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Specification of the Malliavin weights under stochastic volatility and
stochastic interest rates processes for American option evaluation

Mohamed Kharrat?

?Mathematics Department, College of Science, Jouf University, Sakaka, Saudi Arabia

Abstract. In this paper, using the Malliavin calculus, we compute the conditional expectation related to
the pricing problem of an American put option through considering the volatility and the interest rates,
both stochastic and generated by the Cox-Ingersoll-Ross process.

1. Introduction

Malliavin calculus [10] is a highly useful tool for calculating the value of the conditional expectation in
order to solve a wide range of financial mathematics problems [2, 5, 12]. The papers elaborated by Fournié
et al. [6] and [7] served as the basic cornerstone for those that followed.

One of the most thorny problems in option pricing literature is the evaluation of American options. The
American options pricing model, which is based on constant parameters, cannot account for the reality of
financial markets. As the dynamics of the volatility or the interest rates are intrinsic to develop strategies for
hedging as well as arbitrage, the pricing of options under stochastic parameters models are largely needed.
The incorporation of a stochastic parameters factor significantly complicates the pricing of American op-
tions. Numerous works on option pricing using stochastic volatility models have been conducted.

The significance of using Malliavin calculus has been reinforced in recent years for settling the American
options pricing problem. [1, 3, 8, 9].

In [3], Bally et al. invested Malliavin calculus to develop a representation formula for the conditional
expectation in order to assess the American option for constant volatility. Abbas-Turki and Lapeyre [1],
Kharrat [8] and Kharrat and Bastin [9] introduced new methods to price American option, under stochastic
volatility for different models. Mallivin calculus was also applied successfully to other option problems.
For example, Mancino [11] set forward a methodology for calculating the Malliavin weight for Delta
hedging under a local volatility model, and Saporito [13] created a multiscale stochastic volatility model
approximation for the price of path-dependent derivatives. Yamada [15] developed a Malliavin calculus
approximation scheme for multidimensional Stratonovich stochastic differential equations and applied it
to the SABR model.

Our main contribution resides in supposing that the dynamics of the volatility and the interest rates are
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stochastic in order to identify and compute theoretically the value of the conditional expectation related to
the pricing problem of an American option:

E[P(X;, Vi, 1) |(X1 =y, Vi = 06,1 = p)] 1)

for any 0 < I < t, using Malliavin calculus, where V; and r; are generated by the Cox-Ingersoll-Ross
(CIR) process [4], i.e., through following a mean reverting and a square-root diffusion process generated
respectively by:

AV = ky(Oy — Vi)t + oy [VidW) )
dr = k(0 — ry)dt + 0, \FdW] 3)

and where X; is expressed through the geometric Brownian process :
dX; = nXydt + X, \[VidW? (4)

or, by integration

t t t
thXlexp( f rods + f \/Vdef—% f Vsds), (5)
) 1 1

where Wf, WtV and W/ are correlated standard Brownian motions. The parameters Oy, ky and oy are,
respectively, the long-term mean, the rate of mean reversion, and the volatility of the stochastic process
Vi. The parameters 0,, k, and o, are, respectively, the long-term mean, the rate of mean reversion, and the
volatility of the stochastic interest rates r;. We assume that the volatility process V; and stochastic interest
rates r; are almost surely strictly positive.

We initially introduce basic notations and definitions that will be needed to introduce the Malliavin
derivative operator. T represents the expiration time of the financial product to price, which which has
been normalized to 1 for simplicity.

We subdivide the horizon in 2* dyadic intervals,

P il] i ;o
L= 0] b= 5
fori=1,...,2% ke N, and t) = 0. We denote by x; = (x}, .. .,xik) in R?, and V t €10, T], let it(t) be the only
elementi € {1,...,2%} such that t € L. In the following, we present the notion of simple functionals.

