Filomat 38:16 (2024), 5863-5874

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL2416863L

University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

2y

‘&,
g,
T &

&
Ipapor®

The structure of graphs with extremal hyper-Wiener index

Hechao Liu?, Lihua You®”, Yufei Huang*

?Huangshi Key Laboratory of Metaverse and Virtual Simulation, School of Mathematics and Statistics, Hubei Normal University,
Huangshi, 435002, P. R. China
YSchool of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P. R. China
Department of Mathematics Teaching, Guangzhou Civil Aviation College, Guangzhou, 510403, P. R. China

Abstract. The hyper-Wiener index of a graph G is defined as WW(G) = % Y (dZG (u,v) +dg(u, v)), where
{u,0}CV(G)
dc(u, v) denotes the distance between 1 and v in G. In this paper, we determine the maximum hyper-Wiener

index of 2-connected graphs and 2-edge-connected graphs, which extends the result of Plesnik [On the sum
of all distances in a graph or digraph, J. Graph Theory 8 (1984) 1-21]. Then based on the above results,
we characterize the first two maximum graphs among the graphs with two vertices of odd degree, the
minimum graphs among the graphs with 2k (0 < k < [ 7]) vertices of odd degree, which extends the result

of Hou, Chen and Zhang [Hyper-Wiener index of Eulerian graphs, Appl. Math. J. Chin. Univ. 31 (2016)
248-252].

1. Introduction

The Wiener index is one of the oldest and most studied topological index from application and theoretical
viewpoints. As an extension of the Wiener index, the hyper-Wiener index is also an important topological
index.

Let G be a connected graph with vertex set V(G) and edge set E(G). The degree of vertex u in graph
G, denoted by d¢(u), is the number of edges incident to u. A pendent vertex is a vertex with degree one.
If a path v1v; - - - v is an induced sub-path of G with d¢(v1) > 3, dg(v2) = dg(vs) = -+ = dg(vk-1) = 2 and
dg(vr) = 1, then we call v10; - - - v is a pendent path of G.

The distance dg(u, v) between vertices u and v is the length of the shortest path between vertices  and v

in G. Let eccg(u) = max{dg(u, v)lv € V(G)} be the eccentricity of vertex u in G. The Wiener index of a graph
G is defined as [31]

WG = ). de(,0),

{u,0}CV(G)
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and the hyper-Wiener index of G is defined as [16, 26]

1
WWEG) =5 Y, @Ewo) +da(w,v).
{u,0}cV(G)

One can refer to [1, 3-6, 8, 10-14, 17, 20, 21, 24, 25, 28, 30, 33, 34] for the mathematical properties of the
hyper-Wiener index and its applications in chemistry.

Let Dg(u) = Y, dg(u,v)and DDg(u) = Y, dzc(u, v). Then hyper-Wiener index can also be written as
veV(G) veV(G)

WW(G) = ;(G)(DDG(M) + Dg(u)).
ue

We call a vertex u of a connected graph G with at least three vertices the cut-vertex if G—u is disconnected.
A block of a graph G is the maximal connected subgraph of G that has no cut-vertex [2]. An endblock of a
graph G is a block of G that contains only one cut-vertex of G. If v is a cut-vertex of G and H is a component
of G — v, then G[V(H) U {v}] is called a branch of G at v. A graph is called k-vertex-connected (k-connected
for short) if the graph is still connected whenever fewer than k vertices are removed. Similarly, a graph is
called k-edge-connected if the graph is still connected whenever fewer than k edges are removed.

Let G(n, 2k) be the set of the connected graphs with n vertices and 2k vertices of odd degree. If k = 0,
then G(n, 0) denotes the set of Eulerian graphs with n vertices. The research of extremal graph with given
the number of vertices of even/odd degree can be found in [7, 18, 19, 22, 27, 29]. We use |U]| to denote
the cardinality of the set U. We denote C,, P, and K, the cycle, path, and complete graph of order #,
respectively. In this paper, all notations and terminologies used but not defined can refer to Bondy and
Murty [2].

The remainder of this paper is organized as follows. In Section 2, we determine the maximum hyper-
Wiener index among 2-connected graphs and 2-edge-connected graphs. In Section 3, we determine the
first two maximum graphs among G(n, 2) with respect to the hyper-Wiener index, and in Section 4, we
determine the minimum graphs among G(, 2k) for 0 < k < | 7]. In Section 5, we conclude this paper and
propose an open problem.

2. The maximum values of 2-(edge)-connected graphs

In this section, we give some sharp upper bounds about the hyper-Wiener index among 2-connected
graphs and 2-edge-connected graphs. Firstly, we give a sharp upper bound for DD¢(v), where G is a
2-connected graph.

