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Abstract. Let a, b and k be nonnegative integers with 1 ≤ a ≤ b, and let G be a graph with vertex set V(G)
and edge set E(G). Then a spanning subgraph F of G is called an [a, b]-factor if a ≤ dF(v) ≤ b for any v ∈ V(G).
A graph G is said to be (a, b, k)-critical if G − D contains an [a, b]-factor for each subset D of k elements of
V(G). We use |E(G)| and ρ(G) to denote the size and spectral radius, respectively. In this paper, we establish
a lower bound on the size and spectral radius of a graph G to ensure that G is (a, b, k)-critical, respectively.

1. Introduction

In this article, we only discuss finite undirected graphs without loops or multiple edges. Let G be a
graph. We denote by V(G) and E(G) the vertex set and the edge set of G, respectively. For a vertex v ∈ V(G),
let NG(v) = {u ∈ V(G) : vu ∈ E(G)}. The cardinality of NG(v) is called the degree of v in G, which is denoted
by dG(v). The minimum degree of a vertex of G is denoted by δ(G). For X,Y ⊆ V(G), we denote by EG(X,Y)
the set of edges with one end in X and the other in Y, and write eG(X,Y) = |EG(X,Y)|. For any X ⊆ V(G), the
subgraph of G induced by X is denoted by G[X]. We write G − X for G[V(G) \ X]. For two graphs G1 and
G2, we denote by G1 ∪ G2 the disjoint union of G1 and G2. For any nonnegative integer t, let tG denote the
disjoint union of t copies of G. The join G1 ∨ G2 is derived from G1 ∪ G2 by joining each vertex of G1 with
each vertex of G2 by an edge. Let Kn denote the complete graph of order n.

Let V(G) = {v1, v2, . . . , vn}. The adjacency matrix A(G) = (ai j) of G is the n × n symmetric matrix, where
ai j = 1 if vi and v j are adjacent in G, zero otherwise. The largest eigenvalue of A(G), denoted by ρ(G), is
called the spectral radius of G.

Let a and b denote two positive integers with a ≤ b. Then a spanning subgraph F of G is called an
[a, b]-factor if a ≤ dF(v) ≤ b for any v ∈ V(G). In particular, when a = b = r, an [a, b]-factor is an r-factor.
A 1-factor is also called a perfect matching. A graph G is said to be (a, b, k)-critical if G − D contains an
[a, b]-factor for each subset D of k elements of V(G). An (r, r, k)-critical graph is called an (r, k)-critical graph.

In mathematical literature, the study on factors of graphs and factor-critical graphs attracted much
attention. Some sufficient conditions for graphs with r-factors were obtained by Enomoto, Jackson, Katerinis
and Saito [5], Katerinis [12], Nishimura [20], Niessen and Randerath [18], Gu [7]. Many researchers
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[11, 17, 23–25, 31, 33, 38–41] verified some conditions related to degree condition, neighborhood, the
number of isolated vertices, binding number, sun toughness, etc., for a graph to possess a [1, 2]-factor.
Much effort has been devoted to finding sufficient conditions for the existence of [a, b]-factors in graphs by
utilizing various graphic parameters such as neighborhood [10], independence number [29], eigenvalue
[28] and others [6, 26, 27, 30, 32, 35–37]. Cai, Favaron and Li [2], Enomoto [3] established a connection
between toughness and (2, k)-critical graphs, respectively. Enomoto and Hagita [4] showed a toughness
condition for the existence of (r, k)-critical graphs. Li and Wang [15] provided a necessary and sufficient
condition for a graph to be (a, b, k)-critical. Li [13, 14] derived some results on the existence of (a, b, k)-critical
graphs.

Very recently, O [21] established a close connection between the spectral radius and perfect matchings
of graphs. Zhou and Liu [34] gave a spectral radius for a graph with an odd [1, b]-factor. Motivated by
[15, 21] directly, it is natural and interesting to present some sufficient conditions to guarantee that a graph
is (a, b, k)-critical. Next, we focus on the sufficient conditions including the size or the spectral radius of
graphs. Our main results will be provided in the following.

Theorem 1.1. Let a, b and k be nonnegative integers with 1 ≤ a ≤ b and (a, b) , (1, 1), and let G be a
(k + 1)-connected graph of order n ≥ a + k + 1 and minimum degree δ(G) ≥ a + k. If

|E(G)| ≥
(
n − 1

2

)
+

a + 2k + 1
2

and b(n − k) ≡ 0 (mod 2) when a = b, then G is (a, b, k)-critical.

