u}

ϕ(x, y)

= 2WW(G1) + 2WW(G2) +
∑

x∈V1\{u}

∑
y∈V2\{u}

ϕ(x, y)

= 2WW(G1) + 2WW(G2) +
∑

x∈V1\{u}

((n2 − 1)ϕ(x,u) +DG2 (u) +DDG2 (u)

+2d(x,u) ·DG2 (u))
= 2WW(G1) + 2WW(G2) + (n2 − 1)(DG1 (u) +DDG1 (u))
+(n1 − 1)(DG2 (u) +DDG2 (u)) + 2DG1 (u) ·DG2 (u)

≤
n2

1

24
(n1 + 1)(n1 + 2) +

n2
2

24
(n2 + 1)(n2 + 2) + (n2 − 1)(

n2
1

4
+

n1

12
(n2

1 + 2))

+(n1 − 1)(
1
3

(n2
2 − n2) +

2
27

(n2 − 1)2(2n2 + 1)) + 2 ·
1
4

n2
1 ·

1
3

(n2
2 − n2)

=
n2

1

24
(n1 + 1)(n1 + 2) +

1
24

(n − n1 + 1)2(n − n1 + 2)(n − n1 + 3)

+(n − n1)(
1
4

n2
1 +

1
12

n1(n2
1 + 2)) +

1
3

(n1 − 1)(n − n1)(n − n1 + 1)

+
2

27
(n − n1)2(n1 − 1)(2n − 2n1 + 3) +

1
6

n2
1(n − n1)(n − n1 + 1).

Thus 2WW(Cn)− 2WW(G) ≥ 1
24 n(n+ 1)(n− 1)(n+ 3)− 2WW(G) ≥ 1

54 n3n1 −
1

54 n3 + 1
36 n2n2

1 −
1
8 n2n1 −

7
36 n2
−

1
36 nn3

1 +
19
72 nn2

1 −
7
36 nn1 −

1
2 n − 1

54 n4
1 −

13
108 n3

1 +
19
72 n2

1 +
3
8 n1 −

1
4 ≜ fn1 .

Clearly, we have f ′n1
= 1

216 (4n3 + 3n2(4n1 − 9) − 6n(3n2
1 − 19n1 + 7) − 16n3

1 − 78n2
1 + 114n1 + 81), and

f ′′n1
= 1

216 (12n2
− 36nn1 + 114n − 48n2

1 − 156n1 + 114).
Since 4 ≤ n1 ≤

n+1
2 , and the two roots of f ′′n1

= 0 are x1 =
1
8 (
√

25n2 + 230n + 321 − 3n − 13) and x2 =
1
8 (−
√

25n2 + 230n + 321 − 3n − 13), then f ′n1
≥ min{ f ′4 , f ′n+1

2
} > 0. Thus fn1 ≥ f4 = 1

18 n3
−

1
4 n2 + 7

6 n − 251
36 > 0 for

n ≥ 6.
Subcase 2.2. n1 is odd.
Since WW(G1) ≤ 1

48 n1(n1+1)(n1−1)(n1+3), similarly we have 2WW(Cn)−2WW(G) ≥ 1
24 n(n+1)(n−1)(n+

3)−2WW(G) ≥ 1
54 n3n1−

1
54 n3+ 1

36 n2n2
1−

1
8 n2n1−

7
36 n2
−

1
36 nn3

1+
19
72 nn2

1−
7
36 nn1−

1
2 n− 1

54 n4
1−

13
108 n3

1+
7
18 n2

1+
1
2 n1−

1
4 ≜ 1n1 .

Clearly, we have 1′n1
= 1

216 (4n3 + 3n2(4n1 − 9) − 6n(3n2
1 − 19n1 + 7) − 16n3

1 − 78n2
1 + 168n1 + 108), and

1′′n1
= 1

216 (12n2
− 36nn1 + 114n − 48n2

1 − 156n1 + 168).
Since 3 ≤ n1 ≤

n+1
2 , and the two roots of 1′′n1

= 0 are x1 =
1
8 (
√

25n2 + 230n + 393 − 3n − 13) and
x2 =

1
8 (−
√

25n2 + 230n + 393 − 3n − 13), then 1′n1
≥ min{1′3, 1

′
n+1

2
} > 0. Thus 1n1 ≥ f3 = 1

27 n3
−

23
72 n2 + 13

24 n > 0

for n ≥ 7.
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If n = 6, in this case, n1 = 3. It is easy to calculate the hyper-Wiener index of these graphs are less than
the hyper-Wiener index of C6.