Lemma 2.1. [23] Let G be a 2-connected graph with |V (G)| = n. For any vertex v € V(G), we have D¢(v) < I_inzj.
Moreover, the equality holds for all vertices of G if and only if G = C,,.

Lemma 2.2. Let G be a 2-connected graph with |V(G)| = n. Suppose that v € V(G), eccg(v) = k and W; =
{x|d(v, x) = i}, w; = [Wj| for 0 < i < k. Then

Dw;=2for1<i<k-1;

@) k=<5l

Proof. On the contrary, we suppose that there exists 1 < i < k — 1 such that w; = 1. All paths from any
v(€ Wop) toany x € W; for i + 1 < j < k must through some vertex y; € W;. Then the unique vertex in W; is a
cut vertex, which is a contradiction since G is a 2-connected graph.

k
By wo = 1, wx > 1, and the result of (1), we haven =}, w; > 1+2(k-1) +1 =2k, thusk < [3]. O
i=0

Lemma 2.3. Let G be a 2-connected graph with |V(G)| = n. For any vertex v € V(G), we have

Sn(n®+2), if nis even;
DDg(v) <
Sn(n? = 1), if nisodd.

Moreover, the equalities hold for all vertices of G if and only if G = C,,.
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Proof. Letv € V(G), eccg(v) = kand W; = {x|d(v, x) = i}, w; = [W;|for 0 < i < k. Clearly, wp = 1, wx > 1, and by
k
Lemma2.2, wehavew; > 2for1 <i < k—landk < [%]. Since ¥ w; = nand DDg(v) = 1wy +2%w; +- - - +k*wy,

i=0
we have

DDc(w) = 12wy +2%w, + - - + KPwy
(12+224+ -+ (k=1 x2+Kn-1-2Kk-1))

IN

%k(k —1)QRk-1)+k*(n—-2k+1)
k-
Therefore &, = —4k* + 2kn + § > 0 for k < | ]. Thus

>

&

s = $5n(n* +2), if nis even;

DDg(v) <
o = Lnm?-1), if nisodd.

If the equality holds, then d(v) = 2 for any vertex v € V(G). Thus these upper bounds are achieved for all
ve V(G ifandonlyif G=C,. O

Lemma 2.4. [23] Let G be a 2-connected graph with |V(G)| = n. Then W(G) < in|in?], with equality if and only
if G =Cy.

By Lemmas 2.1 and 2.3, we have

Lemma 2.5. Let G be a 2-connected graph with |V(G)| = n. Then

w12 (n +1)(n +2), if nis even;
WW(G) <
41—871(11 +1)(n—-1)n+3), if nisodd,

with equality if and only if G = C,,.
For 2-edge-connected graph G, the following results are useful.

Lemma 2.6. [23] Let G be a 2-edge-connected graph with |V(G)| = n. For any vertex v € V(G), we have eccc(v) <
L2(2n — 2)], and the equality can be achieved.

Lemma 2.7. [23] Let G be a 2-edge-connected graph with |V(G)| = n. For any vertex v € V(G), we have Dg(v) <
L3 (n? — n)], and the equality can be achieved.

Theorem 2.8. Let G be a 2-edge-connected graph with |V(G)| = n. For any vertex v € V(G), we have DD¢(v) <
2—27(71 — 1)%(2n + 1), and the equality can be achieved.

Proof. Suppose that G is a 2-edge-connected graph and we make a mathematical induction on the number
of blocks.

Case 1. G is a block.

Since G is a block, G is a 2-connected graph. By Lemma 2.3, if # is even, then DD¢(v) < %n(n2 +2) <
Z(n—1)*(2n + 1) for n > 4; if n is odd, then DDg(v) < $n(n* - 1) < Z(n - 1)*(2n + 1) forn > 3.

Case 2. G has at least two blocks.

Let G; be an endblock of G, G, be the union of other blocks such that V(G;) N V(Gy) = {u}. For
convenience, we let V; = V(G;), n; = |Vl fori =1,2. Thenn; +n, — 1 = n.

Subcase 2.1. v € V(Gy).
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By the definition of DD¢(v), Lemmas 2.3, 2.6, 2.7 and the induction hypothesis, we have
DDg(v) = Zd (0, %) + Z &(v, )

xeVy xEVz\

= Y &en+ ) (dc<v, ) + dg(u, x))?
xeVy xeVo\{u}

= DDg@)+ Y, #@uw+ Y, dwwx+2 Y do(u)-de,)

xeVo\{u} xeVo\{u} xeVo\{u}

< DDg, (v) + (np — 1)(ecce, (v))2 + DDg, (1) + 2ecce, (v) - Dg, (1)
1 ]

< m +2)+(n2—1)( @ —2)) + oo (m = 122 + 1)
+2 (—(2n1 - 2)) (—(n% - nz))

= SmE 4D+ = m)m ~ 1+ (= m)2n 2m +9)

= 12n1 nl n—np)(ny 55 (1= m)*(2n = 2m
+—(n1 —1)(n—n)(n—ny +1).