Theorem 1.2. Let a, b and k be nonnegative integers with 1 ≤ a ≤ b and (a, b) , (1, 1), and let G be a
(k + 1)-connected graph of order n ≥ a+ 2k + 1. If ρ(G) > ρ(Ka+2k−1 ∨ (Kn−a−2k ∪K1)) and b(n− k) ≡ 0 (mod 2)
when a = b, then G is (a, b, k)-critical.

2. Some preliminaries

For a given positive integer r and a pair X,Y of disjoint subsets of V(G), we call a component C of
G − (X ∪ Y) odd if r|V(C)| + eG(Y,V(C)) is odd. Let ω1(X,Y) denote the number of odd components of
G − (X ∪ Y). Write θG(X,Y) = r|X| − r|Y| +

∑
v∈Y

dG−X(v) − ω1(X,Y).

The following result is a necessary and sufficient condition for a graph to possess an r-factor and it was
derived by Tutte [22].

Lemma 2.1 (Tutte [22]). (i) A graph G contains an r-factor if and only if θG(X,Y) ≥ 0 for every pair X,Y of
disjoint subsets of V(G).

(ii) θG(X,Y) ≡ r|V(G)| (mod 2) for every pair X,Y of disjoint subsets of V(G).

Liu and Yu [16] presented the following characterization of (r, k)-critical graphs.

Lemma 2.2 (Liu and Yu [16]). Let r and k be integers with r ≥ 2 and k ≥ 0, and G be a graph of order
n ≥ r+ k+ 1. Then G is (r, k)-critical if and only if θG(X,Y) ≥ rk for every pair X,Y of disjoint subsets of V(G)
with |X| ≥ k.

Liu and Wang [15] showed a necessary and sufficient condition for a graph to be (a, b, k)-critical.

Lemma 2.3 (Liu and Wang [15]). Let a, b and k be nonnegative integers with 1 ≤ a < b, and G be a graph of
order n ≥ a + k + 1. Then G is (a, b, k)-critical if and only if for any X ⊆ V(G) with |X| ≥ k,

a−1∑
j=0

(a − j)p j(G − X) ≤ b|X| − bk

or
δG(X,Y) = b|X| − a|Y| +

∑
v∈Y

dG−X(v) ≥ bk,
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where p j(G − X) = |{v : dG−X(v) = j}| and Y = {v : v ∈ V(G) \ X, dG−X(v) ≤ a − 1}.

It is worthy to emphasize that Lemma 2.3 has its equivalent statement as follows.

Lemma 2.4. Let a, b and k be nonnegative integers with 1 ≤ a < b, and G be a graph of order n ≥ a + k + 1.
Then G is (a, b, k)-critical if and only if δG(X,Y) ≥ bk for every pair X,Y of disjoint subsets of V(G) with
|X| ≥ k.

Hong, Shu and Fang [8], Nikiforov [19] presented an important upper bound on the spectral radius
ρ(G).

Lemma 2.5 (Hong, Shu and Fang [8], Nikiforov [19]). Let G be a graph of order n with minimum degree
δ(G). Then

ρ(G) ≤
δ(G) − 1

2
+

√
2e(G) − nδ(G) +

(δ(G) + 1)2

4
.

The following observation is very useful when we use the above upper bound on ρ(G).

Proposition 2.6 (Hong, Shu and Fang [8], Nikiforov [19]). For a graph G of order n with e(G) ≤
(n

2
)
, the

function

f (x) =
x − 1

2
+

√
2e(G) − nx +

(x + 1)2

4

is decreasing with respect to x for 0 ≤ x ≤ n − 1.

Let A = (ai j)n×n and B = (bi j)n×n. Define A ≤ B if for any 1 ≤ i, j ≤ n, ai j ≤ bi j and A < B if A ≤ B and
A , B.

Lemma 2.7 (Berman and Plemmons [1], Horn and Johnson [9]). Let O be an n × n zero matrix, A = (ai j)
and B = (bi j) be two n × n matrices with the spectral radius ρ(A) and ρ(B), respectively. If O ≤ A ≤ B, then
ρ(A) ≤ ρ(B). Furthermore, if B is irreducible and O ≤ A < B, then ρ(A) < ρ(B).