Combining the above arguments, we complete the proof.

It is clear that the results of Lemmas 2.3, 2.5 and Theorems 2.8, 2.9 generalize the results of [23] about
the Wiener index.

3. The maximum graphs with given number of vertices of odd degree

Recall thatG(n, 2k) denotes the set of the connected graphs with n vertices and 2k vertices of odd degree.
For k = 0, Hou et al. [15] determined the maximum graphs among G(n, 0) (i.e. Eulerian graph) with respect
to the hyper-Wiener index is Cn. For the continue, we consider the situation of k = 1, and we determine the
first two maximum graphs among G(n, 2) with respect to the hyper-Wiener index.

Lemma 3.1. [15] Let G and G − uv be connected graphs where uv ∈ E(G), then WW(G) < WW(G − uv).

Lemma 3.2. [12] If T is a tree of order n, then WW(Sn) ≤WW(T) ≤WW(Pn).

By Lemmas 3.1 and 3.2, we know Pn has the maximum hyper-Wiener index among connected graphs
with n vertices. Since Pn ∈ G(n, 2), we have the following result.

Proposition 3.3. Let G ∈ G(n, 2). Then WW(G) ≤ WW(Pn) = 1
24 n(n − 1)(n + 1)(n + 2), with equality if and only

if G � Pn.

Let Hn,a be the graph of order n obtained from Ca and Pn−a by adding one edge between one vertex of
Ca and one pendent vertex of Pn−a.

Lemma 3.4. (Lemma 2.4 of[9]) Let a ≥ 4, F be a connected graph with |V(F)| ≥ 2. Suppose G1 is the graph obtained
from F and Ca by identifying a vertex v(∈ V(F)) and one vertex of Ca; G2 is the graph obtained from F and Ha,3 by
identifying the same vertex v(∈ V(F)) and the pendent vertex of Ha,3. Then we have WW(G1) < WW(G2).

Lemma 3.5. Let 3 ≤ a ≤ n − 1. Then WW(Hn,a) ≤ WW(Hn,3) = 1
24 (n4 + 2n3

− 13n2 + 10n + 24), with equality if
and only if a = 3.

Proof. Let F = Pn−a+1 and v be a pendent vertex of F. By Lemma 3.4, we have WW(Hn,a) ≤ WW(Hn,3) =
1
24 (n4 + 2n3

− 13n2 + 10n + 24), with equality if and only if a = 3.

Lemma 3.6. [27] Let G be a connected graph with |V(G)| = n, v ∈ V(G) and dG(v) = t. Then DG(v) ≤ 1
2 (n − 2)(n −

3) + 2 for 3 ≤ t ≤ n − 1.

Lemma 3.7. Let G be a connected graph with |V(G)| = n, v ∈ V(G) and dG(v) = t. Then DDG(v) ≤ 1
6 (n − 3)(n −

2)(2n − 5) + 2 for 3 ≤ t ≤ n − 1.

Proof. If dG(v) = t, then DDG(v) ≤ 12
× t + 22 + 32 + · · · + (n − t)2 = 1

6 (n − t)(n − t + 1)(2n − 2t + 1) + t − 1 ≤
1
6 (n − 3)(n − 2)(2n − 5) + 2 for 3 ≤ t ≤ n − 1.

Similar to the proof of Lemmas 3.6 and 3.7 and 1 ≤ dG(v) ≤ n − 1, we have

Lemma 3.8. Let G be a connected graph with |V(G)| = n and v ∈ V(G). Then DG(v) ≤ 1
2 n(n − 1), DDG(v) ≤

1
6 n(n − 1)(2n − 1), with equality if and only if G � Pn and v is a terminal vertex.