If n1 > 4, we have % (n — 1)*(2n + 1) - DDg(0) > {513 — 512 — iny + % 2 0.

If n; = 3, then DDg, (v) < 2111(711 —1) = 2, we can similarly prove that 2 55 (n— 1)?(2n + 1) — DDg(v) > 0.
Subcase 2.2. v € V(Gy).
By the definition of DD¢(v), Lemmas 2.3, 2.6, 2.7 and the induction hypothesis, we have

DDc(v) = Zd (0, %) + Z (v, )
xeVs xeVi\{u}
= Z d> c(v,x) + Z (dc(v,u) + dg(u, x))
x€V, xeVy\{u}
= DDg,@)+ ), d@u+ Y duwx)+2 Y do@u)-do(u,x)
xeVi\{u} xeVi\{u} xeV7i\{u}
< DDg,(v) + (n1 — 1)(eccg, (v))2 + DDg, (1) + 2ecce,(v) - Dg, (1)
2 1 21
< Sn-12@m+ 1)+ (n - 1)(5(2712 - 2)) S5m0 +2)
1 1
2 (g(an - 2)) (§(n§ - nl))
2 ) 4 1
= 2—7(n—n1) 2n—-2m +3)+ §(n1—1)(n—n1) 12111(711 +2)
4
+—(n - nl)(nf - nq).
If ny > 4, we have Z(n — 1)>(2n + 1) - DDg(v) > {513 — 3n2 — in1 + % > 0.

If ny = 3, then DDg, (u) < 2nl(n1 —1) = 2, we can similarly prove that 2 55 (n— 1)?(2n + 1) = DD¢(v) > 0.
Combining the above arguments, we complete the proof. [J

Theorem 2.9. Let G be a 2-edge-connected graph with |V(G)| = n. Then
w2+ 1)(n +2), if nis even;
WW(G) <
whm+1)m—-1)(n+3), if nisodd,

with equality if and only if G = C,,.
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Proof. We can verify the conclusion directly for n < 5. Next we only consider n > 6. We make a mathematical
induction on the number of blocks.

Case 1. G is a block.

Since G is a block, then G is a 2-connected graph. By Lemma 2.5, the conclusion holds.

Case 2. G has at least two blocks.

Let G; be an endblock of G, G, be the union of other blocks such that V(G;) N V(G,) = {u}. For
convenience, we let V; = V(G;), n; = |V| for i = 1,2. Then ny + n, —1 = n. We choose the G; such that
n < %(n + 1). For convenience, we let ¢(x, y) = dc(x, y) + dzc(x, Y).

Subcase 2.1. 14 is even.

By the definition of DD(v), WW(G), Lemmas 2.1,2.3,2.5,2.7, Theorem 2.8 and the induction hypothesis,

we have WIW(G;) < g(m + 1)(mp +2) and

WWEG) = Y oy + Y oy + Y, oY)
it s il
= 2WWG)+2WWG)+ Y, Y )
xeVi\{u} yeVa\fu}
= 2WW(G) +2WW(G) + ) ((n2 = 1)(x, 1) + De,(u) + DDg, ()
xeVi\{u)
+2d(x, u) - Dg, (1))
= 2WW(Gy) + 2WW(Gz) + (n2 — 1)(Dg, (1) + DDg, (1))
+(7’11 - 1)(DG2(M) + DDGZ(M)) + 2DG1 (u) . DG2 (M)
Tl% n% Tl% n, -
< ﬂ(nl + 1)(n1 +2) + ﬂ(”Z + 1)(np +2) + (ny — 1)(Z + E(n1 +2))
1 2 1 1
+(m — 1)(5(”5 —np) + ﬁ(nz -1’y + 1)) +2- Z”? : g(”é — 1)
”% 1 2
= ﬂ(nl +1)(m +2) + ﬂ(n—nl +1)"m—m +2)(n—mn +3)
1, 1 ., 1
+(n — nl)(in1 + E”l(”l +2)) + 5(7’11 -DH(n-m)n-n;+1)
+22—7(n —m)*(nm — 1)2n - 2n1 +3) + %n%(n —ny)(n—ngy +1).
Thus 2WW(C,,) —2WW(G) > Zn(n+1)(n—1)(n +3) = 2WW(G) > &nm — 4n° + =nn? — tn’ny — Zn® —

