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Available at: http://www.pmf.ni.ac.rs/filomat

Specification of the Malliavin weights under stochastic volatility and
stochastic interest rates processes for American option evaluation
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Abstract. In this paper, using the Malliavin calculus, we compute the conditional expectation related to
the pricing problem of an American put option through considering the volatility and the interest rates,
both stochastic and generated by the Cox-Ingersoll-Ross process.

1. Introduction

Malliavin calculus [10] is a highly useful tool for calculating the value of the conditional expectation in
order to solve a wide range of financial mathematics problems [2, 5, 12]. The papers elaborated by Fournié
et al. [6] and [7] served as the basic cornerstone for those that followed.
One of the most thorny problems in option pricing literature is the evaluation of American options. The
American options pricing model, which is based on constant parameters, cannot account for the reality of
financial markets. As the dynamics of the volatility or the interest rates are intrinsic to develop strategies for
hedging as well as arbitrage, the pricing of options under stochastic parameters models are largely needed.
The incorporation of a stochastic parameters factor significantly complicates the pricing of American op-
tions. Numerous works on option pricing using stochastic volatility models have been conducted.
The significance of using Malliavin calculus has been reinforced in recent years for settling the American
options pricing problem. [1, 3, 8, 9].
In [3], Bally et al. invested Malliavin calculus to develop a representation formula for the conditional
expectation in order to assess the American option for constant volatility. Abbas-Turki and Lapeyre [1],
Kharrat [8] and Kharrat and Bastin [9] introduced new methods to price American option, under stochastic
volatility for different models. Mallivin calculus was also applied successfully to other option problems.
For example, Mancino [11] set forward a methodology for calculating the Malliavin weight for Delta
hedging under a local volatility model, and Saporito [13] created a multiscale stochastic volatility model
approximation for the price of path-dependent derivatives. Yamada [15] developed a Malliavin calculus
approximation scheme for multidimensional Stratonovich stochastic differential equations and applied it
to the SABR model.
Our main contribution resides in supposing that the dynamics of the volatility and the interest rates are
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stochastic in order to identify and compute theoretically the value of the conditional expectation related to
the pricing problem of an American option:

E
[
Pt(Xt,Vt, rt) | (Xl = γ,Vl = δ, rl = β)

]
(1)

for any 0 ≤ l < t, using Malliavin calculus, where Vt and rt are generated by the Cox-Ingersoll-Ross
(CIR) process [4], i.e., through following a mean reverting and a square-root diffusion process generated
respectively by:

dVt = kV(θV − Vt)dt + σV

√
VtdWV

t (2)

drt = kr(θr − rt)dt + σr
√

rtdWr
t (3)

and where Xt is expressed through the geometric Brownian process :

dXt = rtXtdt + Xt

√
VtdWS

t (4)

or, by integration

Xt = Xlexp
(∫ t

l
rsds +

∫ t

l

√
VsdWS

s −
1
2

∫ t

l
Vsds

)
, (5)

where WS
t , WV

t and Wr
t are correlated standard Brownian motions. The parameters θV, kV and σV are,

respectively, the long-term mean, the rate of mean reversion, and the volatility of the stochastic process
Vt. The parameters θr, kr and σr are, respectively, the long-term mean, the rate of mean reversion, and the
volatility of the stochastic interest rates rt. We assume that the volatility process Vt and stochastic interest
rates rt are almost surely strictly positive.

We initially introduce basic notations and definitions that will be needed to introduce the Malliavin
derivative operator. T represents the expiration time of the financial product to price, which which has
been normalized to 1 for simplicity.

We subdivide the horizon in 2k dyadic intervals,

Ii
k =]ti−1

k , t
i
k], ti

k =
i

2k
,

for i = 1, . . . , 2k, k ∈ N, and t0
k = 0. We denote by xk = (x1

k , . . . , x
2k

k ) in R2k
, and ∀ t ∈ ]0,T], let ik(t) be the only

element i ∈ {1, . . . , 2k
} such that t ∈ Ii

k. In the following, we present the notion of simple functionals.

