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Abstract. We characterize the boundedness and compactness of the differences of the Stevi¢-Sharma

operators from the a-Bloch spaces to the Zygmund-type spaces. Two examples related to the main results
are also given.

1. Introduction

Let ID be the open unit disk in the complex plane C and H(ID) be the space of all analytic functions on
D. Denote by S(ID) the set of all analytic self-maps of ID. For any a € ID, we let ¢,(z) = (a — z)/(1 — az) be the
involutive automorphism that exchanges 0 and a. The pseudo-hyperbolic metric on ID is defined by

p(zlw) = |(Pz(w) 7 Z/w € D/

which is essential in the proof of our main results. For simplicity, denote p(z) := p(@(2), Y(2)), for ¢, ¢ € S(D).
By W(ID) we denote the set of all positive continuous and bounded functions on ID (weights).
For 0 < a < oo, the a-Bloch space 8% consists of all f € H(ID) satisfying

Il =17@ +sup (1 - 122)" |f @) < co.

The little a-Bloch space 8 is a closed subspace of 8% consisting those f € 8% for which

fim (1= ) @) =0

For a strictly positive continuous and bounded function u on D, the Zygmund-type space Z,, is the set
of all f € H(ID) such that

Ifllz, = IfO) +|f )] + Sup 4(2) ()| < 0.
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The little Zygmund-type space Z,, ¢ is the closed subspace of Z, consisting those f € Z, such that
f/@)| =0.

Some investigations on these classical spaces can be found, e.g., in [1, 11, 12, 15, 16, 21, 27, 29] (see also the
related reference therein).
Given ¢ € 5(ID), associate to ¢ is the composition operator C,, defined on H(ID) by

Cof(@) = f(p()), zeD.
Let u € H(ID), the multiplication operator M, is defined on H(ID) by

M.f(2) = u@)f(), zeD.

The extensive research on the above operators and their differences can be found e.g., in [3, 4, 6, 7, 9,
23, 25, 26, 41]. Inspired by the relevant research results in [13] and [24], we consider the combination of
composition operator, multiplication operator and differential operator of order n € Ny,

(D8.f) @ = u(2) f"(p(z)), zeD.

If n = 0, then Dg is denoted as uC,, the weighted composition operator. The interested readers can refer to
[1,8,11,17,28, 31, 32, 45-47] and their reference therein. A generalization of the operator acting on spaces
of holomorphic functions on the unit ball in C" was introduced in [30], and studied also in [33-35].

Now letn € N, u,v € H(D) and ¢ € 5(ID), the Stevi¢-Sharma operator T}, , , (see, e.g., [39]) is defined on
H(D) by

Tioof(2) = u@f(PR) + 0@ f"D(p(2)), ze€D.

When n =0, Ty, , is denoted by Ty,

Recently, Stevi¢ et al. [37, 38] characterized the boundedness and compactness of T}, ,, on the weighted
Bergman space. In [36] was considered the Stevi¢-Sharma operator between the Hardy and a-Bloch spaces
on the upper half-plane. Liu et al. [19, 20, 42, 43] described the boundedness and compactness of T}, ;,,, from
several specific holomorphic function spaces to the weighted-type space or the Bloch-type space. Wang et
al. [40] investigated some properties of differences of two Stevié-Sharma operators from H®, A%, A, or H?
to the weighted-type space H;’. For some other results on these and related Stevi¢-Sharma operators see,
for example, [10, 21, 36, 39, 48, 49].

Especially inspired by [2, 18, 25, 32] and the characterizations of the (single) operator T}, , : 8% — Z,
we wish to investigate the boundedness and compactness of the differences of the Stevi¢- Sharma operators
from the (little) a-Bloch space to the (little) Zygmund-type space. This paper is organized as follows. In
Section 2, we prepared some relevant lemmas to pave the way for the proof of the main results. In Section
3, our theorem provides a natural and intrinsic characterization for the boundedness and compactness of
the difference T} ., , — T} v : B* — Z, as the main result. Section 4 presents some characterizations for
the boundedness and compactness of the difference from 8* (or 8() to Z, 0 and establishes the equivalent
relation between them. Some corollaries are presented in Section 5.

Throughout this paper, let C denote a positive constant and its exact value may change in different
circumstances. We write A < B (or equivalently B > A), if there exists a positive constant C independent of
the argument such that A < CB(or equivalently B > CA). And A ~ B means both A < Band B 5 A.

i
m 1(z)

uvq)

2. Preliminaries

In this section, we provide several lemmas to ensure the rigour of further proofs.

Lemma 2.1. ([44, Propositon 8]) Letn € N, a > 0, and f € B, then

n-1

Il ~ 3 |FOO) + sup (1~ 2F

i=0

)LY+V!—1

|f" ().
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Lemma 2.2. ([18, Lemma 2.1]) Letn € N, a > 0, and f € 8%, then
(1= 12P)"™" £~ (1= P)™" FO@)] < I1flls plz, ),
forall z,w € D.
The proof of the following lemma can be similarly traced back to [2, Lemma 2.1].
Lemma 2.3. Let n € N, a > 0. Then for any a € ID with a # 0, there exist functions gy, € B such that

(1 —|aP

(1 — 52)2(a+n—1+i) 4

)a+n—l+i

gr(z) = €{0,1,2,3}.