Clearly, we have f; = 5i=(4n® + 3n*(4ny — 9) — 6n(3n? — 19n, + 7) — 16n° — 78n? + 114n; + 81), and
7 = 5= (12n% — 36nny + 114n — 48n% — 156n; + 114).
Since 4 < ny < ”T“, and the two roots of f;’ = 0 are x; = %(\/25112 +230n + 321 — 3n — 13) and x; =

(= V25n2 + 2301 + 321 — 3n — 13), then f; > min{f], fin)> 0. Thus fu = fi = gt —n?+In— 21 > 0for
n 6.

Subcase 2.2. 17 is odd.

Since WIV(Gq) < ﬁnl(nl +1)(11 —1)(n1 +3), similarly we have 2WW(C,,) -2WW(G) > 21—411(11 +1)(n—-1)(n+
3)2WW(G) > gy —ggnP+ e n®nd —gn?ny— en?—gennd+ Bnn?— Znn —in—gnt—End+ Lnl+in—1 £ g,,.

Clearly, we have g;, = 5z(4n® + 3n*(4ny — 9) — 6n(3n? — 19n1 + 7) — 16n° — 78n2 + 168n; + 108), and
gy = 2%—6(12;12 — 36nny + 114n — 48n7 — 1561, + 168).

Since 3 < n; < "T“, and the two roots of g, = 0 are x; = %(\/25112 +230n + 393 — 3n — 13) and
X = 2(— V2512 + 230n + 393 — 3n — 13), then g, > min{g;, g} > 0. Thus g, 2 f5 = And—Zn2+ 8Bp>0

forn>7.
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If n = 6, in this case, n; = 3. It is easy to calculate the hyper-Wiener index of these graphs are less than
the hyper-Wiener index of Cs.
Combining the above arguments, we complete the proof. [

It is clear that the results of Lemmas 2.3, 2.5 and Theorems 2.8, 2.9 generalize the results of [23] about
the Wiener index.

3. The maximum graphs with given number of vertices of odd degree

Recall that G(n, 2k) denotes the set of the connected graphs with n vertices and 2k vertices of odd degree.
For k = 0, Hou et al. [15] determined the maximum graphs among G(n, 0) (i.e. Eulerian graph) with respect
to the hyper-Wiener index is C,,.. For the continue, we consider the situation of k = 1, and we determine the
first two maximum graphs among G(n, 2) with respect to the hyper-Wiener index.

Lemma 3.1. [15] Let G and G — uv be connected graphs where uv € E(G), then WW(G) < WW(G — uv).
Lemma 3.2. [12] If T is a tree of order n, then WW(S,)) < WW(T) < WIW(P,,).

By Lemmas 3.1 and 3.2, we know P, has the maximum hyper-Wiener index among connected graphs
with n vertices. Since P, € G(n,2), we have the following result.

Proposition 3.3. Let G € G(n,2). Then WW(G) < WIW(P,) = ﬁn(n = 1)(n + 1)(n + 2), with equality if and only
ifG =P,

Let H,,, be the graph of order n obtained from C, and P,_, by adding one edge between one vertex of
C, and one pendent vertex of P,,_,.

Lemma 3.4. (Lemma 2.4 of[9]) Let a > 4, F be a connected graph with |V(F)| > 2. Suppose G is the graph obtained
from F and C, by identifying a vertex v(€ V(F)) and one vertex of C,; G is the graph obtained from F and H,3 by
identifying the same vertex v(€ V(F)) and the pendent vertex of H, 3. Then we have WW(G1) < WIW(Gy).

Lemma3.5. Let 3 <a <n—1 Then WW(H,.) < WW(H,3) = 5 (n* + 21> — 13n> + 10n + 24), with equality if
and only ifa = 3.

Proof. Let F = P,_4+1 and v be a pendent vertex of F. By Lemma 3.4, we have WW(H,,,) < WW(H,,3) =
A (n* +2n% — 13n% + 10n + 24), with equality if and only ifa = 3. O

Lemma 3.6. [27] Let G be a connected graph with |V(G)| = n, v € V(G) and dg(v) = t. Then Dg(v) < 3(n —2)(n —
3)+2for3<t<n-1

Lemma 3.7. Let G be a connected graph with |V(G)| = n, v € V(G) and dg(v) = t. Then DD¢(v) < %(n -3)(n—
2)2n—=5)+2for3<t<n-1