Lemma 3.9. (Lemma 2.3 of[9]) Let G be a connected graph with a cut-vertex v such that G1 and G2 are two
connected subgraphs of G having v as the only common vertex and G1 ∪ G2 = G. Let ni = |V(Gi)| for i = 1, 2. Then

WW(G) = WW(G1) +WW(G2) +
1
2

(n1 − 1)(DG2 (v) +DDG2 (v))

+
1
2

(n2 − 1)(DG1 (v) +DDG1 (v)) +DG1 (v)DG2 (v).
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Lemma 3.10. Let G be a graph of order n with no isolated vertices. If G has exactly two vertices with odd degree and
G � Pn, then G contain at least one cycle.

Proof. By Handshaking Lemma, we have 2m(G) =
∑

v∈V(G)
dG(v) ≥ 1 + 1 + 2(n − 2) = 2(n − 1). Then m ≥ n − 1.

If m = n − 1, then the degree sequence of G is 1, 1, 2, 2, · · · , 2, it implies G � Pn, a contradiction. Thus m ≥ n
and G contains at least one cycle.

Lemma 3.11. Let G ∈ G(n, 2), x, y be the unique two vertices of odd degree in G with dG(x) = 1 and dG(y) ≥ 3.
Then WW(G) ≤WW(Hn,3), with equality if and only if G � Hn,3.

Proof. The assertion can be verified directly for n = 4, 5. We suppose the assertion holds for the graphs with
the number of vertices less than n, then we prove the assertion holds for the graphs with the number of
vertices equal to n.

Since x, y are the unique two vertices of odd degree of G with dG(x) = 1 and dG(y) ≥ 3, then G has a
pendent path P. Without loss of generality, we suppose P = vx1x2 · · · xb−2x with dG(v) ≥ 3 and dG(x) = 1. Let
P1 = P \ {v}, K = G \ P1, |V(K)| = a. Then a + b − 1 = n.

By Lemma 3.9, we have

WW(G) = WW(K) +WW(P) +
1
2

(a − 1)(DP(v) +DDP(v))

+
1
2

(b − 1)(DK(v) +DDK(v)) +DK(v)DP(v).

Let H∗n,4 be the simple connected graph obtained from Hn,4 by adding an edge between one vertex of
degree three and one vertex of degree two.

If a = 3 or 4, then G contains at least one cycle by Lemma 3.10. Thus G � Hn,3 if a = 3 and G ∈ {Hn,4,H∗n,4}
if a = 4. By Lemmas 3.1 and 3.5, we have WW(H∗n,4) < WW(Hn,4) < WW(Hn,3). Thus the conclusion holds.

Next, we consider the case of 5 ≤ a ≤ n − 1.
Case 1. There is no cut-edge in K.
In this case, K is a 2-edge-connected graph. By Lemma 2.7, Theorems 2.8 and 2.9, we have WW(K) ≤

1
48 a2(a+1)(a+2), WW(P) = 1

24 b(b−1)(b+1)(b+2), DP(v) = 1
2 b(b−1), DDP(v) = 1

6 b(b−1)(2b−1), DK(v) ≤ 1
3 a(a−1),

DDK(v) ≤ 2
27 (a − 1)2(2a + 1). By a + b − 1 = n, we have

WW(G) ≤
1
48

a2(a + 1)(a + 2) +
1

24
b(b − 1)(b + 1)(b + 2) +

1
6

b(a − 1)(b − 1)(b + 1)

+
1
54

(b − 1)(9a(a − 1) + 2(a − 1)2(2a + 1)) +
1
6

ab(a − 1)(b − 1)

=
1
48

a2(a + 1)(a + 2) +
1

24
(n − a)(n − a + 1)(n − a + 2)(n − a + 3)

+
1
6

(a − 1)(n − a)(n − a + 1)(n + 2) (1)

+
1
54

(n − a)(9a(a − 1) + 2(a − 1)2(2a + 1)).

