Filomat 38:16 (2024), 5591-5604
https://doi.org/10.2298/FIL2416591W

(S
&

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

o

%
<,

b, &

Ty xS’

5
TIprpor®

Boundness of some multilinear fractional integral operators in
generalized Morrey spaces on stratified Lie groups

Jianglong Wu?*, Xiaojiao Tian®

?Department of Mathematics, Mudanjiang Normal University, Mudanjiang 157011, China

Abstract. In this paper, the main aim is to consider the Spanne-type boundedness of the multilinear

fractional integral operator 7,, and multilinear fractional maximal operator M, in the generalized
Morrey spaces over some stratified Lie group G.

1. Introduction and main results

Stratified groups appear in quantum physics and many parts of mathematics, including several complex
variables, Fourier analysis, geometry, and topology [6, 24]. The geometry structure of stratified groups is
so good that it inherits a lot of analysis properties from the Euclidean spaces [9, 23]. Apart from this,
the difference between the geometry structures of Euclidean spaces and stratified groups makes the study
of function spaces on them more complicated. However, many harmonic analysis problems on stratified
Lie groups deserve a further investigation since most results of the theory of Fourier transforms and
distributions in Euclidean spaces cannot yet be duplicated [13, 19, 26].

Nowadays, more and more attention has been paid to the study of function spaces which arise in the
context of groups, such as variable Lebesgue spaces[19, 20], Orlicz spaces [13] and generalized Morrey
spaces [12] et al. And Morrey spaces were originally introduced by Morrey in [21] to study the local
behavior of solutions to second-order elliptic partial differential equations.

The multilinear fractional integral operators were first studied by Grafakos [8], followed by Kenig and
Stein [18] et al. The importance of fractional integral operators is due to the fact that they have been widely
used in various areas, such as potential analysis, harmonic analysis, and partial differential equations and
so on[25].

Let G be a stratified group. According to the definition of the classical multilinear fractional integral

operator, the multilinear fractional integral operator 7, ,, on stratified groups (also see [19]) can be defined
by

2 Siya) -+ fun(ym)
jam =
() G (p(y;lx) + o4 p(yptx)yme-e

dy, 0 <a<mQ,
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and the multilinear fractional maximal operator M, ,, is defined as follows

Mam(f3(x) = sup |B|&

m
BcG i=1

1
1 f fiyldys 0<a<mO,
Bl Jg

where the supremum is taken over all G-balls B (see the notion in Section 2) containing x with radius
r > 0, |B| is the Haar measure of the G-ball B, Q is the homogeneous dimension of G, and vector function

-

f=(fi, f2,..., fm) is locally integrable on G.

If we take m = 1, then 7, ,, is a natural generalization of the classical fractional integral operator I, = 71,
and the classical fractional maximal function M, = M, coincides for @ = 0 with the Hardy-Littlewood
maximal function M = M.

A Carnot group, which also known as stratified Lie group, is a connected, simply connected, nilpotent
Lie group with stratified Lie algebra [7] (see Section 2 below).

In 2013, Guliyev et al. [14] proved the boundedness of the fractional maximal operator M, ,, withm =1
in the generalized Morrey spaces LP?(G) (see the definition below) on any Carnot group G. In 2017, Eroglu
et al. [3] studied the boundedness of the fractional integral operator 7, , with m = 1 in the generalized
Morrey spaces LP?(G) on Carnot group G. In 2014, Guliyev and Ismayilova [15] obtained the boundedness
of My, and I,,, on product generalized Morrey spaces with G = R". And in recently, Liu et al. [19]
considered the multilinear fractional integral 7, ,, in variable Lebesgue spaces on stratified groups.

Inspired by the above literature, the purpose of this paper is to study the Spanne-type boundedness of
the multilinear fractional integral operator 7, ,, and multilinear fractional maximal operator M, ,, in the
generalized Morrey spaces over some stratified Lie group G. In all cases, the conditions for the boundedness
of 7, are given in terms of Zygmund-type integral inequalities on (¢, ..., @, ) and the conditions for
the boundedness of M, ,, are given in terms of supremal type inequalities on (¢, ..., @, ), which do not
assume any assumption on monotonicity of ¢1,..., ¢, and P inr.

Our main result can be stated as follows.

The first result gives the Spanne-type boundedness of multilinear fractional integral operator 7, on
product generalized Morrey space.