Proof. Let

o (1-1a8)" 1 s n+io2)
dhdty ---dt,,
Grial2) = f f f 1_ah )2<a+n D+ 7 T(Qa + 2n + 21— 2) 14r2

where a € D. By calculation, it is easy to confirm that it satisfies (1). Furthermore, fori € {0,1, 2,3},

(1 _ |a|2)a+n—1+i
(1 _ ﬁz)z(a‘*’n*l*i)

a+n—1+i
csup(1- ) (1 -1aP)
K su —|Z - -
ze]]IJ) (1 _ |d|)a+n71+1(1 _ |Z|)a+n—1+1

< 22(a+n—1+1) < o0,

g ()| = sup (1 - 2P

)a+n—1+z
zeD

)a+n—1+i

sup (1 — |z?
zeD

and using the method in [14], it is easy to prove that

(n+z) Z)’

a+n—1+i
) n ia

lim (1 = |z?
lz}gpl( Izl

which shows that g, ;, € By O

The following Lemma can be proved similar to Lemma 2.3.

Lemma 2.4. Letn € N, o > 0. Foranya € D\ {0}.
(1) Define

1_|| a+n1+1 a—t 1TQa+2n+i-1)
il (1 — gty 221 g TQer +2n + 2i — 1)

1 TRa+2n+i-2)
(1 B ml)za+2n+z—2 il I'Qa +2n+2i-1)

] dtidty - - - dt,,

we get functions hy,i, € B such that

a+n—1+i
(n+i) (1 B |a|2) (a-2)
h, ., ()= = gzpemat €10,1,2,3}.
(2) Let
1 .
rl’l Z,ﬂ(z) Vl+l’

5617

(2)
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it yields that functions r,,;, € B satisfying
Az =1, i€{0,1,2,3). ?3)

n,ta

(3) Set

4 t t
n 2 t
Pn,o,a(Z) = fo \fov .. >f0‘ Wdtldt2 dtn,

and fori € {1,2,3},

Z t q I(a+n-1) 1 [(a+n-2) 1
fo fo fo o [F(aﬁ-n}j—i i) (1 Ay r(ainrii =2) (1=at,)™" Z]dtldt2"'dt"' a+n>2,
n t
Puia@ =1 [ [ — w2y In (U —at)| dhdty - dt, a+n=2,
Z (t t q T(a+n-1) 1 T(a+n-1) (1-at;)?
fo fo fo 7 | Tlarn+i1) (1_an )1 T(@+n+i-2) (Zg—;—n) ]dtldtZ'”dt"f a+n<2,
we thus obtain functions py,;, € By such that
(n+i) Z
nza()_m 6{0,1,2,3}. (4)
(1-az)
(4) By choosing
. — a n+i 1 n+i+1
T = G T it
we get qy,in € BY and
"2y =a-z, i€{0,1,2,3} (5)
The following lemma is a slight modification of [5, Proposition 3.11].
Lemma 2.5. Let a > 0, n € Ny, uy,u2,v1,02 € H(ID), ¢, ¢ € S(D) and u € W(ID). Then Ty, , o~ uz o B —>
Zy is compact if and only if Ty, , =T} s bounded and whenever { f,,} is bounded in B* with f,, — 0 uniformly
on compact subsets of ID, then (T ( 1900 — Lioy . w) fo—0in Z,.

The following lemma will be used to show the compactness of operators to Z 0. It is proved similar to
Theorem 4.1 in [22], so we omit the proof.

Lemma 2.6. A closed subset L in Zp is compact if and only if it is a bounded subset and satisfies

lim sup u(2) |f”(z)| = 0
|z|—1 feL
3. Boundedness and Compactness of T" -1 B> Z,

nh,01,9 12,02,

Leta >0,ne€N,i€{0,1,2,3},u1,up,v1,v; € HID), @, € S(D) and u € W(ID). In this section, we present
some necessary and sufficient conditions for the boundedness and Compactness of T : 8% - Z,. Then

1,01 (P
we investigate the boundedness and compactness of the difference T7 B* —» Z,. For

Uq,01, (P uz U2, L/J
simplicity, we use the following notations.

Ao(p(2)) = u2)uy (2),

Al(p(2)) = p@)[2u; ()¢’ (2) + u1(2)p” (2) + 07 (2)],

Aa(9(2)) = (@)l ()¢’ "(2) + 20, ()¢’ (2) + v1(2)p" (2)], ©6)
A3(@(2) = p@)01(2)¢" (2),

Alp@)
(P# ( ) (1 ‘({7( )lz){H»nfli»l 4 e {0/ 1/ 2/ 3}
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In the same way, we can define Z,-(z/;(z)), Y4,(z) by replacing 11, v; and ¢ with uy, v, and ¢, respectively.

The following two propositions are routinely proved (see e.g., [36-38]).

