

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some properties of (a, b, k)-critical graphs

Sizhong Zhoua, Yuli Zhangb,*, Hongxia Liuc

^aSchool of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
 ^bSchool of Science, Dalian Jiaotong University, Dalian, Liaoning 116028, China
 ^cSchool of Mathematics and Information Sciences, Yantai University, Yantai, Shandong 264005, China

Abstract. Let a, b and k be nonnegative integers with $1 \le a \le b$, and let G be a graph with vertex set V(G) and edge set E(G). Then a spanning subgraph F of G is called an [a,b]-factor if $a \le d_F(v) \le b$ for any $v \in V(G)$. A graph G is said to be (a,b,k)-critical if G-D contains an [a,b]-factor for each subset D of k elements of V(G). We use |E(G)| and $\rho(G)$ to denote the size and spectral radius, respectively. In this paper, we establish a lower bound on the size and spectral radius of a graph G to ensure that G is (a,b,k)-critical, respectively.

1. Introduction

In this article, we only discuss finite undirected graphs without loops or multiple edges. Let G be a graph. We denote by V(G) and E(G) the vertex set and the edge set of G, respectively. For a vertex $v \in V(G)$, let $N_G(v) = \{u \in V(G) : vu \in E(G)\}$. The cardinality of $N_G(v)$ is called the degree of v in G, which is denoted by $d_G(v)$. The minimum degree of a vertex of G is denoted by $\delta(G)$. For $X, Y \subseteq V(G)$, we denote by $E_G(X, Y)$ the set of edges with one end in G and the other in G and write G and write G and G by joining each vertex of G with each vertex of G by an edge. Let G denote the complete graph of order G.

Let $V(G) = \{v_1, v_2, ..., v_n\}$. The adjacency matrix $A(G) = (a_{ij})$ of G is the $n \times n$ symmetric matrix, where $a_{ij} = 1$ if v_i and v_j are adjacent in G, zero otherwise. The largest eigenvalue of A(G), denoted by $\rho(G)$, is called the spectral radius of G.

Let a and b denote two positive integers with $a \le b$. Then a spanning subgraph F of G is called an [a,b]-factor if $a \le d_F(v) \le b$ for any $v \in V(G)$. In particular, when a = b = r, an [a,b]-factor is an r-factor. A 1-factor is also called a perfect matching. A graph G is said to be (a,b,k)-critical if G-D contains an [a,b]-factor for each subset D of k elements of V(G). An (r,r,k)-critical graph is called an (r,k)-critical graph.

In mathematical literature, the study on factors of graphs and factor-critical graphs attracted much attention. Some sufficient conditions for graphs with *r*-factors were obtained by Enomoto, Jackson, Katerinis and Saito [5], Katerinis [12], Nishimura [20], Niessen and Randerath [18], Gu [7]. Many researchers

2020 Mathematics Subject Classification. Primary 05C70; Secondary 05C50.

Keywords. graph; size; spectral radius; [*a*, *b*]-factor; (*a*, *b*, *k*)-critical graph.

Received: 04 August 2023; Accepted: 27 January 2024

Communicated by Paola Bonacini

^{*} Corresponding author: Yuli Zhang

[11, 17, 23–25, 31, 33, 38–41] verified some conditions related to degree condition, neighborhood, the number of isolated vertices, binding number, sun toughness, etc., for a graph to possess a [1,2]-factor. Much effort has been devoted to finding sufficient conditions for the existence of [a, b]-factors in graphs by utilizing various graphic parameters such as neighborhood [10], independence number [29], eigenvalue [28] and others [6, 26, 27, 30, 32, 35–37]. Cai, Favaron and Li [2], Enomoto [3] established a connection between toughness and (2, k)-critical graphs, respectively. Enomoto and Hagita [4] showed a toughness condition for the existence of (r, k)-critical graphs. Li and Wang [15] provided a necessary and sufficient condition for a graph to be (a, b, k)-critical. Li [13, 14] derived some results on the existence of (a, b, k)-critical graphs.

Very recently, O [21] established a close connection between the spectral radius and perfect matchings of graphs. Zhou and Liu [34] gave a spectral radius for a graph with an odd [1,b]-factor. Motivated by [15,21] directly, it is natural and interesting to present some sufficient conditions to guarantee that a graph is (a,b,k)-critical. Next, we focus on the sufficient conditions including the size or the spectral radius of graphs. Our main results will be provided in the following.