Theorem 1.1. Let G be a stratified Lie group. Suppose that m € Z+,0 < a; < Q, 1 <pi < Q/a; (1 =1,2,...,m)
m

and o = }, av;. Let q satisfy
i=1

1 1 1 a

-—=—4-+—-=x1,
q p pm Q
and (@1, ..., Qm, ) satisfy

m oo €SS inf ;(x, 5)s/Pi dt
<§<0o0

| f o7 <Cdn, (L)

i=

q pl
T o 18 bounded from product space LP»?1(G) X - - - X LPn%n(G) to LY (G).

m
where C > 0 does not depend onr > 0and x € G,and 1 = ql with ql =1_ % (i=1,2,...,m). Then the operator
i=1 " !

The following result gives the Spanne-type boundedness of multilinear fractional maximal operator
M, on product generalized Morrey space.

Theorem 1.2. Let G be a stratified Lie group. Suppose that m € Z*,0 < a; < Q, 1 <p;i < Q/a; 1 =1,2,...,m)
m

and a = Y, a;. Let q satisfy
i=1

1 1 1
_:_+...+__ﬁ<1,

9 m pm Q
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and (@1, ..., Qm, ) satisfy

m ess inf @;(x, s)s/Pi
<s§<00
H sup o < Cy(x,7), (1.2)

i=1 r<t<oo

m

where C > 0 does not depend on v > 0 and x € G, and % =y ql %
i=1" !

M is bounded from product space LPV91(G) X - - - X LPn9n(G) to LY (G).

with ql =1_ % (i=1,2,...,m). Then the operator

Remark 1.1. (i) When G = IR", the conclusion in Theorem 1.1 can be found from [15, Theorem 4.3], and the one
in Theorem 1.2 can be found in [15, Theorem 3.3].

(ii) In Theorem 1.1, when m = 1, the result has been considered in [3](see Theorem 4.3).
(iii) In Theorem 1.2, when m = 1, the conclusion can be found in [14](see Theorem 3.2).

(iv) In the case a = 0 from Theorem 1.2, the above result is also true. And when m = 1, the conclusion coincides
with the Corollary 3.1 in [14].

(v) Similar to [15], it is easy to check that the condition (1.2) is weaker than (1.1).

Throughout this paper, the letter C always stands for a constant independent of the main parameters
involved and whose value may differ from line to line. In addition, we give some notations. Here and
hereafter |E| will always denote the Haar measure of a measurable set E of G and by Xr denotes the
characteristic function of a measurable set E C G. Let L” (1 < p < o0) be the standard L’-space with
respect to the Haar measure dx. For a measurable set E C G and a positive integer m, we will use

the notation (E)" = E X --- X E sometimes. And we will occasionally use the notational f_)= (fi,- s fm),
| —

m

T(f) =T(f1,..., fm), dj = dy1 - - -dy,, and (x, §) = (x, Y1, - . ., Ym) for convenience.

2. Preliminaries and lemmas

To prove the main results of this paper, we need some necessary notions and remarks. Firstly, we recall
some preliminaries concerning stratified Lie groups (or so-called Carnot groups). We refer the reader to
[1,6,23].

2.1. Lie group G

Definition 2.1. Let m € Z*, G be a finite-dimensional Lie algebra, [X,Y] = XY — YX € G be Lie bracket with
X,YegG.

(1) If Z € G is an m™ order Lie bracket and W € G, then [Z, W] is an (m + 1)** order Lie bracket.

(2) Wesay G is a nilpotent Lie algebra of step m if m is the smallest integer for which all Lie brackets of order m + 1
are zero.

(3) We say that a Lie algebra G is stratified if there is a direct sum vector space decomposition
g=aeLVi=Vie---eV, (2.1)
such that G is nilpotent of step m, that is,

[Vy, V] = V]'+1 1<j<m-1
0 jem

holds.
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It is not difficult to find that the above V; generates the whole of the Lie algebra G by taking Lie brackets
since each element of V; (2 < j < m) is a linear combination of (j — 1) order Lie bracket of elements of V;.

With the help of the related notions of Lie algebra (see Definition 2.1), the following definition can be
obtained.

Definition 2.2. Let G be a finite-dimensional, connected and simply-connected Lie group associated with Lie algebra
G. Then

(1) G is called nilpotent if its Lie algebra G is nilpotent.
(2) G is said to be stratified if its Lie algebra G is stratified.

(3) G is called homogeneous if it is a nilpotent Lie group whose Lie algebra G admits a family of dilations {5,},
namely, forr >0, Xy e Vi (k=1,...,m),

o ; Xi) = };‘ *Xy,

which are Lie algebra automorphisms.