Proposition 3.1. Let n € IN, @ > 0, u3,v1 € H(D), ¢ € S(D) and u € W(ID). Then the following statements are
equivalent.

1) Ty
@) 1"
©)

: B — Z,, is bounded.
1By — Zy is bounded.

Uy, 01, *

Ui, 01,9 °

: : [Aitp)
su . Z <
; zEIIIDD ‘(P#l( ; e (1 _ |(p(z)|z)a+n 1+i

Proposition 3.2. Letn € N, a > 0, uq,v1 € H(D), ¢ € S(ID) and p € W(D). Suppose that T,
bounded, then the following statements are equivalent.

(B> Z,is

ul 01,9 °

(D) T4, oy, : B = Ly is compact.
(2) T}, 00,0 : By = Ly is compact.
(3)

Zl ol Ao
imsup |p# ()| = sup —— T =
lp@I-1 Py |§0(2)|—>1 (1 - lp@EPR)*"

Define

conditionay :  sup |(p#0 (z)| p(z) < oo, sup |(p#0 (2) — Yy, (z)) < 00;
zeD zeD

conditiona; :  sup |(p#1 (z)| p(z) < oo, sup |(p#1 (2) — ¢y, (z)) < o0;
zeD zeD

conditiona, :  sup |q0#2 (z)| p(z) < oo, sup |(p#2(z) - gb#z(z)) < o0;
zeD zeD

conditionas :  sup |q0#3 (z)| p(z) < oo, sup |(p#3(z) - IP#S(Z)) < oo,
zeD zeD

Theorem 3.3. Let n € N, @ > 0, uy,up,v1,v, € H(D), @, € S(D) and u € W(ID). Suppose that any three of
conditions ag, a1, Ay, as are valid. Then the following statements are equivalent.

DT 00 = Ty, v : B* — Z, isbounded;
()T 00 = Thry 0, i : B — Z, is bounded;

(iii) The remaining condition holds.

Proof. Itis evident that (i) = (ii). Now, assume that the conditions a9, a1, 45, 43 hold, then for any f € 8%, we
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have

sup ,U(Z) '((Tzl 01,9 TZZ,UZ/’«P)f)H (Z)‘

zeD

3
=sup |} [f" @A E) - G EAWE)]
z€D 1i=0
3 . ,
=sup(} [Ps@ (1= 1p@P)"" " @) - ) (1-w@R) " )|
z&€D 1i=0
. | 7)
=sup Y {on @) (1= @) @) - (1- @) F )]

Iy
(=}

1

+n—1+i

F (1= @R) ™ ) (02 - @)

<Zsup(|<p# @lp@) + o4, @) — P4, @D) - flls: < oo,

i—0 2€D

where the inequality derives from Lemma 2.1 and Lemma 2.2. Further, repeating application of Lemma 2.1
enables us to obtain

(T = Ty ey ) FO)|
<[u1(0) f™((0)) + 01(0) F™ D (p(0))] + |2(0) F™ ((0)) + v2(0) ™V (w(0))|

—|(1- 0 20(+n—1 () 0 Ml(O) 11— 0 o\atn (n+1) 0 '01(0)
|( pOR) F e ) o +(1-1p©@PR) F" D (p( DT 0n™

1= poR) ™ o) 2 (1 pR)™ ) 2

(1= PRy a-wop ®
|u1(0)] [01(0)] |u2(0) [02(0)]
< - o
sifle [(1 iR (- |<p(0)|2)“+”] e ((1 WO - |¢(0>|2)“+”]
(11O + 010 [4(0)] + [02(0)]
<IIflls:
(1= lp@P)*™" (1= 1$(OP)
<l flls:
and
(TZl oLe nz 02, IP)fI(O ’
i [ + Q¢ © + 2O + [ OO [1,0)] + [12009'(0) + 230 + [0 09O ) g
Sl lige -
(1 _ |¢(0)|2)a+n+l (1 _ |¢(0)|2)a+n+l

slifllge
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Combining (7), (8), (9) and the fact that f € 8%, we have

|| u101<P uzvzlp f”

=T 000 - uz,vz,¢>f<o>| # [Tl = Tl ) O] + 599 1) (Tl = Th ) 2)

<IIfII3w+IIfII3w+Zsup P4 )] p@) + |91.2) - P1,2)]) - I fllse

i=0 zeD
<00,
which implies T o0~ uz o : B% — Z, isbounded. Thus, (iii) = (i) is established.
It remains to show (ii) = (iii). Assume T} p Tu2 o : B8y — Z,isbounded. Withoutloss of generality,

we suppose that conditions a1, 4,, a3 hold, then prove that Condltlon ag also holds. To shorten notations, we
writeD; = {w € D : p(w) =0} and D, = {w € D : Y(w) = 0}. If w ¢ D4, then taking the functions g, € B‘g
in Lemma 2.3 it follows that (1) holds, we have

n n
0o > H(Tul,v1,¢ - Tuz,v2,¢) In0,p(w) z

> sup @) 102151, (P + 12 (P = 129 (V) ~ 02N (0]
3
> | Y[Rl o @) — Aw)gsn )]
i=0

(1 - lp@)P)(1 - |¢(w)|2>]“*“
(1 - p(w)P(w))?