Definition 1.1. Given k € IN, the family of simple k-th order functionals is defined by
Si = {p(A) g € C3(RY; R)}
where C;?)l is the family of infinitely differentiable functions which, together with their derivatives of any order, have

at most a polynomial growth, and Ay := (A;, . ..,Aik) is the vector of Brownian increments A}; = Wi = Wi,

i=1,...,2%

i
k

We may now explicitly define the Malliavin derivative.

Definition 1.2. For every X = @(Ax) € S, the stochastic (or Malliavin) derivative of X at time t is defined by the
ix(t)-th partial derivative of p(A):
d
DiX 1=~ (Ap),

i(t)
Ix;

and we denote by DX the associated stochastic process on [0, T].
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In the definitions below, we may also allow us to create the space of Malliavin differentiable variables
and the family of k-th order simple processes.

Definition 1.3. The space ID'? of the Malliavin-differentiable random variables is the closure of S with respect to

the norm ||.|l1 2, defined as
T
IXtha = VERRT+ | [ 0,307
0

In other words, X € ID'2 if and only if, there exists a sequence (Xx), k € IN, in S such that Xy converges in distribution
to a square integrable random variable X as k — oo, the limit limy_,., DX exists and is square integrable.

Definition 1.4. The family Py, k € IN, of the k-th order simple processes consists of the processes U of the form

21(
U = Z iDL (B) = @i (Dr), (6)

i=1
where @; € C;‘(’)Z(Rzk;lR)fori =1,...,2%

It is clear to see that Px C Prs1, k € IN. Let P := Uien Pk the family of simple functionals, and note that
DX € P, for X € S. In other words, D : § — $. We are now ready to introduce the Malliavin derivative’s
adjoint operator.

Definition 1.5. Given a simple process U € P of the form (6), the Skorokhod-integral D + U of U is defined as [14]
2* 1
D+U= Z; ((Pi(Ak)A}{ - axfk(Pi(Ak)?)-
i=

We also write D » U = fOT U; o dW,.
The following two technical lemmas, are proved in [12, Chapter 16].

Lemma 1.6. Let X € ID'2 and let U be a second-order Skorokhod-integrable process. Then,

T T T
f Xut < th = Xf U,g o th - f (DtX)Utdt (7)
0 0 0

and, when U, is adapted, the above equation can be expressed as

T T T
f Xut < th = Xf Utth - f (DtX)Utdt (8)
0 0 0

Lemma 1.7 (Stochastic integration by parts). Let F € C}, the space of functions in C' bounded together with
their derivatives, and let X € D2, Hence, the following integration by parts

T
F(X) f TLoth 9)
0 [ u.DXds

holds for every random variable Y and for every stochastic process u for which (9) is well defined.

E[F/(X)Y] = E

To improve notation clarity, we expand the concept of Malliavin derivative to a multidimensional
process by introducing the concept of partial derivative.

Definition 1.8 (Partial Malliavin derivative). Let W = (W', ..., W¥) be a d—dimensional Brownian motion. For
s < t, the partial Malliavin derivative at time s with respect to the n — th component of W, denoted by D, is

i |1 ifn=j
an] — ’
st {0 otherwise.
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2. Main Results

2.1. Computation of Malliavin weights related to the interest rates

Our basic target is to compute (1) for any 0 < I < ¢, with y, 6 and p being positive real numbers.
Therefore, at first, we need to compute the Malliavin weights related to the interest rates, then the ones
related to the volatility and finally the Malliavin weights related to the underlining asset price.

Using the result reported by Kharrat and Bastin in [9], we can compute explicitly D;V;. Additionally, we
can deduce immediately D}r;. This result will be presented in the next proposition.