Theorem 1.1. Let a, b and k be nonnegative integers with $1 \le a \le b$ and $(a, b) \ne (1, 1)$, and let G be a (k + 1)-connected graph of order $n \ge a + k + 1$ and minimum degree $\delta(G) \ge a + k$. If

$$|E(G)| \ge {n-1 \choose 2} + \frac{a+2k+1}{2}$$

and $b(n - k) \equiv 0 \pmod{2}$ when a = b, then G is (a, b, k)-critical.

Theorem 1.2. Let a,b and k be nonnegative integers with $1 \le a \le b$ and $(a,b) \ne (1,1)$, and let G be a (k+1)-connected graph of order $n \ge a+2k+1$. If $\rho(G) > \rho(K_{a+2k-1} \lor (K_{n-a-2k} \cup K_1))$ and $b(n-k) \equiv 0 \pmod 2$ when a = b, then G is (a,b,k)-critical.

2. Some preliminaries

For a given positive integer r and a pair X, Y of disjoint subsets of V(G), we call a component C of $G - (X \cup Y)$ odd if $r|V(C)| + e_G(Y, V(C))$ is odd. Let $\omega_1(X, Y)$ denote the number of odd components of $G - (X \cup Y)$. Write $\theta_G(X, Y) = r|X| - r|Y| + \sum_{v \in Y} d_{G-X}(v) - \omega_1(X, Y)$.

The following result is a necessary and sufficient condition for a graph to possess an *r*-factor and it was derived by Tutte [22].

Lemma 2.1 (Tutte [22]). (i) A graph G contains an r-factor if and only if $\theta_G(X, Y) \ge 0$ for every pair X, Y of disjoint subsets of V(G).

(ii) $\theta_G(X, Y) \equiv r|V(G)| \pmod{2}$ for every pair X, Y of disjoint subsets of V(G).

Liu and Yu [16] presented the following characterization of (r, k)-critical graphs.

Lemma 2.2 (Liu and Yu [16]). Let r and k be integers with $r \ge 2$ and $k \ge 0$, and G be a graph of order $n \ge r + k + 1$. Then G is (r, k)-critical if and only if $\theta_G(X, Y) \ge rk$ for every pair X, Y of disjoint subsets of V(G) with $|X| \ge k$.

Liu and Wang [15] showed a necessary and sufficient condition for a graph to be (a, b, k)-critical.

Lemma 2.3 (Liu and Wang [15]). Let a, b and k be nonnegative integers with $1 \le a < b$, and G be a graph of order $n \ge a + k + 1$. Then G is (a, b, k)-critical if and only if for any $X \subseteq V(G)$ with $|X| \ge k$,

$$\sum_{j=0}^{a-1} (a-j)p_j(G-X) \le b|X| - bk$$

or

$$\delta_G(X,Y) = b|X| - a|Y| + \sum_{v \in Y} d_{G-X}(v) \geq bk,$$

where $p_j(G - X) = |\{v : d_{G-X}(v) = j\}|$ and $Y = \{v : v \in V(G) \setminus X, d_{G-X}(v) \le a - 1\}.$

It is worthy to emphasize that Lemma 2.3 has its equivalent statement as follows.

Lemma 2.4. Let a, b and k be nonnegative integers with $1 \le a < b$, and G be a graph of order $n \ge a + k + 1$. Then G is (a, b, k)-critical if and only if $\delta_G(X, Y) \ge bk$ for every pair X, Y of disjoint subsets of V(G) with $|X| \ge k$.

Hong, Shu and Fang [8], Nikiforov [19] presented an important upper bound on the spectral radius $\rho(G)$.

Lemma 2.5 (Hong, Shu and Fang [8], Nikiforov [19]). Let G be a graph of order n with minimum degree $\delta(G)$. Then

$$\rho(G) \leq \frac{\delta(G)-1}{2} + \sqrt{2e(G)-n\delta(G) + \frac{(\delta(G)+1)^2}{4}}.$$

The following observation is very useful when we use the above upper bound on $\rho(G)$.

Proposition 2.6 (Hong, Shu and Fang [8], Nikiforov [19]). For a graph G of order n with $e(G) \leq {n \choose 2}$, the function

$$f(x) = \frac{x-1}{2} + \sqrt{2e(G) - nx + \frac{(x+1)^2}{4}}$$

is decreasing with respect to x for $0 \le x \le n - 1$.

Let $A = (a_{ij})_{n \times n}$ and $B = (b_{ij})_{n \times n}$. Define $A \le B$ if for any $1 \le i, j \le n$, $a_{ij} \le b_{ij}$ and A < B if $A \le B$ and $A \ne B$.