Z | Py (w) - lzb#o (w) (

o)

i=1

[Fo@ngs ) = ANy @)

(10)

(1 - lp@)P)(1 - |1,u(w>|2)]‘“”‘1
(1 - p(w)h(w))?

Z | Py (w) - QD#U(ZU)[

a+n—1+i (n+i)

—;I% )= va@)] - (1= lp@)P) gl (@)

3 a+n—1+i (n+1) +n—1+i (n+i)
=Y lpn @] |(1 - lp@R) ™ g o) — (1= 1p@R) T g )

i=1

(1 - |(p(w)| )1 - |¢(w)|2)]a+n—1
- P)P(w))?

2 |Pa, (W) — Py, (W) (

3
=Y (o @) = Y, @0)| + [94.0)| p@))..

i=1

By choosing the functions hy,ipw) € B in Lemma 2.4 (1) it follows that (2) holds, in the same manner, we
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have

> [Ao(p(w)) - 0 — Ap(ip(w))

o)

i=1

(T’le oL Tuz,vzﬂl’) h”'O"P(w)”

0—@@@ (@) - Y(w)
(1 = Py ()Pl

| AP, @) = D, W)

a+n-1

(1= lp@)?) (1 - lp@)P)
(1 - p(w)p(w))?

Based on conditions a1, 4y, a3, (10) implies that

(1= lpw)*)(1 - |¢(w)|2)]a+n_1
(1~ p@)p(w)?

(1 - lpw)*)(1 - |¢(w)|2)]a+n_1
(1~ p@)y )

wm%“‘w@ﬂgwwmﬁr”l
(1 - p(w)(w))?

R ll)#[) (w)

i=1

0 > Py, (w) - Bb#o(w)[

\Y

p(w)

Pa, (W) — IP#o(w)[

> | s, ()] p(w) - p(w),

and (11) implies that

a%amﬂaﬂwmmrw*
(1 - p(w)y(w))?

p(w) < oo,

lp#o (w) (

so we have

sup )(p#o(w)| - p(w) < oo.

welD\ID;

Therefore, considering that conditions a1, a5, a3 hold, we obtain

sup |y (w)|- pw) < oo, i€{0,1,2,3).
welD\ID;

Likewise, we can deduce

sup s @)|- p(w) < oo, i€{0,1,2,3}
welD\ID,

By (10) and conditions a3, a,, a3, we also have

aﬂwMWGAMMHT”*
(1 - p(w)P(w))?

o0 >

P, (W) — Yy (w) [

uﬂwwﬁaﬂwmmr”4
(1 aﬁwmy

Y @) (1 - lp@P)™" g o) - (1= i)™
2 | s @) = P, @)] = [, ()| - p(w)

= @1 (W) — Py (W) + Py (W) — Py, (w)(

> |y, (w) =y, (w)| -

3
p(@) = Y (|ps (@) = Ya(@)] + [, )| plav)).

5622

(11)

(12)

(13)

(14)
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for any w € ID\ID;. Substituting (13) into (14) shows that

sup s () — P ()] < o0. (15)

welD\(ID;UDy)

Then, combining (12) with (15), we can assert that

sup  (|pn,@)| - p(e0) + i, () = Yy, (w)]) < o0. (16)

welD\(ID; VD)

If w € ID; NIDy, then p(w) = 0. Taking the functions 7, ,w) € Bg in Lemma 2.4 (2) it follows that (3) holds,
we deduce that

00 n
~ ” 1,019 T“erzﬂl)) r”'of‘ﬂ(w)“Z
n

> |Ao(p(@) - Ao(w(w)) an
= |s (@) = i ()|
= |1 (@) p(@) + |1, @0) = P ()]
If w € ID,\IDy, then p(w) = |p(w)|. Choosing the functions p;, i pw) € B; in Lemma 2.4 (3) it follows that (4)
holds, we obtain

n n
00 > ||(Tul,vl,<p - Tuz,vz,gb)p"ro/@(w)||z
“

> ooy —2Y _ F )y —— 4

(1 - lp@)P)*"! (1 - p@yp) ™"
3
-2

i=1

2 |, ()| p(w) - Z (|<P#,-(w) — Py, ()| + |14, ()| P(ZU))-

i=1

[F@nps 060D = ANy )|

Further, applying the functions g, ow) € 8 in Lemma 2.4 (4) it follows that (5) holds, it follows that

e > H(Tzl'vl'ﬁo - TZZ/UMP) In0,0(w) Z

> |Zo<<p<w>> 0= Ag(@) - (p) - Y(@))|

[A M D) = FN )| (18)
2 |¢#0<w>|p<w> Z (s, a0) = s, @)] + [, (@) p(@))..
i=1

(18) together with (14) and conditions a1, a4, a3 entail that

sup |y, (w) — P, ()| < oo

welD,\ID;y

Hence

sup (| )] p(e0) + |1, (@) = P, (@)]) < oo, (19)

welD,\IDy
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In the same way;, it can be proved that

sup (|pa,(@)] p() + i (@) =, @)]) < oo. (20)
welD\ID,
In summary, by (16), (17), (19) and (20), we conclude that condition a9 holds. Similarly, if we want to
apply the other three conditions to prove that condition a4; holds, we only need to select the corresponding
Trn (@) M p(a0)s Trip(w) s Psisp(ao)r Gnjip(ew) @nd refer to the above derivation process to complete the proof. [