Since WW(Hn,3) = 1
24 (n4 + 2n3

− 13n2 + 10n + 24), then

WW(Hn,3) −WW(G) ≥
n2a2

12
−

n2a
12
−

n2

2
−

2na3

27
+

7na2

36
−

na
12
+

25n
54

+
5a4

432
−

13a3

144
−

5a
108
+ 1 ≜ φa,

and φ′a =
1

432 (36n2(2a−1)−12n(8a2
−14a+3)+20a3

−117a2
−20), φ′′a =

1
432 (60a2

−192na−234a+72n2+168n).
The two roots ofφ′′a = 0 areθ1 =

1
20 (−
√

544n2 + 1376n + 1521+32n+39),θ2 =
1

20 (
√

544n2 + 1376n + 1521+
32n + 39) with 0 < θ1 < n − 1 < θ2.
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If n ≥ 11, then 5 ≤ θ1 < n − 1 < θ2, and φ′′5 > 0, φ′′n−1 < 0; if 6 ≤ n ≤ 10, then 0 < θ1 < 5 < n − 1 < θ2
and φ′′5 < 0, φ′′n−1 < 0. Thus if n ≥ 11, then φ′a is monotonically increasing in [5, θ1] and monotonically
decreasing in [θ1,n − 1]. If n ≤ 10, then φ′a is monotonically decreasing in [5,n − 1].

Since the monotonicity of the function φ′a and φ′5 > 0 for n ≥ 6, we know φa monotonically decreasing
in [5,n − 1] or φa first monotonically increasing and then monotonically decreasing in [5,n − 1]. Then
φa ≥ min{φ5, φn−1} for 5 ≤ a ≤ n− 1. Since φ5 > 0 and φn−1 > 0 for n ≥ 5, then φa > 0 for 5 ≤ a ≤ n− 1. Thus
the conclusion holds.

Case 2. There exists at least one cut-edge in K.
In this case, v is not a vertex of odd degree of G. Without loss of generality, we let uw be a cut-edge

which is the farthest from v and dG(u, v) > dG(w, v). It is easy to know that another odd degree vertex except
vertex x is in H, where H is the union of branches of G \ {uw} containing u, then H is a 2-edge-connected
graph.

Let F = G \ (H \ {u}) and |V(H)| = p, |V(F)| = q. Then p + q − 1 = n. By Lemma 3.9, we have

WW(G) =WW(H) +WW(F) +
1
2

(p − 1)(DF(u) +DDF(u))

+
1
2

(q − 1)(DH(u) +DDH(u)) +DF(u)DH(u).
(2)

We first prove the following claim.
Claim. WW(F) < WW(Hq,3).
Let F = F1∪P and F1∩P = {v}. Then F1 has exactly two vertices u and v with odd degree, and dF1 (u) = 1,

dF1 (v) ≥ 3. Let |V(F1)| = r. Then r + b − 1 = q, and we have

WW(F) = WW(F1) +WW(P) +
1
2

(r − 1)(DP(v) +DDP(v))

+
1
2

(b − 1)(DF1 (v) +DDF1 (v)) +DF1 (v)DP(v).

Since P is a path with b vertices and v is the terminal vertex of P, then WW(P) = 1
24 b(b − 1)(b + 1)(b + 2),

DP(v) = 1
2 b(b − 1), DDP(v) = 1

6 b(b − 1)(2b − 1).
By Lemma 3.5 and the induction hypothesis, we have WW(F1) ≤WW(Hr,3) = 1

24 (r4+2r3
−13r2+10r+24),

Since dF1 (v) ≥ 3, then by Lemmas 3.6 and 3.7, we have DF1 (v) ≤ 1
2 (r − 2)(r − 3) + 2, DDF1 (v) ≤ 1

6 (r − 2)(r −
3)(2r − 5) + 2. Then by b + r − 1 = q, we have

WW(F) ≤
1

24
(r4 + 2r3

− 13r2 + 10r + 24) +
1

24
b(b − 1)(b + 1)(b + 2)

+
1
6

b(r − 1)(b − 1)(b + 1) +
1
6

(b − 1)(r − 1)(r − 2)(r − 3) + 2(b − 1)

+
1
4

b(b − 1)((r − 2)(r − 3) + 4)

=
1

24
(r4 + 2r3

− 13r2 + 10r + 24) +
1

24
(q − r + 1)(q − r)(q − r + 2)(q + 3r − 1)

+
1
6

(q − r)(r − 1)(r − 2)(r − 3) + 2(q − r) +
1
4

(q − r)(q − r + 1)(r2
− 5r + 10).