Definition 1.1. Given k ∈N, the family of simple k-th order functionals is defined by

Sk :=
{
φ(∆k) |φ ∈ C∞pol(R

2k
;R)

}
where C∞pol is the family of infinitely differentiable functions which, together with their derivatives of any order, have

at most a polynomial growth, and ∆k :=
(
∆1

k , . . . ,∆
2k

k

)
is the vector of Brownian increments ∆i

k = Wti
k
− Wti−1

k
,

i = 1, . . . , 2k.

We may now explicitly define the Malliavin derivative.

Definition 1.2. For every X = φ(∆k) ∈ S, the stochastic (or Malliavin) derivative of X at time t is defined by the
ik(t)-th partial derivative of φ(∆k):

DtX :=
∂φ

∂xik(t)
k

(∆k),

and we denote by DX the associated stochastic process on [0,T].



M. Kharrat / Filomat 38:16 (2024), 5605–5613 5607

In the definitions below, we may also allow us to create the space of Malliavin differentiable variables
and the family of k-th order simple processes.

Definition 1.3. The space D1,2 of the Malliavin-differentiable random variables is the closure of S with respect to
the norm ∥.∥1,2, defined as

∥X∥1,2 =
√
E[X2] +

√∫ T

0
(DsX)2ds

In other words, X ∈ D1,2 if and only if, there exists a sequence (Xk), k ∈N, in S such that Xk converges in distribution
to a square integrable random variable X as k→∞, the limit limk→∞DXk exists and is square integrable.

Definition 1.4. The family Pk, k ∈N, of the k-th order simple processes consists of the processes U of the form

Ut =

2k∑
i=1

φi(∆k)1Ii
k
(t) = φik(t)(∆k), (6)

where φi ∈ C∞pol(R
2k

;R) for i = 1, . . . , 2k.

It is clear to see that Pk ⊆ Pk+1, k ∈ N. Let P :=
⋃

k∈NPk the family of simple functionals, and note that
DX ∈ P, for X ∈ S. In other words, D : S → P. We are now ready to introduce the Malliavin derivative’s
adjoint operator.

Definition 1.5. Given a simple process U ∈ P of the form (6), the Skorokhod-integral D ∗U of U is defined as [14]

D ∗U =
2k∑

i=1

(
φi(∆k)∆i

k − ∂xi
k
φi(∆k)

1
2k

)
.

We also write D ∗U =
∫ T

0 Ut ⋄ dWt.

The following two technical lemmas, are proved in [12, Chapter 16].

Lemma 1.6. Let X ∈ D1,2 and let U be a second-order Skorokhod-integrable process. Then,∫ T

0
XUt ⋄ dWt = X

∫ T

0
Ut ⋄ dWt −

∫ T

0
(DtX)Utdt (7)

and, when Ut is adapted, the above equation can be expressed as∫ T

0
XUt ⋄ dWt = X

∫ T

0
UtdWt −

∫ T

0
(DtX)Utdt. (8)

Lemma 1.7 (Stochastic integration by parts). Let F ∈ C1
b , the space of functions in C1 bounded together with

their derivatives, and let X ∈ D1,2. Hence, the following integration by parts

E[F′(X)Y] = E

F(X)
∫ T

0

utY∫ T

0 usDsXds
⋄ dWt

 (9)

holds for every random variable Y and for every stochastic process u for which (9) is well defined.

To improve notation clarity, we expand the concept of Malliavin derivative to a multidimensional
process by introducing the concept of partial derivative.

Definition 1.8 (Partial Malliavin derivative). Let W = (W1, . . . ,Wd) be a d−dimensional Brownian motion. For
s ≤ t, the partial Malliavin derivative at time s with respect to the n − th component of W, denoted by Dn

s , is

Dn
s W j

t =

1 if n = j,
0 otherwise.
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2. Main Results

2.1. Computation of Malliavin weights related to the interest rates

Our basic target is to compute (1) for any 0 ≤ l < t, with γ, δ and β being positive real numbers.
Therefore, at first, we need to compute the Malliavin weights related to the interest rates, then the ones
related to the volatility and finally the Malliavin weights related to the underlining asset price.
Using the result reported by Kharrat and Bastin in [9], we can compute explicitly Dr

sVl. Additionally, we
can deduce immediately Dr

srl. This result will be presented in the next proposition.