Lemma 2.7 (Berman and Plemmons [1], Horn and Johnson [9]). Let O be an $n \times n$ zero matrix, $A = (a_{ij})$ and $B = (b_{ij})$ be two $n \times n$ matrices with the spectral radius $\rho(A)$ and $\rho(B)$, respectively. If $O \le A \le B$, then $\rho(A) \le \rho(B)$. Furthermore, if B is irreducible and $O \le A < B$, then $\rho(A) < \rho(B)$.

3. The proof of Theorem 1.1

In this section, we provide a proof of Theorem 1.1, which claims a lower bound on the size for a graph to be (a, b, k)-critical.

Proof of Theorem 1.1. For a pair X, Y of disjoint subsets of V(G) with $|X| \ge k$, let

$$\gamma_{G}(X,Y) = \begin{cases} b|X| - a|Y| + \sum_{v \in Y} d_{G-X}(v) - \omega_{1}(X,Y), & \text{if } b = a; \\ b|X| - a|Y| + \sum_{v \in Y} d_{G-X}(v), & \text{if } b > a \ge 1. \end{cases}$$
 (1)

Suppose to the contrary that G is not (a, b, k)-critical. Then it follows from (1), b(n - k) even, Lemmas 2.1 (ii), 2.2 and 2.4 that

$$\gamma_G(X,Y) \le \begin{cases} bk - 2, & \text{if } b = a; \\ bk - 1, & \text{if } b > a \ge 1 \end{cases}$$
 (2)

for some pair disjoint subsets X, Y of V(G). Subject to (2), we choose X and Y such that $|X \cup Y|$ is as large as possible. Then we shall prove the following claims.

Claim 1. Let $C_1, C_2, ..., C_l$ be the components of $G - (X \cup Y)$, where l is the number of components of $G - (X \cup Y)$. If a = b, then $|V(C_i)| \ge 2$ for any $i \in \{1, 2, ..., l\}$.

Proof. We verify Claim 1 by contradiction. Without loss of generality, let $|V(C_l)| = 1$. Write $V(C_l) = \{v_l\}$. If $e_G(v_l, Y) \le a - 1$, let $Y' = Y \cup \{v_l\}$, then it follows from a = b, (1) and (2) that

$$\begin{split} \gamma_G(X,Y') = &b|X| - a|Y'| + \sum_{v \in Y'} d_{G-X}(v) - \omega_1(X,Y') \\ \leq &b|X| - a(|Y|+1) + \sum_{v \in Y} d_{G-X}(v) + e_G(v_l,Y) - (\omega_1(X,Y)-1) \\ = &\gamma_G(X,Y) + e_G(v_l,Y) - a + 1 \\ \leq &\gamma_G(X,Y) \leq bk - 2, \end{split}$$

which contradicts the choice of $|X \cup Y|$.

If $e_G(v_l, Y) \ge a$, let $X' = X \cup \{v_l\}$, then it follows from a = b, (1) and (2) that

$$\begin{split} \gamma_G(X',Y) = & b|X'| - a|Y| + \sum_{v \in Y} d_{G-X'}(v) - \omega_1(X',Y) \\ \leq & a(|X|+1) - a|Y| + \sum_{v \in Y} d_{G-X}(v) - e_G(v_l,Y) - (\omega_1(X,Y)-1) \\ = & \gamma_G(X,Y) - e_G(v_l,Y) + a + 1 \\ \leq & \gamma_G(X,Y) + 1 \leq bk - 1. \end{split}$$

In terms of b(n-k) even and Lemma 2.1 (ii), we possess $\gamma_G(X',Y) \le bk-2$, which contradicts the choice of $|X \cup Y|$. Claim 1 is verified.

Claim 2. $n \ge a + k + 2$.

Proof. By virtue of $\delta(G) \ge a + k$, it follows that G is a complete graph when n = a + k + 1. Thus if n = a + k + 1, then G is (a, b, k)-critical, which is a contradiction to the hypothesis. Hence we infer $n \ge a + k + 2$. This completes the proof of Claim 2.

Claim 3. $|X| \ge k + 1$.

Proof. Assume that |X| = k. We first verify $Y \neq \emptyset$. Note that G is (k + 1)-connected. If $Y = \emptyset$, then $\omega_1(X, \emptyset) \leq 1$. Together with (1), we deduce

$$\gamma_G(X,Y) \geq \left\{ \begin{array}{ll} bk-1, & \text{if } b=a; \\ bk, & \text{if } b>a \geq 1, \end{array} \right.$$

which contradicts (2). Thus, we possess $Y \neq \emptyset$.