For 0 <s <<t let
by the integration of the process (3), r; be the solution of the following Stochastic Differential Equation
(SDE):

I I
r=rg f k (0, —ry)ds’ + f ar \rydWL, , (10)
q q

Y, be the unique strong solution of the following SDE:

/ /
n:14hfn@wj‘“rnmw, (11)
0 0 2

s

and Z; be the unique strong solution of the following SDE:

I 2 1
o o
Zi=1+ — +k,)Zyds' — 7 dW!, . 12

l fo(m L fozvr : -

Proposition 2.1. Let v;, Y; and Z; be as previously defined. For 0 <s <[ < t, we get:

D;T’l = GleZS \/T_s

In the next proposition, we shall use the stochastic integration by parts in order to provide the expression
of E(\W'(r)P(Xt, Vi, 1)) for any 0 < I < t and for any function ¥ € C;""(]R), where C;;""(]R) is the space of
bounded and infinitely differentiable functions.

Proposition 2.2. Let 1, Y) and Z, be as previously defined. For any 0 <1 <t and for any function ¥ € C;*(R),

we have:
i DM, ’ AW
: —j'@m+ : d{f : (13)
YIGV 1 Zs \/T’_S 1 YIZSGV 7s + D{;Ml

where M; = fz ' k(6—ry)ds’ + fz ‘o, VrsdW!, and C;*(R) corresponds to the space of bounded and infinitely differentiable functions.

W(r)Pu(Xy, Vi, 1)
t—1

EMY (r)Pu(Xe, Vi, 1)) = IE{

In order to prove Proposition 2.2, we need to define and prove two Lemmas .
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Lemma 2.3. Let 1, Y}, Z; and M, be as previously defined. We therefore have:

L AW!
]E(\IJ,(I"[)Pt(Xt, Vt/ rt)) — ]E (\Ij(rl)Pf(Xt/ Vt/ 7 + Ml) S )

Yio,(t—1) Zo s

- (\P(T’[)P (Xt, Vt, 14 +M1)f (O'rY[ Dr\/M_)d )

Proof. : Using the stochastic integration by parts, we have:

" uPy(Xy, Vi, 11+ M)
flt uy D, rids’

E(W (V)P(Xe, Vi, 1)) = B (r)Pe(Xe, Vi, 11 + M))) = E [‘I’(h) I o dW;

N—————

Knowing that D.,r; = Y|Zy0, VVy and let us = Hence, we get:

s\f

, W(ry) ft Py(Xy, Vi, 11+ M) )
E(WY (1)P(X;, Vi, 7)) = E odW;] ,
(W' (r)Pe(Xy, Vi, 11)) (Y,a,(t—l) Zr

where ﬁ is adapted. Thus, by using the Malliavin derivative, we have:

, W(r) f dWg " DY(P(X;, Vi, 1 + M)
E(W' (r)Py(X:, Vs, :]E—PX,V, +M - .
(W' (r)P(Xy, Vi, 1)) (Ylar( ) ( H(Xt, Vi ) AN 1 AN
Applying the Malliavin derivative, we obtain:
[P, Vi ry + M) L AW
Yio.(t = 1) 1 Zs TS
1

' t DIM
E \I’(rl)Pf(X,, Vt,r;+Ml)fl G,‘Y[-i- Zs\/r_s ds|. (15)

EMY' (r)Pu(Xe, Vi, 11)) (14)

O
Lemma 2.4. : Let r;, Y, Z; and M, be as previously defined. For any 0 < | < t, we have:

Pi(X:, Vi, 1 + M) ! 1
t—1 1 Y1 Zso,Ars + DIM

E@P;(X;, Vi, 11+ M) =E ( dWS’) . (16)

Proof. We have:

(\P(rz)P (Xo, Vi 11+ M) f (om 5 er)ds)

Ts

D'M
- E ]E(\I/(z’)Pg(Xt,Vt,rl+Ml) f (am+ : ’)ds)
1 ZsA\rs

=E (\If(z )f (arYl i\//fr_)ds]E(P (X:, Vi, 2" + M)

z’=r1]
z’=r1]

E([Pi(X:, Vi, 11+ M) f f — ° de] . (17)
uyD

Using the Malliavin derivative, we get:

EP{(Xe, Vi,ri+ M) =

" (r; + M)ds’
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Let us = m, which is adapted. Then, we have:
Py(X, Vin+ M) ([ 1
E@P;(X;, Vi, 1+ M) =E dwy| .
( t( tr Vs Tl I)) ( —1 : lesﬁr ’_7’5 +D§M;

O
After elaborating these two previous Lemmas, we may now prove Proposition 2.2.
Proof. : Relying on both Lemma 2.3 and Lemma 2.4, we obtain:
EW' (r)P(X, Vi, 11)) =

tdwr
woPx, Vi) | b 2 Ly DM ft W
t—1 Yio, A\ ZA\Ts \ Y\ Zyo, N + DIMy ||

where M, = flt k(O —ry)ds’ + flt or\redW.,, . O

Using the Malliavin calculus in the following theorem, we provide the expression of the conditional expec-
tation: E(Py(X;, Vi, r)lr = B).

Theorem 2.5. Let 11, Y;, Z; and M be as previously defined. Assuming that B is a positive real, for any 0 <1 < t,
we get:
]E(H(rl - ﬁ)Tn (Pt(Xt/ Vt/ rt)))

EH(r - p)Y7, (1))

IE(PL‘(Xt/ Vt/ rt)lrl = .B) =
where:

Py(Xy, Vi, 1) f Zs \/YT ' oY+ Dy ft dW;
=1 Yo, J 7T sv: YiZ.0, \Fs + DIM

Yr] (Pt(Xt/ Vt/ T’t))

and

(A DM ' dW!
Y, (1) = A f oY+ = ds f ) r
t— Z Y]T] Zs \/T_s 1 Y Z;so, \/r_s + Dle
where H is the Heaviside function with the convention that E(Py(X;, Vi, 1¢)lr = B) = 0 when, E(H(r; — f)Y4,(1)) = 0.

Proof. Using a basic result of Malliavin approach, we have:
E(W (r)Pi(X¢, 1)) = E(W (1) Y, (Pe(Xy, Vi, 1))
Grounded on Proposition 2.2, forany W € C°(R), we get:
EWY ()Y, (Pe(Xe, Vi, 1)) =

‘ dW' t t

W(r)P(Xy, Vi, 1) f DIM; f dW!
GrYl

r—1 Y,a, , Z\r Y1Z.0, \. + DIM;

By identification, the square integrable weight Y}, (P:(X;, V}, 1)) is defined as follows:

Pt(Xt,Vt,rt) fZ\/E

' M, ' dW!
Y, (Pi(X, Vi, Yi+ = )d :
P& Ver) = == 1 Y, T, ("r : zsvz) sz YiZ.0, \rs + DM
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Proceeding with the same logic, the square integrable weight Y, (1) is calculated as follows:

f AW
DM, t AW’
Y, (1) = 2Ny, DML g f -
- Yﬂ] Zs \/T’_s 1 YiZso, \Jrs + DiM;

O

2.2. Malliavin weights related to the volatility

Based on the result of [8], we provide the following lemma to determine the expression of the Malliavin
derivative DY V] associated with the stochastic process V.

Lemma 2.6. For 0 <s <[ < t, by integration of the process (2), V; stands for the solution of the following stochastic
differential equation:

) )
Vi=V,+ f k(6 — V,)dr + f NV, dw/, (18)

S; corresponds to the solution of the following stochastic differential equation:

! !
n
S=1—kf8dr+f , , 19
! 0 T 0 2 \/7” r ( )
and Q; is the solution of the following stochastic differential equation:
[ 2 !
Ui f n 4
=1+ dr — aw/, 20
-1+ [ G e 0

therefor, for every I, we have $,Q; = 1and DYV, = $,Qin V..