Remark 2.1. Let G = G1 D G2 D -+ D Gm+1 = {0} denote the lower central series of G, and X = {Xy,..., X} be a
basis for V1 of G.

(i) (see [27]) The direct sum decomposition (2.1) can be constructed by identifying each G; as a vector subspace of
G and setting Vyy = Guand V; = Gi\ Gj1 for j=1,...,m—1.

(ii) (see [5]) The number Q = trace A = ) jdim(V) is called the homogeneous dimension of G, where A is a
j=1
diagonalizable linear transformation of G with positive eigenvalues.

(iii) (see [27] or [5]) The number Q is also called the homogeneous dimension of G since d(6,x) = r2dx for all r > 0,
and

Q= i jdim(V)) = i dim(g)).

=1 =1

By the Baker-Campbell-Hausdorff formula for sufficiently small elements X and Y of G one has
exp(X) exp(Y) = exp(H(X, Y)),

where exp : G — G is the exponential map, H(X, Y) = X + Y + 1[X, Y] + - - is an infinite linear combination
of X and Y and their Lie brackets, and the dots denote terms of order higher than two. And the above
equation is finite in the case of G is a nilpotent Lie algebra.

The following properties can be found in [22](see Proposition 1.1.1, or Proposition 1.2 in [6]).

Proposition 2.1. Let G be a nilpotent Lie algebra, and let G be the corresponding connected and simply-connected
nilpotent Lie group. Then we have

(1) The exponential map exp : G — G is a diffeomorphism. Furthermore, the group law (x,y) — xy is a
polynomial map if G is identified with G via exp.

(2) If A is a Lebesgue measure on G, then exp A is a bi-invariant Haar measure on G (or a bi-invariant Haar
measure dx on G is just the lift of Lebesgue measure on G via exp).
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Thereafter, we use Q to denote the homogeneous dimension of G, y~! represents the inverse of y € G,
y~!x stands for the group multiplication of y~! by x and the group identity element of G will be referred to
as the origin denotes by e.

A homogeneous norm on G is a continuous function x — p(x) from G to [0, o0), which is C* on G \ {e}
and satisfies

P = p(x),
p(6:x) = tp(x) forallx e Gand t > 0,

ple) =0.

Moreover, there exists a constant ¢y > 1 such that p(xy) < co(p(x) + p(y)) for all x, y € G.
With the norm above, we define the G ball centered at x with radius » by B(x,r) = {y € G : p(y‘lx) <r},
and by AB denote the ball B(x, Ar) with A > 0, let B, = B(e,¥) = {y € G : p(y) < r} be the open ball centered at

e with radius r, which is the image under 6, of B(e,1). And by CB(x, =G\ Bx,1)={yeG:pyx)>r
denote the complement of B(x,r). Let |B(x, )| be the Haar measure of the ball B(x,r) C G, and there exists
c1 = c1(G) such that

IB(x,r)| = c1r%, xeG,r>0.

In addition, the Haar measure of a homogeneous Lie group G satisfies the doubling condition (see [4, pages
140 and 501]), i.e. Y x € G, r > 0, A C, such that

IB(x, 2r)| < CIB(x,7)|.

The most basic partial differential operator in a stratified Lie group is the sub-Laplacian associated with
X =1{Xy,..., Xy}, i.e., the second-order partial differential operator on G given by

e= Zn: X2,
i=1

The part (1) in following lemma is known as the Holder’s inequality on Lebesgue spaces over Lie groups
G, it can be found in [26]. And by simple calculations, the part (2) can be deduced from the part (1).

Lemma 2.1 (Holder’s inequality on G). Let Q) C G be a measurable set.

(1) Suppose that 1 < p,q < oo with :—7 + % =1, and measurable functions f € LP(Q) and g € L1(QQ). Then there exists
a positive constant C such that

fQ F@9(dx < Cllflloo Il

(2) Suppose that1 < q; < oo (i=1,2,...,m) and q satisfy ¢ = .-+ + .. Then there exists a positive constant C
such that the inequality

m
Ui+ fulliey < C [ [ Ifilsccr-
i=1

holds for all f; € L%(Q) (i =1,2,...,m).
The following property can be found in [26].