For 0 < s < l < t, let:
by the integration of the process (3), rl be the solution of the following Stochastic Differential Equation
(SDE):

rl = rq +

∫ l

q
kr(θr − rs′ )ds′ +

∫ l

q
σr
√

rs′dWr
s′ , (10)

Yl be the unique strong solution of the following SDE:

Yl = 1 − kr

∫ l

0
Ys′ds′ +

∫ l

0

σr

2
√

rs′
Ys′dWr

s′ , (11)

and Zl be the unique strong solution of the following SDE:

Zl = 1 +
∫ l

0
(
σ2

r

4rs′
+ kr)Zs′ds′ −

∫ l

0

σr

2
√

rs′
Zs′dWr

s′ . (12)

Proposition 2.1. Let rl , Yl and Zl be as previously defined. For 0 < s < l < t, we get:

Dr
srl = σrYlZs

√
rs.

In the next proposition, we shall use the stochastic integration by parts in order to provide the expression
of E(Ψ′(rl)P(Xt,Vt, rt)) for any 0 ≤ l < t and for any function Ψ ∈ C+∞b (R), where C+∞b (R) is the space of
bounded and infinitely differentiable functions.

Proposition 2.2. Let rl, Yl and Zl be as previously defined. For any 0 ≤ l < t and for any function Ψ ∈ C+∞b (R),
we have:

E(Ψ′(rl)Pt(Xt,Vt, rt)) = E

Ψ(rl)Pt(Xt,Vt, rt)
t − l


∫ t

l
dWr

s
Zs
√

rs

Ylσr
−

∫ t

l

(
σrYl +

Dr
sMl

Zs
√

rs

)
ds

∫ t

l

dWr
s

YlZsσr
√

rs +Dr
sMl


 (13)

where Ml =
∫ t

l
k(θ−rs′ )ds′+

∫ t

l
σr
√

rs′dWr
s′ and C+∞b (R) corresponds to the space of bounded and infinitely differentiable functions.

In order to prove Proposition 2.2, we need to define and prove two Lemmas .
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Lemma 2.3. Let rl, Yl, Zl and Ml be as previously defined. We therefore have:

E(Ψ′(rl)Pt(Xt,Vt, rt)) = E

(
Ψ(rl)Pt(Xt,Vt, rl +Ml)

Ylσr(t − l)

∫ t

l

dWr
s

Zs
√

rs

)
− E

(
Ψ(rl)P′t(Xt,Vt, rl +Ml)

∫ t

l

(
σrYl +

Dr
sMl

Zs
√

rs

)
ds

)
.

Proof. : Using the stochastic integration by parts, we have:

E(Ψ′(Vl)Pt(Xt,Vt, rt)) = E(Ψ′(rl)Pt(Xt,Vt, rl +Ml)) = E

Ψ(rl)
∫ t

l

usPt(Xt,Vt, rl +Ml)∫ t

l us′Dr
s′rlds′

⋄ dWr
s


Knowing that Dr

s′rl = YlZs′σr
√

Vs′ and let us =
1

Zs
√

rs
. Hence, we get:

E(Ψ′(rl)Pt(Xt,Vt, rt)) = E
(
Ψ(rl)

Ylσr(t − l)

∫ t

l

Pt(Xt,Vt, rl +Ml)
Zs
√

rs
⋄ dWr

s

)
,

where 1
Zs
√

rs
is adapted. Thus, by using the Malliavin derivative, we have:

E(Ψ′(rl)Pt(Xt,Vt, rt)) = E
(
Ψ(rl)

Ylσr(t − l)

(
Pt(Xt,Vt, rl +Ml)

∫ t

l

dWr
s

Zs
√

rs
−

∫ t

l

Dr
s(Pt(Xt,Vt, rl +Ml))

Zs
√

rs
ds

))
.