Next we sharpen this result and use Theorem 3.3 to show there exist uy, 1, v1,v, € H(ID) and @, i € S (D)
such thatneither T}, ,, ,nor T} isbounded butTj, , ,—T1" isbounded through an example. Referring
/01, 2,02, Uu1,01, U, 02,1

to Example 3.3 in [9], we provide the following example.

Example 3.4. Let n € N, a = 1 and u(z) = (1 - |z|2)ﬁ withn + 3 < p <n+3. We set

P =25y = L
Since
1+z
B
and
sup1+z+t-u':supu+u-z‘=l,
2D | 2 2 D | 2 2

we have @, € S(ID) whenever t is sufficiently small. Specifically, we consider the following special case, and we are
still exploring more general examples. Choosing

u1(z) = ux(z) =0, v1(z) =(1—2)log(l —2) +2z,
(@) =1 -2)log(l—z)+z+ V1 -z

In this case, by some calculations, we deduce that

(-

) (r)|

|(P#0(7’)' = W =0,

| (1’)‘ _ (1 - 1"2)}S Mll(r) + Ui’(r)| 3 4ﬂ+1(1 + T’)ﬁ(l _ r)ﬁ_n_z o

T T e T G :

| (r)‘ B (1 — rz)ﬁ |u1(7’) . All + vi(?’)' ~ 4n+2(1 + r)ﬁ(l _ r)ﬁ‘"‘2 ) log ﬁ N
e (3 + )2 :
[, (0] = - r2)’5 o) 4 _ 44l -nlog-n+r]

(1- |(P(r)|2)n+3 - (1 = r)+3-B3 + r)n+3 ,

as v — 1. Then Proposition 3.1 implies T}, is not bounded. For the same reason, whenever t is sufficiently small,

we have

1,01,

|1/z#,.(r)( -0, i€{0,1,2}, and |z,b#3(r)| — 00,

as r — 1. Then Proposition 3.1 implies T}, is also not bounded. On the other hand,

2,02,

lp#, @)lp(2) + | @1, (2) — 1, (2)] = 0,
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and

lp# @) + |p#(2) — Y1) < o0, 1€{0,1,2,3},

forall z € D. Thus Theorem 3.3 ensures the boundedness of Ty, , =T} " 1BY - Z,.
Next, we proceed with the compactness of T}, , =T} v : 8% — Z,. Let us denote the sets

() = {{zv} €D : | (zn)| = 1}, T) = {{zn) c D [ (zn)| - 1},

D(p) = { zytcD: '(p (zN)| -1, Z ((p# (zN)| -+ 0}

D) = {zN jcD: |¢(zN}—>12)¢#,(zN}+0}

i=0
Moreover for {zn} € I'(p) N I'(), we define

condition by = lim [p4,(zn)| p(zn) =0, Lim |s,(z) = i, (2n)] = O;
condition by :  lim |y, (zn)| p(z) = 0, lim [y, (2) = v, (2n)] = 0;
condition by :  lim |pa,(zn)| p(z) = 0, lim [¢u,(2n) — s (an)] = 0;
condition b3 : lim |<p#3 (zN)| p(zn) =0, lim )(p#3(zN) — g, (zN)| =0.

Theorem 3.5. Let n € N, a > 0, uy, 1, v1,v, € HID), @, ¢ € S(D) and u € W(D). Suppose that neither Th o,

nor TZ on is compact but they are both bounded and any three of conditions by, b1, by, bs are valid. Then the following

statements are equivalent.
DT e~ T, v : BY — Z, is compact.
@) T 00 = Th o, ' : B — Z, is compact.

(3) )D(p) = D();
(ii)For {zn} € T'(p) NI (), the remaining condition holds.

Proof. It follows immediately that (1) = (2). Now we assume (3) and conditions by, b1, by, b3 hold but

Toone — Thy p : By — Z, is not compact. Then by Lemma 2.5, we can find some ¢ > 0 and a bounded

sequence {fy} in B, which converges to 0 uniformly on every compact subsets of D such that
71
[T = o) A, > ¢
w

for all N. From the boundedness of T” and T" it follows that |( oue = Lo w) fN(0)| — 0 and

1,01, up,02,¢”

‘(Tﬂl e~ Lo xp fI(](O)' — 0as N — oo. Consequently, for any N, there exists zy € ID such that

Uz,02,

3
Y, [(p#, (zn) (1 ~|p )|’

i=0

a+n—1+i
) >e. (21)

e - ga e (1= el A )|

We have four cases to be considered.
@ {zn} € T(p) and {zn} € T(Y)