3. The proof of Theorem 1.1

In this section, we provide a proof of Theorem 1.1, which claims a lower bound on the size for a graph
to be (a, b, k)-critical.

Proof of Theorem 1.1. For a pair X,Y of disjoint subsets of V(G) with |X| ≥ k, let

γG(X,Y) =


b|X| − a|Y| +

∑
v∈Y

dG−X(v) − ω1(X,Y), if b = a;

b|X| − a|Y| +
∑

v∈Y
dG−X(v), if b > a ≥ 1. (1)

Suppose to the contrary that G is not (a, b, k)-critical. Then it follows from (1), b(n− k) even, Lemmas 2.1
(ii), 2.2 and 2.4 that

γG(X,Y) ≤
{

bk − 2, if b = a;
bk − 1, if b > a ≥ 1 (2)

for some pair disjoint subsets X,Y of V(G). Subject to (2), we choose X and Y such that |X ∪ Y| is as large as
possible. Then we shall prove the following claims.

Claim 1. Let C1,C2, . . . ,Cl be the components of G − (X ∪ Y), where l is the number of components of
G − (X ∪ Y). If a = b, then |V(Ci)| ≥ 2 for any i ∈ {1, 2, . . . , l}.
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Proof. We verify Claim 1 by contradiction. Without loss of generality, let |V(Cl)| = 1. Write V(Cl) = {vl}. If
eG(vl,Y) ≤ a − 1, let Y′ = Y ∪ {vl}, then it follows from a = b, (1) and (2) that

γG(X,Y′) =b|X| − a|Y′| +
∑
v∈Y′

dG−X(v) − ω1(X,Y′)

≤b|X| − a(|Y| + 1) +
∑
v∈Y

dG−X(v) + eG(vl,Y) − (ω1(X,Y) − 1)

=γG(X,Y) + eG(vl,Y) − a + 1
≤γG(X,Y) ≤ bk − 2,

which contradicts the choice of |X ∪ Y|.

If eG(vl,Y) ≥ a, let X′ = X ∪ {vl}, then it follows from a = b, (1) and (2) that

γG(X′,Y) =b|X′| − a|Y| +
∑
v∈Y

dG−X′ (v) − ω1(X′,Y)

≤a(|X| + 1) − a|Y| +
∑
v∈Y

dG−X(v) − eG(vl,Y) − (ω1(X,Y) − 1)

=γG(X,Y) − eG(vl,Y) + a + 1
≤γG(X,Y) + 1 ≤ bk − 1.

In terms of b(n− k) even and Lemma 2.1 (ii), we possess γG(X′,Y) ≤ bk − 2, which contradicts the choice
of |X ∪ Y|. Claim 1 is verified. □

Claim 2. n ≥ a + k + 2.

Proof. By virtue of δ(G) ≥ a+ k, it follows that G is a complete graph when n = a+ k+ 1. Thus if n = a+ k+ 1,
then G is (a, b, k)-critical, which is a contradiction to the hypothesis. Hence we infer n ≥ a + k + 2. This
completes the proof of Claim 2. □

Claim 3. |X| ≥ k + 1.

Proof. Assume that |X| = k. We first verify Y , ∅. Note that G is (k+1)-connected. If Y = ∅, then ω1(X, ∅) ≤ 1.
Together with (1), we deduce

γG(X,Y) ≥
{

bk − 1, if b = a;
bk, if b > a ≥ 1,

which contradicts (2). Thus, we possess Y , ∅.

For b > a, it follows from (1) and δ(G) ≥ a+k that γG(X,Y) = b|X|−a|Y|+
∑

v∈Y
dG−X(v) ≥ bk+(δ(G)−k−a)|Y| ≥

bk, which is a contradiction to (2).