Proof. If dg(v) = t, then DDg(v) < 12Xt +22+ 3%+ -+ (-t = tn—Hn—t+1)2n -2t + 1)+t -1 <
tn-3)m-2)2n-5)+2for3<t<n-1. O
Similar to the proof of Lemmas 3.6 and 3.7 and 1 < dg(v) < n —1, we have

Lemma 3.8. Let G be a connected graph with |V(G)| = n and v € V(G). Then D¢(v) <
In(n —1)(2n — 1), with equality if and only if G = P, and v is a terminal vertex.

in(n — 1), DDg(v) <

Lemma 3.9. (Lemma 2.3 of[9]) Let G be a connected graph with a cut-vertex v such that Gy and G, are two
connected subgraphs of G having v as the only common vertex and G1 U G, = G. Let n; = |V(G))| fori = 1,2. Then

WW(G) = WW(Gr)+WW(Gy) + %(nl —1)(Dg,(v) + DDg, (v))

+%(n2 = 1)(Dg, (v) + DDg, (v)) + D, (v)Dg, (0).
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Lemma 3.10. Let G be a graph of order n with no isolated vertices. If G has exactly two vertices with odd degree and
G # P, then G contain at least one cycle.

Proof. By Handshaking Lemma, we have 2m(G) = ), dg(v)>1+1+2(n—-2)=2(n—-1). Thenm=n-1.
0eV(G)

If m = n — 1, then the degree sequence of Gis 1,1,2,2,--- , 2, it implies G = P,, a contradiction. Thus m > n

and G contains at least one cycle. [J

Lemma 3.11. Let G € G(n,2), x, y be the unique two vertices of odd degree in G with dg(x) = 1 and dg(y) = 3.
Then WW(G) < WW(H,,3), with equality if and only if G = H,;3.

Proof. The assertion can be verified directly for n = 4,5. We suppose the assertion holds for the graphs with
the number of vertices less than n, then we prove the assertion holds for the graphs with the number of
vertices equal to n.

Since x, y are the unique two vertices of odd degree of G with dg(x) = 1 and dg(y) > 3, then G has a
pendent path P. Without loss of generality, we suppose P = vx1x; - - - xp_ox with dg(v) > 3 and dg(x) = 1. Let
P; =P\ {v}, K=G\Pq1,|V(K))=a. Thena+b—-1=n.

By Lemma 3.9, we have

WW(G) = WW(K) + WW(P) + %(a —1)(Dp(v) + DDp(0))
+3(6 = 1)(Dx(o) + DDK(@) + D@D (o).

Let H; , be the simple connected graph obtained from H, 4 by adding an edge between one vertex of
degree three and one vertex of degree two.

If a = 3 or 4, then G contains at least one cycle by Lemma 3.10. Thus G = H, 3 ifa =3 and G € {H,,A,H:IA}
if 2 = 4. By Lemmas 3.1 and 3.5, we have WW(H;, ;) < WW(H,,4) < WW(H,3). Thus the conclusion holds.

Next, we consider the case of 5<a <n—1.

Case 1. There is no cut-edge in K.

In this case, K is a 2-edge-connected graph. By Lemma 2.7, Theorems 2.8 and 2.9, we have WW(K) <
w@%(@a+1)@a+2), WN(P) = 5;b(b—1)(b+1)(b+2), Dp(v) = 3b(b—1), DDp(v) = :b(b—1)(2b—1), Dx(v) < 3a(a—1),
DDk(v) < £(a—1)*(2a+1). Bya+b—1=n, we have

WW(G) < L%Saz(a +1)(a +2) + %b(b ~1)(b+1)(b +2) + %b(a ~1)(b-1)+1)
+514(b —~1)(9a(a — 1) +2(a — 1)>Qa + 1)) + %ab(a ~1)(b-1)
= 4%012({1+1)(a+2)+ i(n—a)(n—a+1)(n—a+2)(n—a+3)
+%(a —1)(n—a)(n—a+1)n+2) 1)
+$(n —a)(9a(a — 1) + 2(a — 1)*(2a + 1)).
Since WW(H,3) = o (n* + 21 — 1312 + 10 + 24), then

n2a n? 2na® 7na> na  25n
H. -)— 2 T T T A T et =t
WW(H3) =WWG) 2 = =~ + o~

and ¢} = 735 (36n%(2a— 1) — 12n(8a* — 14a + 3) + 20a° — 117a> — 20), @/ = 15 (60a* — 192na —234a + 72n* + 168n).