Since {zn} ¢ I'(p), there exists a compact set K € ID. Then we choose a set of subsequences such that
{p(zn)} € K. It can be inferred from the Cauchy formula that f(”“)((p(zN)) — 0as N — co. On account of

the boundedness of T} ,, ,, we further deduce

o4 (2n) (1 - '(p (zN)|2)aJr B f(”+1) (p@N)| =0, N - oo,
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for eachi € {0,1,2,3}. In the same manner we can see that

a+n-1

¥ ) (1= [ @ TR |20 Now,

for eachi € {0,1,2,3}. These contradict (21).
@ {zn} € I'(p) but {zn} ¢ T'(Y)

In this case, we have {zx} ¢ D(¢p) because D(¢) C I'()) N I'(p) by (i). Therefore Z?:o |p# (zn)| — 0 as
N — co. From Lemma 2.1, it yields that

s, (zN>!~(1—)<p<zN>12) T ()| 5 0, N oo,

foreachi € {0,1,2,3}. By the same way as @, we can get

a+n—1+i .
o @l (1=l @f) I e -0 Now,

for |1,b (zN)| -+ landi € {0,1,2,3}. From the above two equations, we obtain a contradiction with (21).
® {zn} € T(¥) but {zn} ¢ T(¢p)
This follows by the same method as in @.
@ {zy} €eT(@) NT (W)
In this case, according to conditions by, b1, by, b3, we have

2)0(+n—1+1

P(zn) - (1= lp(zn)

£ pan)) - ) - (1= pen)P) ™ A ]I

)a+n71+1 )a+n—1+1

3
<Y onen) | (1= to@R) ™ Rt - (1= eP) T A ]|
i=0

+

3 . .
Y (1= 10@R) ™ ) - (pn ) — Paen)
i=0

3 3

<) |onn)| - pan) +
=0

a+n—1+i

(1-1p@n)P) S Wan)) - (Pa(zn) — Pa ()
O

i=

W

[lps 23] pan) + s an) = i (zn)]] = 0, N = o0,

i=0

where the second and third inequalities follow from Lemma 2.2 and Lemma 2.1, respectively. This is also a

contradiction according to (21). Hence, we have T, 0 T”2 o : B* — Z, is compact and thus (3) = (1)

is established.
We only need to prove (2) = (3). Assume thatT; , ,—T} P : B — Z, is compact, but neither T, ,, ,
nor T, ., is compact. Without loss of generality, we suppose that conditions by, b», b3 hold, then prove that

condition by holds. Proposition 3.2 implies that there exists a sequence {zy} € D(¢p)

Z?:o |(p#,. (ZN)| - 0 as N — oco. The functions gy,ip(zy) and hy,i () defined in Lemma 2.3 and Lemma 2.4 (1)
are all bounded in B and converge to 0 uniformly on every compact subset of ID as N — oco. By Lemma
2.5, taking the functions g,,0,p(zy) and hy,0,p(y), we have
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0<—|

n n
(Tul,leﬂ - Tltz,vz,llJ)gﬂ,O,(P(ZN) z
“

Ao(p(zn))

>

1- |p(zn)P ]1
(1 - p(zn)P(zn))?

1 —_
(1= lpGR)™" T AO(IP(ZN))(

3
i=1

- Y| e - fi(lp(zN))ggggg(zm@(ZN))]’

2

1l (1 - [yenR)) ™
(1 - PP ()P

P (2N) — Py (2N) [(

3
- Z (|(P#,-(ZN) - 4’#,-(ZN)‘ + |‘/’#,-(ZN)| P(ZN))
=1

1

and

0<—|

(T2 o = Tl Bt Z,

a+n-1
(1-lpEP) ™ (plen) — )

A -0 - A —
o(p(zn)) o(¥(zn)) a- q0(ZN)llb(zl\]))z(aJr;q—l)Jrl

>

L

1

1- 2 1- 2 a+n-1
+ Lo | L2 2E0R) (1~ )
(1 - p(n)P(zn))?

[E@(zm)g(””’ (@(zn)) = A (zn)g") (z,b(zN))]]

3
1n,0,0(zn) 1,0,¢(zn)
=1

p(zn)

~

3
- Z (|(P#,-(ZN) - ll)#,-(ZN)( + |1,D#;(ZN)| P(ZN))-
=1

1

Based on conditions by, by, b3, combining (22) with (23), we obtain
Jim [s, (z)] p (2v) = 0.
Therefore, considering that conditions by, by, b3, we have
Jlim [y, (zv)|p (2n) =0, i€{0,1,2,3),

which implies that

lim |2 (zn) — ¥ (2n)
m |
N=<11 - ¢ (z2n)¢ (zn)

= lim p(zy) =0

N—oo

5627

(22)

(23)

(24)

according to {zn} € D(¢). It follows that [{(zn)| — 1 as N — oo, i.e. {zy} € I'(¢). Thus D(¢) C I'(p) NI ().
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Further for any {zn} € I'(p) N I['(y), it yields from (22) and conditions b, by, b3 that
(1= lp0P) (1 - )™
- @(zn)P(zn))?
Vi) (1= o)™ 90 ()
- (1= @) 0 )|
2 | s (2n) = s, (2n)] =[5, )| - p (o)