For b > a, it follows from (1) and $\delta(G) \ge a + k$ that $\gamma_G(X, Y) = b|X| - a|Y| + \sum_{v \in Y} d_{G-X}(v) \ge bk + (\delta(G) - k - a)|Y| \ge bk$, which is a contradiction to (2).

For b=a, we discuss the value of $\omega_1(X,Y)$. If $\omega_1(X,Y) \le 1$, then from (1) and $\delta(G) \ge a+k$, we derive $\gamma_G(X,Y)=b|X|-a|Y|+\sum\limits_{v\in Y}d_{G-X}(v)-\omega_1(X,Y)\ge bk+(\delta(G)-k-a)|Y|-1\ge bk-1$, which contradicts (2) when b=a. If $\omega_1(X,Y)\ge 2$, then b=a. Recall that $|E(G)|\ge {n-1\choose 2}+\frac{a+2k+1}{2}$. Then there exist at most $n-\frac{a+2k+3}{2}-\frac{1}{2}\sum\limits_{i=1}^{l}|V(C_i)|(n-k-|Y|-|V(C_i)|)$ edges not in $E_G(V(G)\setminus (X\cup Y),Y)\cup E(G[Y])$. Combining this

with (1), |X| = k, $|Y| \ge 1$, $b \ge 2$, Claims 1 and 2, we deduce

$$\begin{split} \gamma_G(X,Y) = &b|X| - a|Y| + \sum_{v \in Y} d_{G-X}(v) - \omega_1(X,Y) \\ \geq &bk - a|Y| + (n-k-1)|Y| \\ &- 2\left(n - \frac{a+2k+3}{2} - \frac{1}{2}\sum_{i=1}^{l}|V(C_i)|(n-k-|Y|-|V(C_i)|)\right) - (n-k-|Y|) \\ \geq &bk - a|Y| + (n-k-1)|Y| - 2\left(n - \frac{a+2k+3}{2} - \sum_{i=1}^{l}|V(C_i)|\right) - (n-k-|Y|) \\ = &bk - a|Y| + (n-k-1)|Y| - 2\left(n - \frac{a+2k+3}{2} - (n-k-|Y|)\right) - (n-k-|Y|) \\ = &bk + (n-a-k-2)(|Y|-1) + 1 \\ \geq &bk + 1, \end{split}$$

which contradicts (2) when b = a. Claim 3 is proved.

The following proof will be divided into two cases by the value of |Y|.

Case 1. $0 \le |Y| \le b$.

For b > a, it follows from (1), $\delta(G) \ge a + k$ and Claim 3 that

$$\begin{split} \gamma_G(X,Y) = &b|X| - a|Y| + \sum_{v \in Y} d_{G-X}(v) \\ \geq &b|X| - a|Y| + (\delta(G) - |X|)|Y| \\ = &(b - |Y|)|X| + (\delta(G) - a)|Y| \\ \geq &(b - |Y|)(k + 1) + (\delta(G) - a)|Y| \\ = &bk + (b - |Y|) + (\delta(G) - a - k)|Y| \\ \geq &bk, \end{split}$$

which contradicts (2) when b > a.

For b = a, we argue the value of $\omega_1(X, Y)$. If $\omega_1(X, Y) \le 1$, then by (1), (2), $\delta(G) \ge a + k$ and Claim 3, we possess

$$bk - 2 \ge \gamma_G(X, Y) = b|X| - a|Y| + \sum_{v \in Y} d_{G-X}(v) - \omega_1(X, Y)$$

$$\ge b|X| - a|Y| + (\delta(G) - |X|)|Y| - 1$$

$$= (b - |Y|)|X| + (\delta(G) - a)|Y| - 1$$

$$\ge (b - |Y|)(k + 1) + (\delta(G) - a)|Y| - 1$$

$$= bk + (b - |Y|) + (\delta(G) - a - k)|Y| - 1$$

$$\ge bk - 1,$$

which is a contradiction. If $\omega_1(X, Y) \ge 2$, then $l \ge 2$. Next, we shall consider three subcases. **Subcase 1.1.** |Y| = 0.