The tworoots of ]/ = Oare 01 = 5 (— V544n? + 1376n + 1521+32n+39), 02 = 5 ( V54412 + 1376n + 1521+
32n+39) with0< 60; <n-1<6,.
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Ifn>11,then5 <61 <n—-1<6and ¢y >0, ¢/ <0;if 6 <n <10, then0<0; <5<n-1<6,
and ¢7 <0, ¢/, < 0. Thus if n > 11, then ¢, is monotonically increasing in [5,6;] and monotonically
decreasing in [61,n — 1]. If n < 10, then ¢, is monotonically decreasing in [5, 7 — 1].

Since the monotonicity of the function ¢; and ¢z > 0 for n > 6, we know ¢, monotonically decreasing
in [5,n — 1] or ¢, first monotonically increasing and then monotonically decreasing in [5,n — 1]. Then
@, = min{@s, ¢,-1} for 5 <a <n-1. Since ¢5 > 0 and ¢,,—1 > 0 forn > 5, then ¢, > 0 for 5 <a <n—1. Thus
the conclusion holds.

Case 2. There exists at least one cut-edge in K.

In this case, v is not a vertex of odd degree of G. Without loss of generality, we let uw be a cut-edge
which is the farthest from v and dg (1, v) > dg(w, v). It is easy to know that another odd degree vertex except
vertex x is in H, where H is the union of branches of G \ {uw} containing u, then H is a 2-edge-connected
graph.

LetF =G\ (H\ {u}) and |V(H)| =p, IV(F)| = g. Thenp + q—1 = n. By Lemma 3.9, we have

WW(G) = WW(H) + WIW(F) + %(p — 1)(Dg(u) + DDg(u))
+ 3 = )(Ou) + DDy(w) + De()Dy(w).

We first prove the following claim.

Claim. WW(F) < WW(H,3).

Let F = F{ UPand F1 NP = {v}. Then F; has exactly two vertices u and v with odd degree, and dr, (1) = 1,
dr,(v) = 3. Let |V(F1)| =r. Thenr + b -1 = g, and we have

1
WW(F) = WW(F)+WW(P)+ E(r —1)(Dp(v) + DDp(v))
1
+§(b — 1)(Dr, (v) + DDr, (v)) + D, (v)Dp(v).

Since P is a path with b vertices and v is the terminal vertex of P, then WW(P) = ib(b DO +1)b+2),
Dp(v) = %b(b —1), DDp(v) = %b(b -1)(2b-1).

By Lemma 3.5 and the induction hypothesis, we have WW(F;) < WW(H,3) = 5 (* +2r° =131+ 10r + 24),

Since dr, (v) > 3, then by Lemmas 3.6 and 3.7, we have D, (v) < %(r —2)(r=3)+2,DDpr (v) < %(r —-2)(r—
3)(2r —5) +2. Thenby b +r—1 =g, we have

WW(F)

IA

1 4 1
g0t +2r - 1372 + 107 + 24) + 5300 =D+ Db +2)
+%b(r “DG-1DB+1)+ %(b D =1)(r=2)(r —3) +2(b - 1)
+ib(b —1)((r - 2)(r - 3) + 4)

1 1
= ﬂ(;»4+2;f3_13r2+10r+24)+ﬂ(q—r+1)(q—1’)(q—r+2)(q+3r—1)
+é(q -nr-1)F-2)(r-3)+2(q—-1)+ jI(q —7)(q -+ 1)(r* = 5r + 10).

Since WW(H,3) = % (q* + 24° — 134? + 10q + 24), then
WW(H,3) - WW(E) > ¢*r—3¢ —qr +4qr —3q—r* +3r 2 ¢),.

By dr,(v) 23 and r+b—1 =g, wehave 4 <r <gq. Since {4 = ;-1 = (9 —4)(g +1) > 0 for g > 5, then
WW(F) < WW(H,3). The claim holds.

By Theorems 2.8, 2.9 and the above claim, we have WW(H) < %pz(p +1D(p +2), WN(F) < WW(H,3) =
3 (q* +2¢° — 134 + 10q + 24). By Lemma 2.7 and Theorem 2.8, we have Dy(u) < ip(p — 1), DDy(u) <
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Z(p—1)*(2p+1). By Lemma 3.8, we have Dr(u) < 3g(q— 1), DDr(u) < 1q(9—1)(29—1). Thenbyp+q-1=n
and equation (2), we have

WW(G) < 4l8p2(p +1D)p+2)+ i(q4 + 2q3 - 13q2 +10g + 24) + %q(p - 1)(q2 -1)
#30=DGPE = 1)+ o5 (p =17+ D) + 2pap = g = 1)
_ 15 1. 4 3 3 3 2
= 48p(p+1)(p+2)+24((n p+1)*+2n-p+1)°-13(n-p+1)
+10(n —p +1) +24) + %(p -Dn-p+1)(n-p)(n+2) 3)

#2201 = p)OP(p = 1)+ 2p ~ 1 (2p + 1),

Comparing with the result of equation (1), we let a = p in equation (1), then (1) — (3) = %(n2 —-2np+n+
p?> —p—2) > 0forp <n—1. Thus we have WW(G) < WW(H,,3). This completes the proof. [

Lemma 3.12. Let G € G(n,2), G & Py, and x, y be the unique two vertices of odd degree in G with dg(x) = dg(y) = 1.
Then WW(G) < WW(H,,3).