Since WW(Hq,3) = 1
24 (q4 + 2q3

− 13q2 + 10q + 24), then

WW(Hq,3) −WW(F) ≥ q2r − 3q2
− qr2 + 4qr − 3q − r2 + 3r ≜ ψr.

By dF1 (v) ≥ 3 and r + b − 1 = q, we have 4 ≤ r < q. Since ψ4 = ψq−1 = (q − 4)(q + 1) > 0 for q ≥ 5, then
WW(F) < WW(Hq,3). The claim holds.

By Theorems 2.8, 2.9 and the above claim, we have WW(H) ≤ 1
48 p2(p + 1)(p + 2), WW(F) < WW(Hq,3) =

1
24 (q4 + 2q3

− 13q2 + 10q + 24). By Lemma 2.7 and Theorem 2.8, we have DH(u) ≤ 1
3 p(p − 1), DDH(u) ≤
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2
27 (p−1)2(2p+1). By Lemma 3.8, we have DF(u) ≤ 1

2 q(q−1), DDF(u) ≤ 1
6 q(q−1)(2q−1). Then by p+ q−1 = n

and equation (2), we have

WW(G) <
1
48

p2(p + 1)(p + 2) +
1

24
(q4 + 2q3

− 13q2 + 10q + 24) +
1
6

q(p − 1)(q2
− 1)

+
1
2

(q − 1)(
1
3

p(p − 1) +
2

27
(p − 1)2(2p + 1)) +

1
6

pq(p − 1)(q − 1)

=
1
48

p2(p + 1)(p + 2) +
1

24
((n − p + 1)4 + 2(n − p + 1)3

− 13(n − p + 1)2

+10(n − p + 1) + 24) +
1
6

(p − 1)(n − p + 1)(n − p)(n + 2) (3)

+
1
54

(n − p)(9p(p − 1) + 2(p − 1)2(2p + 1)).

Comparing with the result of equation (1), we let a = p in equation (1), then (1) − (3) = 1
2 (n2
− 2np + n +

p2
− p − 2) ≥ 0 for p ≤ n − 1. Thus we have WW(G) < WW(Hn,3). This completes the proof.

Lemma 3.12. Let G ∈ G(n, 2), G � Pn, and x, y be the unique two vertices of odd degree in G with dG(x) = dG(y) = 1.
Then WW(G) < WW(Hn,3).

Proof. Since x, y are the unique two vertices of odd degree in G and dG(x) = dG(y) = 1, then G has a pendent
path, say P = vx1x2 · · · vb−2x where dG(v)(≥ 3) is even and dG(x) = 1. Let P1 = P\{v}, K = G\P1 and |V(K)| = a.
Then a+ b−1 = n. Clearly, K ∈ G(a, 2) and v, y are the unique two vertices of odd degree in K with dK(v) ≥ 3,
dK(y) = 1.

By Lemma 3.11, we have WW(K) ≤ WW(Ha,3) = 1
24 (a4 + 2a3

− 13a2 + 10a + 24). We also know that
WW(P) = 1

24 b(b − 1)(b + 1)(b + 2), DP(v) = 1
2 b(b − 1), DDP(v1) = 1

6 b(b − 1)(2b − 1).
Since dK(v) ≥ 3 and Lemmas 3.6, 3.7, we have DK(v) ≤ 1

2 (a−2)(a−3)+2, DDK(v) ≤ 1
6 (a−2)(a−3)(2a−5)+2.

Thus by a + b − 1 = n and Lemma 3.9, we have

WW(G) = WW(K) +WW(P) +
1
2

(a − 1)(DP(v) +DDP(v))

+
1
2

(b − 1)(DK(v) +DDK(v)) +DK(v)DP(v)

≤
1
24

(a4 + 2a3
− 13a2 + 10a + 24) +

1
24

b(b − 1)(b + 1)(b + 2)

+
1
6

b(a − 1)(b − 1)(b + 1) +
1
2

(b − 1)(
1
3

(a − 1)(a − 2)(a − 3) + 4)

+
1
4

b(b − 1)((a − 2)(a − 3) + 4)

=
1
24

(a4 + 2a3
− 13a2 + 10a + 24)

+
1
24

(n − a)(n − a + 1)(n − a + 2)(n + 3a − 1)

+
1
2

(n − a)(
1
3

(a − 1)(a − 2)(a − 3) + 4)

+
1
4

(n − a)(n − a + 1)((a − 2)(a − 3) + 4).