Note that $|E(G)| \ge {n-1 \choose 2} + \frac{a+2k+1}{2}$. Then there exist at least $\frac{1}{2} \sum_{i=1}^{l} |V(C_i)|(n-|X|-|V(C_i)|)$ edges not in

 $G[V(G) \setminus X]$. In terms of Claim 1, we have

$$0 \le \binom{n}{2} - |E(G)| - \frac{1}{2} \sum_{i=1}^{l} |V(C_i)|(n - |X| - |V(C_i)|)$$

$$\le \binom{n}{2} - \binom{n-1}{2} - \frac{a+2k+1}{2} - \frac{1}{2} \sum_{i=1}^{l} |V(C_i)|(n - |X| - |V(C_i)|)$$

$$= n - \frac{a+2k+3}{2} - \frac{1}{2} \sum_{i=1}^{l} |V(C_i)|(n - |X| - |V(C_i)|)$$

$$\le n - \frac{a+2k+3}{2} - \sum_{i=1}^{l} (n - |X| - |V(C_i)|)$$

$$= (l-1)|X| - (l-2)n - \frac{a+2k+3}{2}.$$

If $l \ge 3$, then we derive $n \le 2|X| - \frac{a+2k+3}{2}$. Together with (1), $b \ge 2$ and Claim 3, we infer

$$\begin{split} \gamma_G(X,\emptyset) &= b|X| - \omega_1(X,\emptyset) \\ &\geq \left\{ \begin{array}{ll} b|X| - 2 \geq bk + b - 2 \geq bk, & \text{if } l = 2; \\ b|X| - (n - |X|) \geq (b - 1)|X| + \frac{a + 2k + 3}{2} \geq (b - 1)(k + 1) + \frac{a + 2k + 3}{2} > bk, & \text{if } l \geq 3, \end{array} \right. \end{split}$$

which is a contradiction to (2) when b = a.

Subcase 1.2. |Y| = 1.

Recall that b = a, $|E(G)| \ge {n-1 \choose 2} + \frac{a+2k+1}{2}$ and $\omega_1(X,Y)$ is the number of odd components of $G - (X \cup Y)$. We deduce $|E(K_n)| - |E(G)| - (\omega_1(X,Y) - 1) \le {n \choose 2} - ({n-1 \choose 2} + \frac{a+2k+1}{2}) - (\omega_1(X,Y) - 1) = n - \frac{b+2k+1}{2} - \omega_1(X,Y)$. Then there exist at most $n - \frac{b+2k+1}{2} - \omega_1(X,Y)$ edges not in $E_G(V(G) \setminus (X \cup Y), Y)$. Thus, we obtain

$$\sum_{v \in Y} d_{G-X}(v) \ge (n-1-|X|) - \left(n - \frac{b+2k+1}{2} - \omega_1(X,Y)\right)$$
$$= \frac{b+2k-1}{2} - |X| + \omega_1(X,Y).$$

Together with (1), $b \ge 2$, |Y| = 1 and Claim 3, we deduce

$$\begin{split} \gamma_G(X,Y) = &b|X| - a|Y| + \sum_{v \in Y} d_{G-X}(v) - \omega_1(X,Y) \\ \geq &b|X| - b + \frac{b + 2k - 1}{2} - |X| + \omega_1(X,Y) - \omega_1(X,Y) \\ = &(b - 1)|X| - \frac{b - 2k + 1}{2} \\ \geq &(b - 1)(k + 1) - \frac{b - 2k + 1}{2} \\ = &bk + \frac{b - 3}{2} \\ > &bk - 1, \end{split}$$

which contradicts (2) when b = a.

Subcase 1.3. $|Y| \ge 2$.

Recall that $\omega_1(X, Y)$ is the number of odd components of $G - (X \cup Y)$. It follows from b = a and $|E(G)| \ge \binom{n-1}{2} + \frac{a+2k+1}{2}$ that $|E(K_n)| - |E(G)| - (\omega_1(X, Y) - 1) \le \binom{n}{2} - \binom{(n-1)}{2} + \frac{a+2k+1}{2} - (\omega_1(X, Y) - 1) = n - \frac{b+2k+1}{2} - \omega_1(X, Y)$,

and so there exist at most $n - \frac{b+2k+1}{2} - \omega_1(X, Y)$ edges not in $E_G(V(G) \setminus (X \cup Y), Y) \cup E(G[Y])$. Thus, we derive

$$\sum_{v \in Y} d_{G-X}(v) \ge (n - 1 - |X|)|Y| - 2\left(n - \frac{b + 2k + 1}{2} - \omega_1(X, Y)\right). \tag{3}$$