Proof. Since x, y are the unique two vertices of odd degree in G and dg(x) = dg(y) = 1, then G has a pendent
path, say P = vx1x; - - - vp_ox where dg(v)(> 3) iseven and dg(x) = 1. Let Py = P\{v}, K = G\ P; and |[V(K)| = a.
Thena+b—-1 = n. Clearly, K € G(a,2) and v, y are the unique two vertices of odd degree in K with dx(v) > 3,
dx(y) = 1.

(%)y Lemma 3.11, we have WW(K) < WW(H,3) = »(a* + 24> — 134> + 10a + 24). We also know that
WW(P) = 5;b(b — 1)(b + 1)(b + 2), Dp(v) = 3b(b — 1), DDp(v1) = $b(b — 1)(2b — 1).

Since di(v) > 3 and Lemmas 3.6, 3.7, we have Dx(v) < $(a—2)(a—3)+2, DDk(v) < (a—2)(a—3)(2a—5)+2.

Thus by a +b—1 =n and Lemma 3.9, we have

WW(G) WW(K) + WW(P) + %(a — 1)(Dp(v) + DDp(0))

+3(b = D(Dx(o) + DDK(®) + Dx(©)Dp(0)

IN

1.4 3 2 1

ﬂ(a +2a° —13a +10a+24)+ﬂb(b—l)(b+1)(b+2)
+%b(a -DHE-1Db+1)+ %(b - 1)(%(51 -1D@-2)a-3)+4)
+ib(b -D((@a—-2)a-3)+4)

_ 1oy 3 _qn.2

= 24(a +2a° — 13a” + 10a + 24)
+§(n—a)(n—a+1)(n—a+2)(n+3a—1)
+%(n—a)(%(a—1)(a—2)(a—3)+4)

+}I(n —a)n—-a+1)((a-2)(a-3)+4).

Since WW(H,,3) = 5 (n* + 2n® — 131> + 101 + 24), then
WW(H,3) — WW(G) > na—3n*-na®+4na—3n—a*+3a2h,.

By dk(v) >3anda+b-1=¢g wehave4 <a<n-1.Sincehy = hy1 = (n—4)(n+1)>0forn >5, then
WW(G) < WW(H,,3), and we complete the proof. [
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Lemma 3.13. Let G € G(n,2), and x, y be the unique two vertices of odd degree in G, with dg(x) > 3, dg(y) = 3.
Then WW(G) < WIW(H,,3).

Proof. The assertion can be verified directly for n = 4,5. We suppose the assertion holds for the graphs with
the number of vertices less than n, then we prove the assertion holds for the graphs with the number of
vertices equal to n.

Case 1. There is no cut-edge in G.

Then G is a 2-edge-connected graph and G % C,,. Then we have WW(G) < WW(C,) = ﬁnz(n +1)(n +2).

WW(H,3) - WW(G) > WW(H,3) - WIW(C,)
_ L o4 3 _ 12,2 15
= 24(71 +2n° —13n° + 10n + 24) 4811 nm+1)n+2)

n* n® 7n* 5n
= — ==+ = > 5.
stw D +1>0forn>5
Case 2. There exists at least one cut-edge in G.
Without loss of generality, we let uw be one of end-cut edge and H the block of G \ {uw} containing u.

Let K=G\ (H\ {u}) and [V(H)| =4, [V(K)| = b. Thena + b —1 = n. By Lemma 3.9, we have
WW(G) = WW(H)+ WW(K) + %(a — 1)(Dk(u) + DDg(u))

#5(6 = 1)(Dy () + DDy () + Dy (D)

If a = 3 or 4, then H is a 2-connected graph. By Lemmas 2.1, 2.3 and 2.5, we have WW(H) < WIW(C,),
Dy(u) < Dc,(u), DDy(u) < DDc,(u). By Lemma 3.1 and the induction hypothesis, we have WW(K) <
WW(H3) < WW(Py). By Lemma 3.8, we have Dg(u) < Dp,(u), DDk(u) < DDp,(u). Thus WW(G) <
WW(H,,.) < WW(H,,3).