Subsequently, we set forward the expression of the Malliavin weights of the conditional expectation:
]E(Pt(Xt/ Vt/ rt)|(Vl = 6/ = ﬁ))

Theorem 2.7. Let V;, S;, Q; and N; be as previously defined and let 6 , B be two positive real numbers. For any
0<li<t,
EH(V) - 0)Yv,(Gx,v.(B)

E@Xe VerdlVi=0n=P) = —pmw—sv @)

where the Malliavin weights are written as follows:

Eawy
Yy, (Gx, v, (B)) = Gx,v.(B) ] QVV: f ( DVN’ )ds ft i (21)
] £V t—1 Sm s 1 SZQST]\/vs'i'D;/Nl
and
Yy, (1) = ft Qd‘VF ( T )d ft i “
s ,
vi t—Z S QVVi) i $iQin Vi + DYN,

where Gx, v,(B) = E(P«(X;, Vi, 14)lr1 = B) and H is the Heaviside function with the convention that E(Py(Xy, Vi, r)l(V) =
0,11 =Pp)) =0, when E(H(V; - 6)Yy,(1)) =0
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Proof. Referring to Theorem 2.3 of [8], we have the square integrable weight Yv,(Gx, v,(8)) which is equal
to:

G f e t DYN t dWY
Xz,Vf(ﬁ) I Qs VVs _ ( Yl + s LV )de s
1

Yv,(Gx,v,(B) = .
v(Gxvi(B) = — = Sm T 50NV + DVN;
and the square integrable weight Y, (1) which is equal to:

AWy

1 | ) o ft( DSVNz)
Ty (1) = — _ Y, + d
V;() F_1 Sim 1 ni; 0. ,—Vs

f* dWY

s )
1 SiQsnVVs +DYN,
O

2.3. Computation of Malliavin weights related to the underlying asset price

Based on Theorem 2.5 of [8], we make an extension in order to consider three stochastic processes. The
following Theorem exhibits the analytic expression of
E[P(X;, Vi, 1) | (X1 =y, Vi = 0,1 = p)].

Theorem 2.8. Let X; = Xjexp (flt rods + flt VVAWS - 1 flt Vsds), with 0 < | < t. We therefore have

E [H(Xi = »)Yx,(Fx,(6,8))]
E[HX -y)YxD)]

E [Pt(Xtr Vtr rt) | (Xl =7, Vl = 6/ = ﬁ)] =

where

9(Xp) (1 Laws 1 tdwfﬂ)
VI=p2x\Ldo NVZ t=1J1 NV

with Fx, (6, B) = E(Gx, v,(B)IV = 6), H representing the Heaviside function with the convention that E [Py(X;, Vi, 1) | (X = v, Vi = 9,1
0 when E[H(X; — y)Yx,(1)] = 0.

YXI (g(Xt)) =

Example 2.9 (American call option pricing). Let 0 =ty < t; < ... < ty = T, be a discretization of the time
interval [0, T]. Assessing an American call option can be specified using the following backward iterations

Pr(Xr, Vr,rr) = max{Xr - K,0},
Pt,‘(Xti/ Vtil rti) = maX { maX{Xf,' - K/ 0}/
eiy%]E [Ptm (Xl‘mr mer rti+1) I (Xt,/ Vtir rt,‘)] }/ i=k- 1...,0.

Using Monte Carlo simulations, the Malliavin weights indicated in Theorem 2.8 are approximated to compute the
previous conditional expectations.

Example 2.10 (American put option pricing). Let 0 = ty < t; < ... <ty = T, be a discretization of the time
interval [0, T]. Evaluating an American put option can be estimated using the following backward iterations

Pr(Xr, Vr,rr) = max{K - Xr,0},
Ptl(Xt,'/ Vt,-/ rt,') = maX { maX{K - Xt,'/ 0}/
e_r%]E [me (Xff+1/ me/ rtm) I (Xti/ fo/ rti)] }/ i=k-1,...,0.

3. Conclusion

In this research work, using the Malliavin calculus, we elaborated the expression of the expectation
conditionally to the interest rates, the volatility and the underlying asset price that we supposed to be
stochastic. We equally specified the Malliavin weights of these conditional expectations.
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