Using (1), (3), b = a, $\omega_1(X, Y) \ge 2$, Claims 2 and 3, we possess

$$\begin{split} \gamma_G(X,Y) = &b|X| - a|Y| + \sum_{v \in Y} d_{G-X}(v) - \omega_1(X,Y) \\ \geq &b|X| - b|Y| + (n-1-|X|)|Y| - 2\left(n - \frac{b+2k+1}{2} - \omega_1(X,Y)\right) - \omega_1(X,Y) \\ = &(b-|Y|)|X| + (n-b-1)(|Y|-2) + \omega_1(X,Y) - b + 2k - 1 \\ \geq &(b-|Y|)(k+1) + (k+1)(|Y|-2) - b + 2k + 1 \\ = &bk - 1. \end{split}$$

which is a contradiction to (2) when b = a.

Case 2. $|Y| \ge b + 1$.

Subcase 2.1. b > a, or b = a and $\omega_1(X, Y) = 0$.

We easily see that

$$n \ge |X| + |Y| \ge |X| + b + 1. \tag{4}$$

In terms of $|E(G)| \ge {n-1 \choose 2} + \frac{a+2k+1}{2}$, there exist at most $n-1-\frac{a+2k+1}{2}$ edges not in $E_G(V(G) \setminus (X \cup Y), Y) \cup E(G[Y])$. Thus, we get

$$\sum_{v \in Y} d_{G-X}(v) \ge (n - 1 - |X|)|Y| - 2\left(n - 1 - \frac{a + 2k + 1}{2}\right). \tag{5}$$

It follows from (1), (4), (5), $b \ge 2$ and Claim 2 that

$$\begin{split} \gamma_G(X,Y) = &b|X| - a|Y| + \sum_{v \in Y} d_{G-X}(v) \\ \geq &b|X| - a|Y| + (n-1-|X|)|Y| - 2\left(n-1-\frac{a+2k+1}{2}\right) \\ = &b|X| + (n-a-1-|X|)|Y| - 2n+a+2k+3 \\ \geq &b|X| + (n-a-1-|X|)(b+1) - 2n+a+2k+3 \\ = &(b-2)n + (n-|X|-b-1) - ab+2k+3 \\ \geq &(b-2)(a+k+2) - ab+2k+3 \\ = &bk+2(b-a)-1 \\ \geq &\begin{cases} bk-1, & \text{if } b=a; \\ bk+1, & \text{if } b>a \geq 1, \end{cases} \end{split}$$

which contradicts (2).

Subcase 2.2. *b* = *a* and $\omega_1(X, Y) \ge 1$.

It is obvious that

$$n \ge |X| + |Y| + \omega_1(X, Y) \ge |X| + b + 1 + \omega_1(X, Y). \tag{6}$$

Recall that $\omega_1(X, Y)$ is the number of odd components of $G - (X \cup Y)$. According to $|E(G)| \ge \binom{n-1}{2} + \frac{a+2k+1}{2}$, We deduce $|E(K_n)| - |E(G)| - (\omega_1(X, Y) - 1) \le \binom{n}{2} - \binom{n-1}{2} + \frac{a+2k+1}{2} - (\omega_1(X, Y) - 1) = n - \frac{a+2k+1}{2} - \omega_1(X, Y)$. Then

there exist at most $n - \frac{a+2k+1}{2} - \omega_1(X, Y)$ edges not in $E_G(V(G) \setminus (X \cup Y), Y) \cup E(G[Y])$. Thus, we obtain

$$\sum_{v \in Y} d_{G-X}(v) \ge (n - 1 - |X|)|Y| - 2\left(n - \frac{a + 2k + 1}{2} - \omega_1(X, Y)\right). \tag{7}$$

By virtue of (1), (6), (7), $a = b \ge 2$, $|Y| \ge b + 1 \ge 3$, $\omega_1(X, Y) \ge 1$ and Claim 3, we deduce

$$\begin{split} \gamma_G(X,Y) = &b|X| - a|Y| + \sum_{v \in Y} d_{G-X}(v) - \omega_1(X,Y) \\ \geq &b|X| - a|Y| + (n-1-|X|)|Y| - 2\left(n - \frac{a+2k+1}{2} - \omega_1(X,Y)\right) - \omega_1(X,Y) \\ = &(b-2)|X| + (n-a-1-|X|)(|Y|-2) - a+2k-1 + \omega_1(X,Y) \\ \geq &(b-2)|X| + (b-a+\omega_1(X,Y))(|Y|-2) - a+2k-1 + \omega_1(X,Y) \\ \geq &(b-2)(k+1) - a+2k+1 \\ = &bk-1, \end{split}$$

which is a contradiction to (2) when b = a. This completes the proof of Theorem 1.1.