Since WW(Hn,3) = 1
24 (n4 + 2n3

− 13n2 + 10n + 24), then

WW(Hn,3) −WW(G) ≥ n2a − 3n2
− na2 + 4na − 3n − a2 + 3a ≜ ha.

By dK(v) ≥ 3 and a + b − 1 = q, we have 4 ≤ a ≤ n − 1. Since h4 = hq−1 = (n − 4)(n + 1) > 0 for n ≥ 5, then
WW(G) < WW(Hn,3), and we complete the proof.
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Lemma 3.13. Let G ∈ G(n, 2), and x, y be the unique two vertices of odd degree in G, with dG(x) ≥ 3, dG(y) ≥ 3.
Then WW(G) < WW(Hn,3).

Proof. The assertion can be verified directly for n = 4, 5. We suppose the assertion holds for the graphs with
the number of vertices less than n, then we prove the assertion holds for the graphs with the number of
vertices equal to n.

Case 1. There is no cut-edge in G.
Then G is a 2-edge-connected graph and G � Cn. Then we have WW(G) < WW(Cn) = 1

48 n2(n+ 1)(n+ 2).

WW(Hn,3) −WW(G) > WW(Hn,3) −WW(Cn)

=
1

24
(n4 + 2n3

− 13n2 + 10n + 24) −
1
48

n2(n + 1)(n + 2)

=
n4

48
+

n3

48
−

7n2

72
+

5n
12
+ 1 > 0 for n ≥ 5.

Case 2. There exists at least one cut-edge in G.
Without loss of generality, we let uw be one of end-cut edge and H the block of G \ {uw} containing u.

Let K = G \ (H \ {u}) and |V(H)| = a, |V(K)| = b. Then a + b − 1 = n. By Lemma 3.9, we have

WW(G) = WW(H) +WW(K) +
1
2

(a − 1)(DK(u) +DDK(u))

+
1
2

(b − 1)(DH(u) +DDH(u)) +DH(u)DK(u).

If a = 3 or 4, then H is a 2-connected graph. By Lemmas 2.1, 2.3 and 2.5, we have WW(H) ≤ WW(Ca),
DH(u) ≤ DCa (u), DDH(u) ≤ DDCa (u). By Lemma 3.1 and the induction hypothesis, we have WW(K) ≤
WW(Hb,3) < WW(Pb). By Lemma 3.8, we have DK(u) ≤ DPb (u), DDK(u) ≤ DDPb (u). Thus WW(G) <
WW(Hn,a) ≤WW(Hn,3).

If a ≥ 5, the H is a 2-edge-connected graph, thus WW(H) ≤ 1
48 a2(a + 1)(a + 2). Since there are two

vertices with odd degree in K, say u and x, and dK(u) = 1, dK(x) ≥ 3. By Lemma 3.11, we have WW(K) ≤
WW(Hb,3) = 1

24 (b4 + 2b3
− 13b2 + 10b + 24) < 1

24 b(b − 1)(b + 1)(b + 2) =WW(Pb). By Lemma 2.7 and Theorem
2.8, we have DH(u) ≤ 1

3 a(a − 1), DDH(u) ≤ 2
27 (a − 1)2(2a + 1). By Lemma 3.8, we have DK(u) ≤ 1

2 b(b − 1),
DDK(u) ≤ 1

6 b(b − 1)(2b − 1). The same calculation as Case 1 of Lemma 3.11, we have WW(G) < WW(Hn,3).
This completes the proof.

By Lemmas 3.11, 3.12 and 3.13, we determine the second maximum graph among G(n, 2) with respect
to hyper-Wiener index.

Theorem 3.14. Let G ∈ G(n, 2) and G � Pn. Then

WW(G) ≤WW(Hn,3),

with equality if and only if G � Hn,3.