Applying the Malliavin derivative, we obtain:

E(Ψ′(rl)Pt(Xt,Vt, rt)) = E

(
Ψ(rl)Pt(Xt,Vt, rl +Ml)

Ylσr(t − l)

∫ t

l

dWr
s

Zs
√

rs

)
(14)

− E

(
Ψ(rl)P′t(Xt,Vt, rl +Ml)

∫ t

l

(
σrYl +

Dr
sMl

Zs
√

rs

)
ds

)
. (15)

Lemma 2.4. : Let rl, Yl, Zl and Ml be as previously defined. For any 0 ≤ l < t, we have:

E(P′t(Xt,Vt, rl +Ml)) = E
(

Pt(Xt,Vt, rl +Ml)
t − l

∫ t

l

1
YlZsσr

√
rs +Dr

sMl
dWr

s

)
. (16)

Proof. We have:

E

(
Ψ(rl)P′t(Xt,Vt, rl +Ml)

∫ t

l

(
σrYl +

Dr
sMl

Zs
√

rs

)
ds

)
= E

E (
Ψ(z′)P′t(Xt,Vt, rl +Ml)

∫ t

l

(
σrYl +

Dr
sMl

Zs
√

rs

)
ds

)∣∣∣∣∣∣
z′=rl


= E

Ψ(z′)
∫ t

l

(
σrYl +

Dr
sMl

Zs
√

rs

)
dsE(P′t(Xt,Vt, z′ +Ml))

∣∣∣∣∣∣
z′=rl

 .
Using the Malliavin derivative, we get:

E(P′t(Xt,Vt, rl +Ml)) = E

Pt(Xt,Vt, rl +Ml)
∫ t

l

us∫ t

l us′Dr
s′ (rl +Ml)ds′

⋄ dWr
s

 . (17)
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Let us =
1

YlZsη
√

rs+Dr
sMl

, which is adapted. Then, we have:

E(P′t(Xt,Vt, rl +Ml)) = E
(

Pt(Xt,Vt, rl +Ml)
t − l

∫ t

l

1
YlZsσr

√
rs +Dr

sMl
dWr

s

)
.

After elaborating these two previous Lemmas, we may now prove Proposition 2.2.

Proof. : Relying on both Lemma 2.3 and Lemma 2.4, we obtain:

E(Ψ′(rl)Pt(Xt,Vt, rt)) =

E

Ψ(rl)Pt(Xt,Vt, rt)
t − l


∫ t

l
dWr

s
Zs
√

rs

Ylσr
−

∫ t

l

(
σrYl +

Dr
sMl

Zs
√

rs

)
ds

∫ t

l

dWr
s

YlZsσr
√

rs +Dr
sMl


 ,

where Ml =
∫ t

l k(θ − rs′ )ds′ +
∫ t

l σr
√

rs′dWr
s′ .

Using the Malliavin calculus in the following theorem, we provide the expression of the conditional expec-
tation: E(Pt(Xt,Vt, rt)|rl = β).

Theorem 2.5. Let rl, Yl, Zl and Ml be as previously defined. Assuming that β is a positive real, for any 0 ≤ l < t,
we get:

E(Pt(Xt,Vt, rt)|rl = β) =
E(H(rl − β)Υrl (Pt(Xt,Vt, rt)))

E(H(rl − β)Υrl (1))

where:

Υrl (Pt(Xt,Vt, rt)) =
Pt(Xt,Vt, rt)

t − l


∫ t

l
dWr

s
Zs
√

rs

Ylσr
−

∫ t

l

(
σrYl +

Dr
sMl

Zs
√

rs

)
ds

∫ t

l

dWr
s

YlZsσr
√

rs +Dr
sMl


and

Υrl (1) =
1

t − l


∫ t

l
dWr

s
Zs
√

rs

Ylη
−

∫ t

l

(
σrYl +

Dr
sMl

Zs
√

rs

)
ds

∫ t

l

dWr
s

YlZsσr
√

rs +Dr
sMl


where H is the Heaviside function with the convention that E(Pt(Xt,Vt, rt)|rl = β) = 0 when, E(H(rl − β)Υrl (1)) = 0.