4. The proof of Theorem 1.2

In this section, we are to verify Theorem 1.2, which provides a sufficient spectral condition to guarantee that a graph is (a, b, k)-critical.

Proof of Theorem 1.2. Since the graph K_{n-1} is a proper subgraph of the graph $K_{a+2k-1} \vee (K_{n-a-2k} \cup K_1)$ and the adjacency matrices of connected graphs are irreducible, it follows from Lemma 2.7 that

$$\rho(G) > \rho(K_{n+2k-1} \lor (K_{n-n-2k} \cup K_1)) > \rho(K_{n-1}) = n-2.$$
(8)

We are to prove the following claim.

Claim 1. $\delta(G) \geq a + 2k$.

Proof. Assume that $\delta(G)$ ≤ a + 2k − 1. Then there exists a vertex $v \in V(G)$ such that $d_G(v)$ ≤ a + 2k − 1, which implies that $G \subseteq K_{a+2k-1} \lor (K_{n-a-2k} \cup K_1)$. In terms of Lemma 2.7, we deduce

$$\rho(G) \leq \rho(K_{a+2k-1} \vee (K_{n-a-2k} \cup K_1)),$$

which is a contradiction to the condition that $\rho(G) > \rho(K_{a+2k-1} \lor (K_{n-a-2k} \cup K_1))$. Hence we possess $\delta(G) \ge a+2k$. This completes the proof of Claim 1.

By virtue of Claim 1, Lemma 2.5 and Proposition 2.6, we derive

$$\rho(G) \le \frac{\delta(G) - 1}{2} + \sqrt{2|E(G)| - n\delta(G) + \frac{(\delta(G) + 1)^2}{4}} \\
\le \frac{a + 2k - 1}{2} + \sqrt{2|E(G)| - n(a + 2k) + \frac{(a + 2k + 1)^2}{4}}.$$
(9)

It follows from (8) and (9) that

$$n-2<\rho(G)\leq \frac{a+2k-1}{2}+\sqrt{2|E(G)|-n(a+2k)+\frac{(a+2k+1)^2}{4}},$$

which leads to

$$|E(G)| > \frac{(n-1)(n-2)}{2} + \frac{a+2k}{2} = \binom{n-1}{2} + \frac{a+2k}{2}.$$

In view of the integrity of |E(G)|, we have

$$|E(G)| \ge \binom{n-1}{2} + \frac{a+2k+1}{2}.$$
 (10)

By means of (10), Claim 1 and Theorem 1.1, we know that G is (a, b, k)-critical. This completes the proof of Theorem 1.2.

Data availability statement

My manuscript has no associated data.

Declaration of competing interest

The authors declare that they have no conflicts of interest to this work.

Acknowledgments

The authors would like to express their sincere gratitude to the anonymous referee for his/her very careful reading of the paper and for insightful comments and valuable suggestions, which improved the presentation of this paper. Project ZR2023MA078 supported by Shandong Provincial Natural Science Foundation.