If a > 5, the H is a 2-edge-connected graph, thus WW(H) < A%Baz(a + 1)(a + 2). Since there are two
vertices with odd degree in K, say u and x, and dg (1) = 1, dx(x) = 3. By Lemma 3.11, we have WIW(K) <
WW(Hpz) = 5 (b* + 203 — 1367 + 10b + 24) < £b(b — 1)(b + 1)(b + 2) = WW(P;). By Lemma 2.7 and Theorem
2.8, we have Dy(u) < %a(a —1), DDg(u) < 2%({1 —1)*(2a + 1). By Lemma 3.8, we have Dx(u) < 3b(b — 1),
DDg(u) < %b(b —1)(2b — 1). The same calculation as Case 1 of Lemma 3.11, we have WW(G) < WW(H,, 3).

This completes the proof. [J

By Lemmas 3.11, 3.12 and 3.13, we determine the second maximum graph among G(n, 2) with respect
to hyper-Wiener index.

Theorem 3.14. Let G € G(n,2) and G ¢ P,,. Then
WW(G) < WIW(H,,3),

with equality if and only if G = H,, 3.

4. The minimum graphs with given number of vertices of odd degree

Recall that G(n, 2k) denotes the set of connected graphs with n vertices and 2k vertices of odd degree.
Let M; be the set of matching with / independent edges in K,,. Then K, \ M; € G(n, 2k), where | = kif n is odd,
I = 5 —kifnis even. In this section, we determine the minimum graphs among G(n, 2k) for any 0 < k < [ 5].

Theorem 4.1. Let G € G(n,2k). Then
WW(G) = WW(K;, \ M),

k, if nisodd
where | = , with equality if and only if G = K,, \ M.
5—k, if niseven
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Proof. Suppose that G € G(n, 2k), V(G) = {u1,ua, -+, un}, and ug, uy, - - - , uy are the vertices with odd degree.

Case 1. n is even.
For 1 <i <2k, we have dg(u;) <n—1and

Dc(ui) + DDg(u) > (1 +1+---+ 1)+ (12412 +--- +1%) =2n - 2.

n-1 n-1
For 2k +1 <i<n,wehave dg(u;) <n—2and

Dc(u;) + DDg(u) > 2+ 1414+ 1)+ 22+ 12+ 12+ - +1%) =2n + 2.
N— ———

—_——
n-2 n-2
Thus
WWG) = ;Y (Dc)+DDG)
0eV(G)
> jI(Zk(Zn ~2)+ (n-2k)2n +2))
1

= E(n2 +n — 4k),

with equality if and only if dg(u;) =n—1fori € {1,2,--- ,2k} and dg(u;) =n—2forie (2k+1,2k +2,---

ie, G =Ky \ Mz
Case 2. nis odd.
For 1 <i <2k, we have dg(1;) <n —2and

Dc(u;) + DD(1;) > R+ 1+1+ -+ 1)+ 22+ 12+ 12+ ---+ 1) =2n +2.
S———— S————
n-2 n-2

For 2k +1 <i<mn,wehave dg(u;) <n—-1and

Dc(u;) + DDg(u) > (1 + 1+ -+ 1)+ (12412 +--- +1%) =2n - 2.

n-1 n-1
Thus
WW(G)

Y, (Da(©) + DDG(@)
0eV(G)

> —(2kQ2n +2) + (n — 2K)(2n — 2))

R N [P N [

= E(n2 —n + 4k),

with equality if and only if dg(1;) =n—2fori € (1,2,--- ,2k} and dc(u;) =n—1fori e {2k+1,2k+2,---

ie,G=K,\ M. O
Let k = 0, we have the following result by Theorem 4.1.
Corollary 4.2. [15] Let G € G(n,0). Then
WW(G) = WW(K, \ My),
0, ifnisodd

where | = , with equality if and only if G = K, \ M;.
5, if niseven

,nj,
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5. Conclusions

In this paper, we determine the maximum hyper-Wiener index of 2-connected graphs and 2-edge-
connected graphs, which extends the result of Plesnik [On the sum of all distances in a graph or digraph,
J. Graph Theory 8 (1984) 1-21]. Then based on the above results, we characterize the first two maximum
graphs among the graphs with two vertices of odd degree, the minimum graphs among the graphs with
2k (0 < k < |5]) vertices of odd degree, which extends the result of Hou, Chen and Zhang [Hyper-Wiener
index of Eulerian graphs, Appl. Math. J. Chin. Univ. 31 (2016) 248-252]. The problem of characterizing the
maximum graphs among the graphs with given 2k(2 < k < | 7]) vertices of odd degree is still open.
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