4. The minimum graphs with given number of vertices of odd degree

Recall that G(n, 2k) denotes the set of connected graphs with n vertices and 2k vertices of odd degree.
Let Ml be the set of matching with l independent edges in Kn. Then Kn \Ml ∈ G(n, 2k), where l = k if n is odd,
l = n

2 − k if n is even. In this section, we determine the minimum graphs among G(n, 2k) for any 0 ≤ k ≤ ⌊ n
2 ⌋.

Theorem 4.1. Let G ∈ G(n, 2k). Then
WW(G) ≥WW(Kn \Ml),

where l =


k, i f n is odd

n
2 − k, i f n is even

, with equality if and only if G � Kn \Ml.
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Proof. Suppose that G ∈ G(n, 2k), V(G) = {u1,u2, · · · ,un}, and u1,u2, · · · ,u2k are the vertices with odd degree.
Case 1. n is even.
For 1 ≤ i ≤ 2k, we have dG(ui) ≤ n − 1 and

DG(ui) +DDG(ui) ≥ (1 + 1 + · · · + 1︸           ︷︷           ︸
n−1

) + (12 + 12 + · · · + 12︸               ︷︷               ︸
n−1

) = 2n − 2.

For 2k + 1 ≤ i ≤ n, we have dG(ui) ≤ n − 2 and

DG(ui) +DDG(ui) ≥ (2 + 1 + 1 + · · · + 1︸           ︷︷           ︸
n−2

) + (22 + 12 + 12 + · · · + 12︸               ︷︷               ︸
n−2

) = 2n + 2.

Thus

WW(G) =
1
4

∑
v∈V(G)

(DG(v) +DDG(v))

≥
1
4

(2k(2n − 2) + (n − 2k)(2n + 2))

=
1
2

(n2 + n − 4k),

with equality if and only if dG(ui) = n − 1 for i ∈ {1, 2, · · · , 2k} and dG(ui) = n − 2 for i ∈ {2k + 1, 2k + 2, · · · ,n},
i.e., G � Kn \M n

2−k.
Case 2. n is odd.
For 1 ≤ i ≤ 2k, we have dG(ui) ≤ n − 2 and

DG(ui) +DDG(ui) ≥ (2 + 1 + 1 + · · · + 1︸           ︷︷           ︸
n−2

) + (22 + 12 + 12 + · · · + 12︸               ︷︷               ︸
n−2

) = 2n + 2.

For 2k + 1 ≤ i ≤ n, we have dG(ui) ≤ n − 1 and

DG(ui) +DDG(ui) ≥ (1 + 1 + · · · + 1︸           ︷︷           ︸
n−1

) + (12 + 12 + · · · + 12︸               ︷︷               ︸
n−1

) = 2n − 2.

Thus

WW(G) =
1
4

∑
v∈V(G)

(DG(v) +DDG(v))

≥
1
4

(2k(2n + 2) + (n − 2k)(2n − 2))

=
1
2

(n2
− n + 4k),

with equality if and only if dG(ui) = n − 2 for i ∈ {1, 2, · · · , 2k} and dG(ui) = n − 1 for i ∈ {2k + 1, 2k + 2, · · · ,n},
i.e., G � Kn \Mk.

Let k = 0, we have the following result by Theorem 4.1.

Corollary 4.2. [15] Let G ∈ G(n, 0). Then

WW(G) ≥WW(Kn \Ml),

where l =


0, i f n is odd

n
2 , i f n is even

, with equality if and only if G � Kn \Ml.
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5. Conclusions

In this paper, we determine the maximum hyper-Wiener index of 2-connected graphs and 2-edge-
connected graphs, which extends the result of Plesnik [On the sum of all distances in a graph or digraph,
J. Graph Theory 8 (1984) 1-21]. Then based on the above results, we characterize the first two maximum
graphs among the graphs with two vertices of odd degree, the minimum graphs among the graphs with
2k (0 ≤ k ≤ ⌊ n

2 ⌋) vertices of odd degree, which extends the result of Hou, Chen and Zhang [Hyper-Wiener
index of Eulerian graphs, Appl. Math. J. Chin. Univ. 31 (2016) 248-252]. The problem of characterizing the
maximum graphs among the graphs with given 2k(2 ≤ k ≤ ⌊ n

2 ⌋) vertices of odd degree is still open.
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