0«

P (zn) — Py (2N) -

> |, (2n) — )| -

as N — . Then
I\ljlg}o |(P#U (zn) — Yg, (ZN)) =0, (25)

since p(zny) — 0. Hence for arbitrary {zy} € I'(p) NI'(y’), combining (24) with (25), we conclude that condition
bo holds. Furthermore (25) together with the fact that D(¢) € I'(p) N I'(¢) confirms that D(¢) € D(¢). In the
same way, D(¢) € D(p). Therefore D(¢) = D(y). We can assert that (2) = (3) holds. O

To further deepen our cognition of this result, we will provide an example to apply Theorem 3.5. The
following example refer to Example 3.3 in [9].

Example 3.6. Letn € N, a = 1and u(z) = (1 - 2P with = (n +3)/2. Set

V1+z V1 a4 ' —
P(z) = \/_wj P()=1-V2- V1-z

then @,y € S(D). In particular, we consider the following special case. We are still exploring more general examples.
Choosing

u(2) =u(2) =0, v1(z)=1-2% wa(2) =2z — 222

It is easily to check that

lpa ()l ~ (1= fz)ﬁ :

|t ] =0,
pnl~(1-7) "% 5o,
prl~ (1 rz) Tleo,
Pl ~ (1=~ =10,
ast— 1, ie. [p(r) = 1. And

sup |ps,(2)] < 0, i€{0,1,2,3).
zeD

On one hand, Proposnfzon 3.1 and Proposition 3.2 imply Ty, ,, , is bounded but not compact. In the same way, it
conﬁrms that T, on is also bounded but not compact. On the other hand, we deduce that I'(p) = T'(1)) = D(¢) =

D) = {{zn} C ID zy = lorzy — =1, N — oo}. It follows that
lim [l @n)] p () + s, (n) = o, (20| =0, i€10,1,2,3),

for {zn} € I(@) N I'(Y). Then Theorem 3.5 shows that the difference T} -1 : By — Z,, is compact.

Uy,01, Uz, 02,1 °
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4. Boundedness and Compactness of T" -1 1 8% = Zyupo
#,91,9 12,02, 0 g
In this section, we concentrate on the boundedness and compactness of Ty ,, , — T} o B — Zyo-
Define

condition ¢y : é}{nﬂ |g0#0 (z)| p(z) =0, égn}l |(p#0 (z) — Y, (z)| =0
condition ¢; : |l}m1 |g0#1 (z)| p(z) =0, |l%m1 |(p#1 (z) = Py, (z)| =0;
condition ¢; : |l}m1 |q0#2 (z)| p(z) =0, |l%m1 |(p#2 (z) — Y, (z)| =0;

condition c3 : Il}rrg |q0#3 (z)| p(z) =0, lim |(p#3(z) — P4, (z)| =0.
2| —

|z]—1

Theorem 4.1. Letn € IN, a > 0, uy,up,v1,v, € H(D), @, ¢ € S(ID) and . € W(D). Suppose that T} T"

w019y, 0p :
B* — Z,, is bounded and any three of conditions co, c1, 2, 3 are valid, then the following statements are equivalent.
(H 17! -T" : B — Zyp is bounded.

Uy,01,9 uz,?)z,l/)
n _Tn . QR ;
2) T o~ Ty on, v By — Ly is bounded.

(
(3) The remaining condition holds.
(4) Forie {0,1,2,3},

lim lp(2) - (2) - max{| (@), A @)} = 0, (26)
and
lim |A(p(2)) ~ A,y (2)| = .
(5) Fori€{0,1,2,3},
lim |p(2)4i(p(2)) - pDAWE)| =0, 27)

lz|—>1

and

lim |Ai(p(2)) - A(p(2)| = 0.

|z|l—1

Proof. (1) = (2). The proof is straightforward.
(2) = (3). Analysis similar to that in the proof of (2) = (3) in Theorem 3.3 shows that it is trivial.
(3) = (1). This follows by the same method as in the proof of (3) = (1) in Theorem 3.3.
(3) = (4). Setting f(z) = z", we have

Ao(@(@) = Ao@)| = 1@ [(Thy v = Tharnw) £) @] = 0, (28)

as |z| — 1. Since

0@ - Y@ [Ailp@)| < |pn @] p@), i€ 0,1,2,3,
we have

lim p(@) - Y@ -|Ailp)] =0, i€0,1,2,3).
Likewise, we obtain

lim p(@) - y@)-|AiE)| =0, i€(0,1,23)

Therefore, it can be inferred from the above two equalities that (26) holds.
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Fori € {1,2,3}, by the Taylor series of (1 — z)¥, we deduce that

Aip(2) - A(@)

Ailp(2))
= - (1= |p(2)
(1 _ |(P(Z)|2)a+n71+l ( (P V4

wn—1+i Ai((2))
) (1= p@)P
) (1 _ |‘{’b(z)|2)a+n*1+l ( lp(z)