Lemma 2.2 (Norms of characteristic functions). Let 0 < p < co and Q) C G be a measurable set with finite Haar
measure. Then

IXallre = IXallwee = QM7
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2.2. Morrey spaces on G
Morrey spaces, named after C. B. Morrey, seem to describe the boundedness property of the classical
fractional integral operators more precisely than Lebesgue spaces [17].

Definition 2.3 (Morrey-type spaces on G). Let1 < p < oo, and B = B(x, ) be a G-ball centered at x with radius

r>0.
(1)

(2)

When 0 < A < Q. The Morrey-type space LP(G) is defined by
MG = {f € L}, (G) : I fllp gy < o)

loc
with

1 1p
ey = SE«?(IMTQ f;|f(y)|”dy) :
>0

Set @(x,r) be a positive measurable function on G X (0, 00). The generalized Morrey space LV*(G) is defined

for all functions f € L (G) with the finite quasinorm

loc

1 1 1p
= —_—— P
Ifllreie) = sup (p(x,r)(IBIfB|f(y)| dy) .

>0

Remark 2.2 (see [3] or [11]). (i) It is well known that if 1 < p < oo then

(ii)

[’(G) ifA=0,
NG =3L™(@G) ifA=Q,
(C) ifA<0ordA>Q,

where © is the set of all functions equivalent to 0 on G.

In(2), when1 <p < o0and 0 < A < Q, we have LP?(G) = LPNG) if p(x,r) = |BINVQ=D/P and B C G denotes
the ball with radius r and containing x.

Now, we give some necessary notation and notions. Let w be a weight function and u be a continuous
and non-negative function on (0, o).

We denote by LH(Q) (1 < p < o) the weight L7(Q) space of all functions f measurable on a measurable
set Q c G with ”f”Lﬁ,(Q) = “wf”U’(Q) < oo,

By L (0, o) denotes the weight L*(0, o) space of all functions g(t) measurable on (0, o) with finite
norm

1l (0,00) = €55 sup w(t)|g(t)l.
>0
L(0, 00) 2= L(0, o).

Let (0, o0) be the set of all Lebesgue measurable functions on (0, co0) and Mt* (0, oo) its subset consisting
of all non-negative functions on (0, o).

Denote by 9i*(0, c0; T) the cone of all functions in Mi*(0, co) which are non-decreasing on (0, o) and
set

A= [p €M (0,00;1) : lim g(t) = 0.

We define the supremal operator gu on g € M(0, o) by
(Eug)(t) = |[ugllret,o0), t € (0, 0).
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3. Proofs of the main results
Now we give the proofs of the Theorem 1.1 and Theorem 1.2.

3.1. Proof of Theorem 1.1

In order to prove Theorem 1.1, we also need some auxiliary results. The following lemma can be obtained
from [19] with p;(x) (i = 1,2,...,m) is constant (see P.111-114). And in the case m = 1, the following result
can be founded in [16] (see theorem 2.5 or [6]).

m
Lemma 3.1. Suppose thatme Z*,0<a; < Q,1<pi<Q/a; i=1,2,...,m)and a = }, ;. Let q satisfy
i=1

1 1 1
- = +--~+——ﬁ<1.

9 m P Q
Then the operator 1 , ,, is bounded from product space LP*(G) X - - - X LP"(G) to L1(G), namely

m
M Pllisc) < C ] [l
i=1

The following pointwise estimate is also necessary, and it is proved in [10] (or [3]).

Lemma 3.2. Let v1, vp and w be positive weight functions on (0, o0), and let v, be bounded outside a neighborhood
of the origin. Then the inequality

ess sup v2(t)H,g(t) < Cesssup vi(t)g(t) (3.1
£0 £0

holds for some C > 0 and all nonnegative and nondecreasing function g on (0, o) if and only if

>0 ¢ esssup (1)
S<T<00

where
Hyg(t) = f g(s)w(s)ds, 0 <t < oo.
t
Moreover, the value C = B is the best constant for (3.1).
In addition, the following local estimates are valid.

m
Lemma 3.3. Suppose thatme Z*,0<a; <Q,1<pi<Qfa; i=1,2,...,m)and a = }, ;. Let q satisfy
i=1

1 1 1
- o —-2 1,

9 m P Q
Then the inequality

m 00
- ,-—Q—l
I i (llscseey < Crl | | f F 0 T fillrs (B it
i=1 2r

holds for any ball B(x, r) and for all fﬂe L (G) x -+ x LI (G).

loc loc
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Proof. For arbitrary x € G, set B = B(x, ) be the G ball centered at x with radius r, and 2B = B(x,2r). For
each j, we decompose f; = f].O + f{° with f;) = fiX25- Then