For b = a, we discuss the value of ω1(X,Y). If ω1(X,Y) ≤ 1, then from (1) and δ(G) ≥ a + k, we derive
γG(X,Y) = b|X| − a|Y| +

∑
v∈Y

dG−X(v) − ω1(X,Y) ≥ bk + (δ(G) − k − a)|Y| − 1 ≥ bk − 1, which contradicts (2)

when b = a. If ω1(X,Y) ≥ 2, then l ≥ 2. Recall that |E(G)| ≥
(n−1

2
)
+ a+2k+1

2 . Then there exist at most

n − a+2k+3
2 −

1
2

l∑
i=1
|V(Ci)|(n − k − |Y| − |V(Ci)|) edges not in EG(V(G) \ (X ∪ Y),Y) ∪ E(G[Y]). Combining this
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with (1), |X| = k, |Y| ≥ 1, b ≥ 2, Claims 1 and 2, we deduce

γG(X,Y) =b|X| − a|Y| +
∑
v∈Y

dG−X(v) − ω1(X,Y)

≥bk − a|Y| + (n − k − 1)|Y|

− 2

n −
a + 2k + 3

2
−

1
2

l∑
i=1

|V(Ci)|(n − k − |Y| − |V(Ci)|)

 − (n − k − |Y|)

≥bk − a|Y| + (n − k − 1)|Y| − 2

n −
a + 2k + 3

2
−

l∑
i=1

|V(Ci)|

 − (n − k − |Y|)

=bk − a|Y| + (n − k − 1)|Y| − 2
(
n −

a + 2k + 3
2

− (n − k − |Y|)
)
− (n − k − |Y|)

=bk + (n − a − k − 2)(|Y| − 1) + 1
≥bk + 1,

which contradicts (2) when b = a. Claim 3 is proved. □

The following proof will be divided into two cases by the value of |Y|.
Case 1. 0 ≤ |Y| ≤ b.

For b > a, it follows from (1), δ(G) ≥ a + k and Claim 3 that

γG(X,Y) =b|X| − a|Y| +
∑
v∈Y

dG−X(v)

≥b|X| − a|Y| + (δ(G) − |X|)|Y|
=(b − |Y|)|X| + (δ(G) − a)|Y|
≥(b − |Y|)(k + 1) + (δ(G) − a)|Y|
=bk + (b − |Y|) + (δ(G) − a − k)|Y|
≥bk,

which contradicts (2) when b > a.
For b = a, we argue the value of ω1(X,Y). If ω1(X,Y) ≤ 1, then by (1), (2), δ(G) ≥ a + k and Claim 3, we

possess

bk − 2 ≥γG(X,Y) = b|X| − a|Y| +
∑
v∈Y

dG−X(v) − ω1(X,Y)

≥b|X| − a|Y| + (δ(G) − |X|)|Y| − 1
=(b − |Y|)|X| + (δ(G) − a)|Y| − 1
≥(b − |Y|)(k + 1) + (δ(G) − a)|Y| − 1
=bk + (b − |Y|) + (δ(G) − a − k)|Y| − 1
≥bk − 1,

which is a contradiction. If ω1(X,Y) ≥ 2, then l ≥ 2. Next, we shall consider three subcases.
Subcase 1.1. |Y| = 0.

Note that |E(G)| ≥
(n−1

2
)
+ a+2k+1

2 . Then there exist at least 1
2

l∑
i=1
|V(Ci)|(n − |X| − |V(Ci)|) edges not in
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G[V(G) \ X]. In terms of Claim 1, we have

0 ≤
(
n
2

)
− |E(G)| −

1
2

l∑
i=1

|V(Ci)|(n − |X| − |V(Ci)|)

≤

(
n
2

)
−

(
n − 1

2

)
−

a + 2k + 1
2

−
1
2

l∑
i=1

|V(Ci)|(n − |X| − |V(Ci)|)

=n −
a + 2k + 3

2
−

1
2

l∑
i=1

|V(Ci)|(n − |X| − |V(Ci)|)

≤n −
a + 2k + 3

2
−

l∑
i=1

(n − |X| − |V(Ci)|)

=(l − 1)|X| − (l − 2)n −
a + 2k + 3

2
.

If l ≥ 3, then we derive n ≤ 2|X| − a+2k+3
2 . Together with (1), b ≥ 2 and Claim 3, we infer

γG(X, ∅) = b|X| − ω1(X, ∅)

≥

{
b|X| − 2 ≥ bk + b − 2 ≥ bk, if l = 2;
b|X| − (n − |X|) ≥ (b − 1)|X| + a+2k+3

2 ≥ (b − 1)(k + 1) + a+2k+3
2 > bk, if l ≥ 3,

which is a contradiction to (2) when b = a.
Subcase 1.2. |Y| = 1.