Proof. Using a basic result of Malliavin approach, we have:

E(Ψ′(rl)Pt(Xt, rt)) = E(Ψ(rl)Υrl (Pt(Xt,Vt, rt))).

Grounded on Proposition 2.2, for any Ψ ∈ C∞b (R), we get:

E(Ψ(rl)Υrl (Pt(Xt,Vt, rt))) =

E

Ψ(rl)Pt(Xt,Vt, rt)
t − l


∫ t

l
dWr

s
Zs
√

rs

Ylσr
−

∫ t

l

(
σrYl +

Dr
sMl

Zs
√

rs

)
ds

∫ t

l

dWr
s

YlZsσr
√

rs +Dr
sMl


 .

By identification, the square integrable weight Υrl (Pt(Xt,Vt, rt)) is defined as follows:

Υrl (Pt(Xt,Vt, rt)) =
Pt(Xt,Vt, rt)

t − l


∫ t

l
dWr

s
Zs
√

rs

Ylσr
−

∫ t

l

(
σrYl +

Dr
sMl

Zs
√

rs

)
ds

∫ t

l

dWr
s

YlZsσr
√

rs +Dr
sMl


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Proceeding with the same logic, the square integrable weight Υrl (1) is calculated as follows:

Υrl (1) =
1

t − l


∫ t

l
dWr

s
Zs
√

rs

Ylη
−

∫ t

l

(
σrYl +

Dr
sMl

Zs
√

rs

)
ds

∫ t

l

dWr
s

YlZsσr
√

rs +Dr
sMl



2.2. Malliavin weights related to the volatility

Based on the result of [8], we provide the following lemma to determine the expression of the Malliavin
derivative DV

s Vl associated with the stochastic process Vt.

Lemma 2.6. For 0 < s < l < t, by integration of the process (2), Vl stands for the solution of the following stochastic
differential equation:

Vl = Vs +

∫ l

s
k(θ − Vr)dr +

∫ l

s
η
√

VrdWV
r , (18)

Sl corresponds to the solution of the following stochastic differential equation:

Sl = 1 − k
∫ l

0
Srdr +

∫ l

0

η

2
√

Vr
SrdWV

r , (19)

and Ql is the solution of the following stochastic differential equation:

Ql = 1 +
∫ l

0
(
η2

4Vr
+ k)Qrdr −

∫ l

0

η

2
√

Vr
QrdWV

r , (20)

therefor, for every l, we have SlQl = 1 and DV
s Vl = SlQsη

√
Vs.

Subsequently, we set forward the expression of the Malliavin weights of the conditional expectation:
E(Pt(Xt,Vt, rt)|(Vl = δ, rl = β)).

Theorem 2.7. Let Vl, Sl, Ql and Nl be as previously defined and let δ , β be two positive real numbers. For any
0 ≤ l < t,

E(Pt(Xt,Vt, rt)|(Vl = δ, rl = β)) =
E(H(Vl − δ)ΥVl (GXt,Vt (β)))
E(H(Vl − δ)ΥVl (1))

,

where the Malliavin weights are written as follows:

ΥVl (GXt,Vt (β)) =
GXt,Vt (β)

t − l


∫ t

l
dWV

s

Qs
√

Vs

Slη
−

∫ t

l

(
ηSl +

DV
s Nl

Qs
√

Vs

)
ds

∫ t

l

dWV
s

SlQsη
√

Vs +DV
s Nl

 (21)

and

ΥVl (1) =
1

t − l


∫ t

l
dWV

s

Qs
√

Vs

Slη
−

∫ t

l

(
ηYl +

DV
s Nl

Qs
√

Vs

)
ds

∫ t

l

dWV
s

SlQsη
√

Vs +DV
s Nl

 , (22)

where GXt,Vt (β) = E(Pt(Xt,Vt, rt)|rl = β) and H is the Heaviside function with the convention thatE(Pt(Xt,Vt, rt)|(Vl =
δ, rl = β)) = 0, when E(H(Vl − δ)ΥVl (1)) = 0.
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Proof. Referring to Theorem 2.3 of [8], we have the square integrable weight ΥVl (GXt,Vt (β)) which is equal
to:

ΥVl (GXt,Vt (β)) =
GXt,Vt (β)

t − l


∫ t

l
dWV

s

Qs
√

Vs

Slη
−

∫ t

l

(
ηYl +

DV
s Nl

Qs
√

Vs

)
ds

∫ t

l

dWV
s

SlQsη
√

Vs +DV
s Nl

 .
and the square integrable weight ΥVl (1) which is equal to:

ΥVl (1) =
1

t − l


∫ t

l
dWV

s

Qs
√

Vs

Slη
−

∫ t

l

(
ηYl +

DV
s Nl

Qs
√

Vs

)
ds

∫ t

l

dWV
s

SlQsη
√

Vs +DV
s Nl

 .

2.3. Computation of Malliavin weights related to the underlying asset price
Based on Theorem 2.5 of [8], we make an extension in order to consider three stochastic processes. The

following Theorem exhibits the analytic expression of
E

[
Pt(Xt,Vt, rt) | (Xl = γ,Vl = δ, rl = β)

]
.

Theorem 2.8. Let Xt = Xlexp
(∫ t

l rsds +
∫ t

l

√
VsdWS

s −
1
2

∫ t

l Vsds
)
, with 0 ≤ l ≤ t. We therefore have

E
[
Pt(Xt,Vt, rt) | (Xl = γ,Vl = δ, rl = β)

]
=
E

[
H(Xl − γ)ΥXl (FXl (δ, β))

]
E

[
H(Xl − γ)ΥXl (1)

] ,

where

ΥXl (1(Xt)) =
1(Xt)√
1 − ρ2Xl

(
1
l

∫ l

0

dWS
s

√
Vs
−

1
t − l

∫ t

l

dWS
s

√
Vs
+ 1

)
with FXl (δ, β) = E(GXt,Vt (β)|Vl = δ), H representing the Heaviside function with the convention thatE

[
Pt(Xt,Vt, rt) | (Xl = γ,Vl = δ, rl = β)

]
=

0 when E
[
H(Xl − γ)ΥXl (1)

]
= 0.

Example 2.9 (American call option pricing). Let 0 = t0 < t1 < . . . < tk = T, be a discretization of the time
interval [0,T]. Assessing an American call option can be specified using the following backward iterations

PT(XT,VT, rT) = max{XT − K, 0},
Pti (Xti ,Vti , rti ) = max

{
max{Xti − K, 0},

e−r T
k E

[
Pti+1 (Xti+1 ,Vti+1 , rti+1 ) | (Xti ,Vti , rti )

] }
, i = k − 1, . . . , 0.

Using Monte Carlo simulations, the Malliavin weights indicated in Theorem 2.8 are approximated to compute the
previous conditional expectations.

Example 2.10 (American put option pricing). Let 0 = t0 < t1 < . . . < tk = T, be a discretization of the time
interval [0,T]. Evaluating an American put option can be estimated using the following backward iterations

PT(XT,VT, rT) = max{K − XT, 0},
Pti (Xti ,Vti , rti ) = max

{
max{K − Xti , 0},

e−r T
k E

[
Pti+1 (Xti+1 ,Vti+1 , rti+1 ) | (Xti ,Vti , rti )

] }
, i = k − 1, . . . , 0.

3. Conclusion

In this research work, using the Malliavin calculus, we elaborated the expression of the expectation
conditionally to the interest rates, the volatility and the underlying asset price that we supposed to be
stochastic. We equally specified the Malliavin weights of these conditional expectations.
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