H f ) Z f11"'fmm

=1 B, Pm€l0,00}

=

1l
—_

f+ ) e f

(ﬁ]l"‘/ﬁm)gf
where £ = {(B1,...,Bn) : there is at least one ; # 0}. Thus, for arbitrary y € B(x, ), we obtain

Lan(AY) = Tam(Fr s D+ Y Tan(fPeo, )W),
(B1,Br)el

]

Then,

I () < W am(FL - -0 fllae ) +

Y. el i)

L(B(x,1))
=E; + E,.
For Eq, applying the boundedness of 7, ,, (see Lemma 3.1), we have
Er = W oL f)lioeery < W am(fs - fidlls)

m m
0
<C 1_1[ Il < C H fills Bzry-
1= 1=

Applying the continuous version of Minkowski’s inequality and doubling condition of Haar measure,
it can obtain the following fact

Q . —921 .
||ﬁ||Lﬂz(B(x,2r))SC”ff 70 T fillrs (b dt, i=12,...,m (3.2)

2r

Therefore, we get

oo [0,
B[ [ e A
i=1

2r

m 00
Q —21
<t ] f ol syl
i=1 V2

To estimate E;, we consider first the case f1 =2 =+ = i = 0. When y € B(x,r) and z; € CB(x, 2r) =
G\ B(x,2r) (i =1,2,...,m), the conditions imply }p(z'y) < p(z;'x) < 2p(z;'y). Thus, we can obtain

floo(zl) o fn‘f(Zm)

d

e (p(7Y) + - + p(z, y)me-e 4

f If1(z1) -+ fn(zm)| 47
(G

B2y |0ETY) + - + plzyty) Qe

SCH[ Ifi(zi)] _ el
w1 Jawean pzy)da

<c]] f lﬁl(idz
F1 Jas2n plz i)

|Ia,m(floo/ cee ’fnio)(y” =

<C
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Further, by applying Fubini’s theorem, Holder’s inequality (see Lemma 2.1) and Lemma 2.2, we have that
fi@) f .
dz; = |fiz)lp(z; ' x)%dz;
L\B(X,ZT’) p(zflx)Q_ai G\B(x,2r) f P
<C f | fi(Zi)|( f t“"_Q‘ldt)dz,-
G\B(x,2r) pz1)
C f ( f [izldz )i dr
2r 2r<p(z;tx)<t
C f ( f [fizldz Jir -l
2r B(x,t)

< C f tai_Q_l ||_f7||Lp1 (B(x,i’))”XB(x/t)”LP"- (B(X,t))dt

2r

Q

IA

<C f R il et
2r

Consequently, taking into account the obtained estimate above, we conclude that

1/q
Exco = WL am(fy"r oo fn Moy = (f( )|Ia,m(f1°°,...,fn‘f)(y)lqdy)
B(x,r

m
Q _Q
<Crv H f 570 fllos gy it
i=1 2r

Now, for (B1,...,Bm) € ¢, let us consider the terms Ey,,.. 5,) such that at least one §; = 0 and one f3; = co.

.....

Without loss of generahty, we assume that f; = =fr=0and fg4s1 =--- =P =cowithl <k <m. Itis
easy to check that p(z;'x) ~ p(z;'y) since y € B(x,r) and z; € CB(x,2r) = G\ B(x,27) (i = 1,2,...,m). Thus,

we have

@) @) @) - fi7 (@)
0 0 foo 00 _ 1 k k+1

|Ia,m(f1""’fk’fk+1""'fm )(y)' - P (p(zl—ly) +... +P(Zr_nly))mQ_a dz‘

SCf |f1 z1) fk(zk fk+1(Zk+1 fm Zn)| az
wo M) + -+ plzyt )R

k Ifi(zi)l { & £zl |
) C( L[ fB(”r’ Wle)( H fG\B<x,zr> Wdz} )

j=k+1
- C(ﬁf @) ﬁ f lfi(z))] dz')
Ve JBean p(Z;lx)Q "‘f i=kr1 JG\B@x2r) p(z x)Q 4

Similar to the estimate above, using Fubini’s theorem, Holder’s inequality (see Lemma 2.1), Lemma 2.2
and (3.2), we get

0
EZ(ﬁl,...,ﬁm) = ”Ia,m(fl AR fk /fk+1/ .. /f ||L’7(B(X )

1/q
=( [ VoA e )

k m
scr‘f(nf VN H f 2 dZ')
Bx2n) P(Z; %) pz; Qe . G\Br2) P(Z] fx)Q

j=k+1

Q ® -9
<Crv H f E T fillos gy dit.
i1 2r
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Combining the above estimates we get the desired result. The proof is completed. [

Now, we give the proof of Theorem 1.1.