Recall that b = a, |E(G)| ≥
(n−1

2
)
+ a+2k+1

2 and ω1(X,Y) is the number of odd components of G− (X∪Y). We
deduce |E(Kn)| − |E(G)| − (ω1(X,Y) − 1) ≤

(n
2
)
−

((n−1
2
)
+ a+2k+1

2

)
− (ω1(X,Y) − 1) = n − b+2k+1

2 − ω1(X,Y). Then
there exist at most n − b+2k+1

2 − ω1(X,Y) edges not in EG(V(G) \ (X ∪ Y),Y). Thus, we obtain∑
v∈Y

dG−X(v) ≥(n − 1 − |X|) −
(
n −

b + 2k + 1
2

− ω1(X,Y)
)

=
b + 2k − 1

2
− |X| + ω1(X,Y).

Together with (1), b ≥ 2, |Y| = 1 and Claim 3, we deduce

γG(X,Y) =b|X| − a|Y| +
∑
v∈Y

dG−X(v) − ω1(X,Y)

≥b|X| − b +
b + 2k − 1

2
− |X| + ω1(X,Y) − ω1(X,Y)

=(b − 1)|X| −
b − 2k + 1

2

≥(b − 1)(k + 1) −
b − 2k + 1

2

=bk +
b − 3

2
>bk − 1,

which contradicts (2) when b = a.
Subcase 1.3. |Y| ≥ 2.

Recall that ω1(X,Y) is the number of odd components of G − (X ∪ Y). It follows from b = a and |E(G)| ≥(n−1
2
)
+ a+2k+1

2 that |E(Kn)| − |E(G)| − (ω1(X,Y)− 1) ≤
(n

2
)
−

((n−1
2
)
+ a+2k+1

2

)
− (ω1(X,Y)− 1) = n− b+2k+1

2 −ω1(X,Y),
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and so there exist at most n− b+2k+1
2 −ω1(X,Y) edges not in EG(V(G) \ (X∪Y),Y)∪E(G[Y]). Thus, we derive∑

v∈Y

dG−X(v) ≥ (n − 1 − |X|)|Y| − 2
(
n −

b + 2k + 1
2

− ω1(X,Y)
)
. (3)

Using (1), (3), b = a, ω1(X,Y) ≥ 2, Claims 2 and 3, we possess

γG(X,Y) =b|X| − a|Y| +
∑
v∈Y

dG−X(v) − ω1(X,Y)

≥b|X| − b|Y| + (n − 1 − |X|)|Y| − 2
(
n −

b + 2k + 1
2

− ω1(X,Y)
)
− ω1(X,Y)

=(b − |Y|)|X| + (n − b − 1)(|Y| − 2) + ω1(X,Y) − b + 2k − 1
≥(b − |Y|)(k + 1) + (k + 1)(|Y| − 2) − b + 2k + 1
=bk − 1,

which is a contradiction to (2) when b = a.
Case 2. |Y| ≥ b + 1.
Subcase 2.1. b > a, or b = a and ω1(X,Y) = 0.

We easily see that

n ≥ |X| + |Y| ≥ |X| + b + 1. (4)

In terms of |E(G)| ≥
(n−1

2
)
+ a+2k+1

2 , there exist at most n−1− a+2k+1
2 edges not in EG(V(G)\ (X∪Y),Y)∪E(G[Y]).

Thus, we get∑
v∈Y

dG−X(v) ≥ (n − 1 − |X|)|Y| − 2
(
n − 1 −

a + 2k + 1
2

)
. (5)

It follows from (1), (4), (5), b ≥ 2 and Claim 2 that

γG(X,Y) =b|X| − a|Y| +
∑
v∈Y

dG−X(v)

≥b|X| − a|Y| + (n − 1 − |X|)|Y| − 2
(
n − 1 −

a + 2k + 1
2

)
=b|X| + (n − a − 1 − |X|)|Y| − 2n + a + 2k + 3
≥b|X| + (n − a − 1 − |X|)(b + 1) − 2n + a + 2k + 3
=(b − 2)n + (n − |X| − b − 1) − ab + 2k + 3
≥(b − 2)(a + k + 2) − ab + 2k + 3
=bk + 2(b − a) − 1

≥

{
bk − 1, if b = a;
bk + 1, if b > a ≥ 1,

which contradicts (2).
Subcase 2.2. b = a and ω1(X,Y) ≥ 1.