References

- [1] A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
- [2] M. Cai, O. Favaron, H. Li, (2, k)-factor-critical graphs and toughness, Graphs Combin. 15 (1999), 137–142.
- [3] H. Enomoto, Toughness and the existence of k-factors (III), Discrete Math. 189 (1998), 277–282.
- [4] H. Enomoto, M. Hagita, Toughness and the existence of k-factors (IV), Discrete Math. 216 (2000), 111–120.
- [5] H. Enomoto, B. Jackson, P. Katerinis, A. Saito, Tougliness and the existence of k-factors, J. Graph Theory 9 (1985), 87–95.
- [6] W. Gao, W. Wang, Y. Chen, Tight isolated toughness bound for fractional (k, n)-critical graphs, Discrete Appl. Math. 322 (2022), 194–202.
- [7] X. Gu, Regular factors and eigenvalues of regular graphs, European J. Combin. 42 (2014), 15–25.
- [8] Y. Hong, J. Shu, K. Fang, A sharp upper bound of the spectral radius of graphs, J. Comb. Theory, Ser. B 81 (2001), 177–183.
- [9] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, 1986.
- [10] M. Kano, A sufficient condition for a graph to have [a, b]-factors, Graphs Combin. 6 (1990), 245–251.
- [11] M. Kano, G. Y. Katona, Z. Király, Packing paths of length at least two, Discrete Math. 283 (2004), 129-135.
- [12] P. Katerinis, Minimum degree of bipartite graphs and the existence of k-factors, Graphs Combin. 6 (1990), 253–258.
- [13] J. Li, A new degree condition for graph to have [a, b]-factor, Discrete Math. 290 (2005), 99–103.
- [14] J. Li, Sufficient conditions for graphs to be (a, b, n)-critical graphs, Mathematica Applicata (Wuhan) 17 (2004), 450–455.
- [15] G. Liu, J. Wang, (a, b, k)-critical graphs, Advances in Mathematics (China) 27 (1998), 536–540.
- [16] G. Liu, Q. Yu, k-factors and extendability with prescribed components, Congressus Numerantium 139 (1999), 77–88.
- [17] H. Liu, Sun toughness and path-factor uniform graphs, RAIRO Oper. Res. 56 (2022), 4057–4062.
- [18] T. Niessen, B. Randerath, Regular factors of simple regular graphs and factor-spectra, Discrete Math. 185 (1998), 89–103.
- [19] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Comb. Probab. Comput. 11 (2002), 179-189.
- [20] T. Nishimura, Independence number, connectivity and r-factors, J. Graph Theory 13 (1989), 63-69.
- [21] S. O, Spectral radius and matchings in graphs, Linear Algebra Appl. 614 (2021), 316–324.
- [22] W. T. Tutte, *The factors of graphs*, Can. J. Math. **4** (1952), 314–328.
- [23] S. Wang, W. Zhang, Degree conditions for the existence of a {P₂, P₅}-factor in a graph, RAIRO Oper. Res. 57 (2023), 2231–2237.
- [24] S. Wang, W. Zhang, Independence number, minimum degree and path-factors in graphs, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 23 (2022), 229–234.
- [25] S. Wang, W. Zhang, Isolated toughness for path factors in networks, RAIRO Oper. Res. 56 (2022), 2613–2619.
- [26] S. Wang, W. Zhang, On k-orthogonal factorizations in networks, RAIRO Oper. Res. 55 (2021), 969–977.
- [27] S. Wang, W. Zhang, Some results on star-factor deleted graphs, Filomat 38 (2024), 1101–1107.
- [28] J. Wei, S. Zhang, Proof of a conjecture on the spectral radius condition for [a,b]-factors, Discrete Math. 346 (2023), 113269.
- [29] J. Wu, A sufficient condition for the existence of fractional (g, f, n)-critical covered graphs, Filomat 38 (2024), 2177–2183.
- [30] S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs, Discrete Appl. Math. 323 (2022), 343–348.
- [31] S. Zhou, Degree conditions and path factors with inclusion or exclusion properties, Bull. Math. Soc. Sci. Math. Roumanie **66** (2023), 3–14. [32] S. Zhou, Q. Bian, Z. Sun, Two sufficient conditions for component factors in graphs, Discuss. Math. Graph Theory **43** (2023), 761–766.

- [33] S. Zhou, Some results on path-factor critical avoidable graphs, Discuss. Math. Graph Theory 43 (2023), 233–244.
 [34] S. Zhou, H. Liu, Two sufficient conditions for odd [1, b]-factors in graphs, Linear Algebra Appl. 661 (2023), 149–162.
- [35] S. Zhou, H. Liu, Y. Xu, A note on fractional ID-[a, b]-factor-critical covered graphs, Discrete Appl. Math. 319 (2022), 511-516.
- [36] S. Zhou, Q. Pan, L. Xu, Isolated toughness for fractional (2, b, k)-critical covered graphs, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 24 (2023), 11-18.
- [37] S. Zhou, Z. Sun, H. Liu, Distance signless Laplacian spectral radius for the existence of path-factors in graphs, Aequationes Math. 98(3) (2024), 727–737.
- [38] S. Zhou, Z. Sun, Q. Bian, Isolated toughness and path-factor uniform graphs (II), Indian J. Pure Appl. Math. 54 (2023), 689-696.
- [39] S. Zhou, Z. Sun, H. Liu, Some sufficient conditions for path-factor uniform graphs, Aequationes Math. 97 (2023), 489–500.
- [40] S. Zhou, Z. Sun, F. Yang, A result on $P_{\geq 3}$ -factor uniform graphs, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 23 (2022),
- [41] S. Zhou, J. Wu, Q. Bian, On path-factor critical deleted (or covered) graphs, Aequationes Math. 96 (2022), 795–802.