Proof. [Proof of Theorem 1.1] Let 1 < p; < o0 (i = 1,2,...,m) and f_)= (i, for oo os fm) € LI9(G) X --- X
LPm9n(G). According to the assumption (1.1), and using Lemma 3.3 and Lemma 3.2 with w(r) = r Qa1
02(r) = Y(x,7)"Y™ and vy (r) = @i(x, 1)1 P (i =1,2,...,m), we have

ol =sup wos(os [ 1TanFiray)

x€G (xr I’) B(x,r)
>0

m 00
_ -2
< CSUPH‘/’(XI r) Umf ta || fillors By dt
r

xeG

o =1
m
< Csup H @i, )P fill sy
xG
o =1

m
<C H Lfill zriwi )
i=1
This completes the proof of Theorem 1.1. [J

3.2. Proof of Theorem 1.2

In order to prove Theorem 1.2, we also need the follow auxiliary results.
Similar to the pointwise relation between fraction integral operator and fractional maximal operator, by
elementary calculations, we can obtain the following lemma, and omit the proof.

Lemma 3.4. Suppose that m € Z*, 0 < a; < Q, 1 < p; < Q/a; (i = 1,2,...,m)and a = Y, a;. Let f»e
i=1
LP(G) X - - - X LP"(G), then there exists a positive constant C such that the pointwise inequality
Man(F®) < CLam(fil, -, |fiah )
holds for any x € G.

According to Lemma 3.1 and Lemma 3.4, the following result can be obtained, and we omit the proof.
m
Lemma 3.5. Suppose thatme Z*,0<a; <Q,1<pi<Q/a; i=1,2,...,m)and a = }, ;. Let q satisfy
i=1

1 1 1 «a

T I |

7 m P Q
Then the operator My, is bounded from product space LP'(G) X - - - x LP"(G) to LY(G), namely

m
IMan(Dllisie) < C [ TI1fillr -
i=1

In addition, the following local estimates are true. Specifically, when m=1, the result can be found in
[14] (see Lemma 3.2).
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m
Lemma 3.6. Suppose thatme Z*,0<a; <Q,1<pi<Qfa; (i=1,2,...,m)and a = }, ;. Let q satisfy
i=1

1 1 1 «a

e+ ——_Z2

7 m pm Q
Then the inequality

m
N _Q
M (Lo, < Ccrlt H sup b I filleri By

=1 t>2r

holds for any ball B(x, r) and for all f el (G)x---x L™

loc

(G).

loc

Proof. Similar to the proof of Lemma 3.3, for each j, we decompose f; = f]o + /7 with f]-o = fiXap, and
[T1r=117+ Y, #-sr
i=1 j=1 (B Pm)El

where ¢ = {(f1,...,Bm) : there is at least one f; # 0}. Thus, for arbitrary y € B(x, r), we obtain

Man(A@) = Man(f, -, £D@) + 2 Mol i)
,,,,, Pm)€

Then,

M Bl < Wan(Fos Sl + | Y, ManFP o £

(BraPu)l L)

=E; + E,.

For E;, applying the boundedness of M, ,, (see Lemma 3.5) and the doubling condition of Haar measure,
we have

E1 = IMam(f, - fllgery < IMam(F,-- -, fillle)

< CH 1My < CH il e 20
i=1

t>2r

- o
H sup " 7| fillri B 1y -
i=

To estimate E;, we first consider the case 1 = f2 = - -+ = B = 0. Let y be an arbitrary point from B(x, r).
If By, t) N CB(x, 2r) # 0, then t > r. In fact, when z; € B(y, t) ") CB(x, 2r)(i=1,2,...,m), we have

t> p(zi’ly) > p(zi’lx) - p(y’lx) >2r—r=r.
On the other hand, B(y, t) CB(x, 2r) C B(x, 2t). Indeed, when z; € B(y, ) CB(x, 2 (i=1,2,...,m), we get

p(zi_lx) < p(zi_ly) + p(y‘lx) <t+r<2t
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Then, for all y € B(x,r) and any z; € B(y,t)[) CB(x, 2r) (i = 1,2,...,m), using Holder’s inequality (see
Lemma 2.1) and Lemma 2.2, we have

sup [B(y, 0] HlB(y 5

B(x,r)3y
>0

Mam(fi 0 fu XY

= B(y, t 1(zi)ldz;
522;' W )l H |B(3//f)| B(y,t)ﬂCB(X,ZT’) fizildz
a 1
<C B(x,2t)|e _ (z)|dz;
sup 150, 20) H|B(x,2t>| ey N2
< Csup |B(x,t (z)|dz;
sup B, )] Hus(m @)