It is obvious that

n ≥ |X| + |Y| + ω1(X,Y) ≥ |X| + b + 1 + ω1(X,Y). (6)

Recall that ω1(X,Y) is the number of odd components of G − (X ∪ Y). According to |E(G)| ≥
(n−1

2
)
+ a+2k+1

2 ,
We deduce |E(Kn)| − |E(G)| − (ω1(X,Y)− 1) ≤

(n
2
)
−

((n−1
2
)
+ a+2k+1

2

)
− (ω1(X,Y)− 1) = n− a+2k+1

2 −ω1(X,Y). Then
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there exist at most n − a+2k+1
2 − ω1(X,Y) edges not in EG(V(G) \ (X ∪ Y),Y) ∪ E(G[Y]). Thus, we obtain∑

v∈Y

dG−X(v) ≥ (n − 1 − |X|)|Y| − 2
(
n −

a + 2k + 1
2

− ω1(X,Y)
)
. (7)

By virtue of (1), (6), (7), a = b ≥ 2, |Y| ≥ b + 1 ≥ 3, ω1(X,Y) ≥ 1 and Claim 3, we deduce

γG(X,Y) =b|X| − a|Y| +
∑
v∈Y

dG−X(v) − ω1(X,Y)

≥b|X| − a|Y| + (n − 1 − |X|)|Y| − 2
(
n −

a + 2k + 1
2

− ω1(X,Y)
)
− ω1(X,Y)

=(b − 2)|X| + (n − a − 1 − |X|)(|Y| − 2) − a + 2k − 1 + ω1(X,Y)
≥(b − 2)|X| + (b − a + ω1(X,Y))(|Y| − 2) − a + 2k − 1 + ω1(X,Y)
≥(b − 2)(k + 1) − a + 2k + 1
=bk − 1,

which is a contradiction to (2) when b = a. This completes the proof of Theorem 1.1. □

4. The proof of Theorem 1.2

In this section, we are to verify Theorem 1.2, which provides a sufficient spectral condition to guarantee
that a graph is (a, b, k)-critical.

Proof of Theorem 1.2. Since the graph Kn−1 is a proper subgraph of the graph Ka+2k−1 ∨ (Kn−a−2k ∪ K1) and the
adjacency matrices of connected graphs are irreducible, it follows from Lemma 2.7 that

ρ(G) > ρ(Ka+2k−1 ∨ (Kn−a−2k ∪ K1)) > ρ(Kn−1) = n − 2. (8)

We are to prove the following claim.

Claim 1. δ(G) ≥ a + 2k.
Proof. Assume that δ(G) ≤ a + 2k − 1. Then there exists a vertex v ∈ V(G) such that dG(v) ≤ a + 2k − 1, which
implies that G ⊆ Ka+2k−1 ∨ (Kn−a−2k ∪ K1). In terms of Lemma 2.7, we deduce

ρ(G) ≤ ρ(Ka+2k−1 ∨ (Kn−a−2k ∪ K1)),

which is a contradiction to the condition thatρ(G) > ρ(Ka+2k−1∨(Kn−a−2k∪K1)). Hence we possess δ(G) ≥ a+2k.
This completes the proof of Claim 1. □

By virtue of Claim 1, Lemma 2.5 and Proposition 2.6, we derive

ρ(G) ≤
δ(G) − 1

2
+

√
2|E(G)| − nδ(G) +

(δ(G) + 1)2

4

≤
a + 2k − 1

2
+

√
2|E(G)| − n(a + 2k) +

(a + 2k + 1)2

4
. (9)

It follows from (8) and (9) that

n − 2 < ρ(G) ≤
a + 2k − 1

2
+

√
2|E(G)| − n(a + 2k) +

(a + 2k + 1)2

4
,

which leads to

|E(G)| >
(n − 1)(n − 2)

2
+

a + 2k
2
=

(
n − 1

2

)
+

a + 2k
2
.
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In view of the integrity of |E(G)|, we have

|E(G)| ≥
(
n − 1

2

)
+

a + 2k + 1
2

. (10)