1
< Csup|B(x, | HlB( o il n ool e

t>2r

< Csup [B(x, £)| H 1B, O fills oy

t>2r i=1
m
ai_g.
<C H supt™ ?i||fillri B, p)-
i1 t>2r

Therefore, we conclude that

1/q
Exeo = [IMam(fy"s -+ i M) = (fB( )|Ma,m(floo/"'/fnio)(y)wdy)

Q = 0(1—2
<Cri H supt Pl fillrian)-

=1 t>2r

Now, for (B1,...,Bm) € ¢, let us consider the terms Ey,,.. g,) such that at least one f; = 0 and one f8; = 0.

,,,,,

Without loss of generahty, we assume that §; = =fr =0and 41 = = B = oo with 1 <k < m. Then,
for all y € B(x,r), using Holder’s inequality (see Lemma 2.1)and Lemma 2.2, we obtain that

Mai(F0, s O 20 oo FYY) = Mag(F, - FODMami 21, W)

< C( HMa(fO)(y))( H sup taj_%Hfj”L”i(B(x,t)))‘

j=k+1 t>2r

Similar to the estimates E; and Ej., using Lemma 3.5 with m = 1, the doubling condition of Haar
measure, Holder’s inequality (see Lemma 2.1) and Lemma 2.2, we get

Ez(ﬁl/m/ﬁm) = ||Ma/m(f10’ te ’f}?’ f]:—tl’ e rfr:lo)HL'?(B(x,r))

1/q
= (fB )|Ma,m(f10,---,f]9,fk°:_1,...,f];o)(y)Wdy)

k m
2 el v
< C“(l |SUP £ ”"Ilﬂllm(B(x,t»)( | | supt”’ ’||ff||LPf(B<x,f>))
=1 t>2r j=k+1 t>2r

m

Q Uéi—g
< Cri | | sup £ 7 |l fill i (b 1y -
=1 t>2r

Combining the above estimates we get the desired result. The proof is completed. [J
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The following supremal type inequality plays a key role in the proof of Theorem 1.2, which can be
founded in [2](see Theorem 5.4 or Theorem 3.1 in [14]).

Lemma 3.7. Let vy and v, be non-negative measurable functions satisfying 0 < [[v1]|1=(,00) < 00, 0 < [[02]lL=0, < 00

for any t € (0, 00). And let u be a continuous non-negative function on (0, 00). Then the supremal operator S, is
bounded from Ly’ (0, 00) to L7>(0, o0) on the cone A if and only if

< 00.
L>(0,00)

o2Su(lenllz2 )
Now, we give the proof of Theorem 1.2.

Proof. [Proof of Theorem 1.2] Let u(r) = r%/%, vy(r) = Y(x,7)"V™ and v1(r) = @i(x, 1)~ r P (i = 1,2,...,m),
According to the hypothesis (1.2), it follows that

_ o B
JozSu(loali )] . <

Setl<pi<eo(i=1,2,...,m)and f_): (fi, fo, - fm) € LPVPY(G) X - - X LPw?n(G). Using Lemma 3.6 and
Lemma 3.7, we obtain

sup ——(—1
& 900 B Jaes
m

0
C H sup Y(x, )" sup £ || fillri g )

ol xeG t>2r
i=1 r>0

m
<C H sup @i(x, )" P flli pe

- xeG
i=l g

m
<C H 1 fill riwi )
i=1

> 2 1/g
Ml 2oy = JMWW@MQ

IA

This completes the proof of Theorem 1.2. [J

Acknowledgments:
The authors cordially thank the anonymous referees who gave valuable suggestions and useful com-
ments which have lead to the improvement of this paper.

References

[1] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer, Heidelberg,
2007.
[2] V. Burenkov, A. Gogatishvili, V. Guliyev, R. Mustafayev, Boundedness of the fractional maximal operator in local Morrey-type spaces,
Complex Var. Elliptic Equ. 55 (8-10) (2010), 739-758.
[3] A. Eroglu, V. Guliyev, J. Azizov, Characterizations for the fractional integral operators in generalized Morrey spaces on Carnot groups,
Math. Notes, 102(5-6)(2017), 722-734.
[4] V. Fischer, M. Ruzhansky, Quantization on nilpotent Lie groups, Birkhduser, Switzerland, 2016.
[5] G.Folland, Lipschitz classes and Poisson integrals on stratified groups, Studia Math. 66(1979), 37-55.
[6] G.Folland, E. M. Stein, Hardy spaces on homogeneous groups, Vol. 28 of Math. Notes, Princeton University Press, Princeton, 1982.
[7] B.Franchi, R. P. Serapioni, Intrinsic Lipschitz graphs within Carnot groups, ]. Geom. Anal. 26(3)(2016), 1946-1994.
[8] L. Grafakos, On multilinear fractional integrals, Studia Math. 102(1)(1992), 49-56.
[9] L. Grafakos, Modern Fourier Analysis, 2nd ed. Springer, New York, 2009.
[10] V. Guliyev, Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci. (N.Y.) 193(2)(2013), 211-227.
[11] V. Guliyev, Characterizations for the fractional maximal operator and its commutators in generalized weighted Morrey spaces on Carnot
groups, Anal. Math. Phys. 10(2)(2020), Paper No. 15, 20 pages.



[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

[26]

[27]

J. Wu, X. Tian / Filomat 38:16 (2024), 5591-5604 5604

V. Guliyev, Commutators of the fractional maximal function in generalized Morrey spaces on Carnot groups, Complex Var. Elliptic Equ.
66(6-7) (2021), 893-909.

V. Guliyev, Some characterizations of BMO spaces via commutators in Orlicz spaces on stratified Lie groups, Results Math. 77(1)(2022),
Paper No. 42, 18 pages.

V. Guliyev, A. Akbulut, Y. Mammadov, Boundedness of fractional maximal operator and their higher order commutators in generalized
Morrey spaces on Carnot groups, Acta Math. Sci. Ser. B (Engl. Ed.) 33(5)(2013), 1329-1346.

V. Guliyev, A. Ismayilova, Multi-sublinear fractional maximal operator and multilinear fractional integral operators on generalized Morrey
spaces, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 40(2)(2014), 22-33.

V. Guliyev, R. Mustafayev, A. Serbetci, Stein—Weiss inequalities for the fractional integral operators in Carnot groups and applications,
Complex Var. Elliptic Equ. 55(8-10)(2010), 847-863.

T. Ilida, E. Sato, Y. Sawano, H. Tanaka, Multilinear fractional integrals on Morrey spaces, Acta Math. Sin. (Engl. Ser.) 28(7)(2012),
1375-1384.

C. E. Kenig, E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6(1)(1999), 1-15.

D. Liu, J. Tan, J. Zhao, Multilinear Commutators in Variable Lebesgue Spaces on Stratified Groups, Analysis of Pseudo-Differential
Operators (Based on the 11th ISAAC congress, Vaxjo, Sweden, August 14-18, 2017), pages 97-120, Birkh4user/Springer, Cham,
2019.

D. Liu, J. Tan, J. Zhao, The characterisation of BMIO via commutators in variable Lebesgue spaces on stratified groups, Bull. Korean Math.
Soc. 59(3)(2022), 547-566.

C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43(1)(1938), 126-166.

M. Ruzhansky, D. Suragan, Hardy inequalities on homogeneous groups: 100 years of Hardy inequalities, Birkhduser, Switzerland, 2019.
E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton,
1993.

N. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, Cambridge University Press, Cambridge, 2008.

H. Wang, J. Xu, Multilinear fractional integral operators on central Morrey spaces with variable exponent, J. Inequal. Appl. 2019(1)(2019),
1-23.

J. Wu, W. Zhao, Some estimates for commutators of the fractional maximal function on stratified Lie groups, J. Inequal. Appl. 2023 (2023),
Paper No. 123, 17 pages.

Y. Zhu, D. Li, Herz spaces on nilpotent Lie groups and its applications, Chinese Quart. J. Math. 18(1)(2003), 74-81.



	Introduction and main results
	Preliminaries and lemmas
	Lie group G
	Morrey spaces on G

	Proofs of the main results
	Proof of thm: frac-int-op-main-1
	Proof of thm: frac-max-op-main-2