By means of (10), Claim 1 and Theorem 1.1, we know that G is (a, b, k)-critical. This completes the proof
of Theorem 1.2. □
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[11] M. Kano, G. Y. Katona, Z. Király, Packing paths of length at least two, Discrete Math. 283 (2004), 129–135.
[12] P. Katerinis, Minimum degree of bipartite graphs and the existence of k-factors, Graphs Combin. 6 (1990), 253–258.
[13] J. Li, A new degree condition for graph to have [a, b]-factor, Discrete Math. 290 (2005), 99–103.
[14] J. Li, Sufficient conditions for graphs to be (a, b,n)-critical graphs, Mathematica Applicata (Wuhan) 17 (2004), 450–455.
[15] G. Liu, J. Wang, (a, b, k)-critical graphs, Advances in Mathematics (China) 27 (1998), 536–540.
[16] G. Liu, Q. Yu, k-factors and extendability with prescribed components, Congressus Numerantium 139 (1999), 77–88.
[17] H. Liu, Sun toughness and path-factor uniform graphs, RAIRO Oper. Res. 56 (2022), 4057–4062.
[18] T. Niessen, B. Randerath, Regular factors of simple regular graphs and factor-spectra, Discrete Math. 185 (1998), 89–103.
[19] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Comb. Probab. Comput. 11 (2002), 179–189.
[20] T. Nishimura, Independence number, connectivity and r-factors, J. Graph Theory 13 (1989), 63–69.
[21] S. O, Spectral radius and matchings in graphs, Linear Algebra Appl. 614 (2021), 316–324.
[22] W. T. Tutte, The factors of graphs, Can. J. Math. 4 (1952), 314–328.
[23] S. Wang, W. Zhang, Degree conditions for the existence of a {P2,P5}-factor in a graph, RAIRO Oper. Res. 57 (2023), 2231–2237.
[24] S. Wang, W. Zhang, Independence number, minimum degree and path-factors in graphs, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci.

Inf. Sci. 23 (2022), 229–234.
[25] S. Wang, W. Zhang, Isolated toughness for path factors in networks, RAIRO Oper. Res. 56 (2022), 2613–2619.
[26] S. Wang, W. Zhang, On k-orthogonal factorizations in networks, RAIRO Oper. Res. 55 (2021), 969–977.
[27] S. Wang, W. Zhang, Some results on star-factor deleted graphs, Filomat 38 (2024), 1101–1107.
[28] J. Wei, S. Zhang, Proof of a conjecture on the spectral radius condition for [a, b]-factors, Discrete Math. 346 (2023), 113269.
[29] J. Wu, A sufficient condition for the existence of fractional (1, f ,n)-critical covered graphs, Filomat 38 (2024), 2177–2183.
[30] S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs, Discrete Appl. Math. 323 (2022), 343–348.
[31] S. Zhou, Degree conditions and path factors with inclusion or exclusion properties, Bull. Math. Soc. Sci. Math. Roumanie 66 (2023), 3–14.
[32] S. Zhou, Q. Bian, Z. Sun, Two sufficient conditions for component factors in graphs, Discuss. Math. Graph Theory 43 (2023), 761–766.



S. Zhou et al. / Filomat 38:16 (2024), 5885–5894 5894

[33] S. Zhou, Some results on path-factor critical avoidable graphs, Discuss. Math. Graph Theory 43 (2023), 233–244.
[34] S. Zhou, H. Liu, Two sufficient conditions for odd [1, b]-factors in graphs, Linear Algebra Appl. 661 (2023), 149–162.
[35] S. Zhou, H. Liu, Y. Xu, A note on fractional ID-[a, b]-factor-critical covered graphs, Discrete Appl. Math. 319 (2022), 511–516.
[36] S. Zhou, Q. Pan, L. Xu, Isolated toughness for fractional (2, b, k)-critical covered graphs, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci.

Inf. Sci. 24 (2023), 11–18.
[37] S. Zhou, Z. Sun, H. Liu, Distance signless Laplacian spectral radius for the existence of path-factors in graphs, Aequationes Math. 98(3)

(2024), 727–737.
[38] S. Zhou, Z. Sun, Q. Bian, Isolated toughness and path-factor uniform graphs (II), Indian J. Pure Appl. Math. 54 (2023), 689–696.
[39] S. Zhou, Z. Sun, H. Liu, Some sufficient conditions for path-factor uniform graphs, Aequationes Math. 97 (2023), 489–500.
[40] S. Zhou, Z. Sun, F. Yang, A result on P≥3-factor uniform graphs, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 23 (2022),

3–8.
[41] S. Zhou, J. Wu, Q. Bian, On path-factor critical deleted (or covered) graphs, Aequationes Math. 96 (2022), 795–802.