)a+n—1+i

Ma+n-1+i+1)

- k
=|Pn(a) [1 * ;(_1)k Tarn-tTri-prasrD (2OF) ]

Ta+n—-1+i+1) k
s [1 + LV e Wer) )‘

k=1

= Ta+n—1+i+1) k
P2(2) = (D) + P (2) k};<—1)" Tern1r—presn (P@F)

lMa+n-1+i+1)

- k
~pula) ;(_1)k Tarn-TrioprarD (YOr)

o Ta+n—-1+i+1) k
*Pu(z) ;(—1) Tt iriores D (Wer)

lMa+n-1+i+1)

= k
¥l ;(_1)k Ta+n-1+i-kTk+1) (lv@)F)
< w2 — 4 (2)|

o @) Y0 ey [(e@r) - (ver) ]
=1

o]

IMa+n-1+i+1)

tlon@ - w@| LV e - (ver)

k=1

k

Firstly, we observe that

= k IMa+n-1+i+1) ok
;‘(—1) ‘Ta+n—-1+i-kl(k+1) ‘(|¢(Z)|) < oo.

Since

= Tla+n—1+i+1) k
Z::(_l)k Ta+n—1+i-klk+1) (y@P)

—_

k:
<i Ta+n-1+i+1)
SLT(a+n-1+i-kk+1)

k=1
and the calculations

T(a+n—1+i+1)

lim k(l _ Tarn-T+i—k-DI(+2) ]

[ T(a+n=1+i+1)
T(a+n-1+i—-k)I'(k+1)

=limk-(1—k+2_n_l_a

k—o0

=a+n—-1+i>1

5630

(29)
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it easily follows that

)

k IFNa+n-1+i+1) N
;(_l) Ta+n-1+i-Tk+1) '(|1P(Z)| ) < 0.

Consequently, we can estimate the first and third terms of (29) as i € {1,2, 3}

|42 = Y4 )|
= Ta+n-1+i+1) k
+lon@ = @] Y1) T(a i kl)l"(k T (W’(‘Z)F)

k=1
< o (@) — ¥, (2)| -

For the second term of (29), we assume |p(z)| > [(z)| and apply the fact

- v Da+n-1+i+1) k-1
;(_l) Tla+n—-1+i-kIk) (|(p(z)|2) <%

to deduce that

- I( —1+i+1) k k
P, (2)] - ;“Dk T i S kl)Jrr(k ) [('(P(Z)'Z) - () ]

3 ' ) 2.m_ v Ta+n-1+i+1)
= [ex @] (e ~lyp@P) k;x Yt nTT BTG

(lp@PE + lp@PED - [P + -+ lp@P - [P + 19 )PE)

' 2 o Vg Da+n—1+i+1) *-1)
<len@|- (P - WEP) I;‘( e a1 s R

la+n-1+i+1) k-1

=los@]- (0@ = @) V' o T (W)

IFa+n-1+i+1) k-1

<4lpn (@) p)- k2<—1>k Tarioirion PEr)
=1

< s @) p@).

Substituting (30) and (31) into (29), it follows that

Aip@) - L) < lpa (D) - vu @] +lpn | - p@), i€ 11,23,

for |p(z)| > [P(z)|. In the same manner, we also entail

[Aip@) - A @) < lpn @ - er @] + [0 p), i€ (1,23,

5631

(30)

(31)

(32)

(33)

for |p(z)| < [Y(z)|. Hence, combining (32) and (33) with the condition (3), and considering the conclusion of

(28) we conclude that

lim |Ai(p(2) - A =0, i€(0,1,2,3).
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(4) = (5). Fori€ {0,1,2,3},
[P A0 ) - Y@ AWE)|
< |@0@ - v@) - (Aip@) + A @) + [0@) + v@) - (Alp@) - L)
<1p@) - v - ([Ae@)] + |Awe)|) + [Ae@) - Awe)|
Therefore, based on the assumption, we can prove (27) holds.

(5) = (2). We set fi(z) = 2,1 € Ny, then f; € B3,
@ﬂ e~ Thaoso) fi) @)

=Zﬂﬁﬂwmﬁwwwﬁwwwﬁwwﬂ

i=0
3
i=0

When ! > n + 4, we have

—— () " Al p(2)) —

o e A

(+)'

(P@) " Alp(z) -

@) A; (#}(Z))]

[(nﬂ)' ( + )'

(@) Ailp(2) - )" AW )

(n + z)'

N

DﬂwHY% pqm

n+mﬂ¢"'W4\¢aAww»—waAw@w
i=0

‘ —n—i— 1(z)¢(z)| |A (p(z)) — A W(z)) |
+ |1P(Z)| . |(Pl n—i— 1(Z)A(§0(Z)) _ 17[)1 n—i— 1(2)1&(110(2))”
3
<Y [[eAoe) - v Awe)
i=0

'A (p(z)) — A i(Y( Z))'
w¢"f%mmm»—¢%“wﬁwmﬂ'

Repeating the above iterative steps, we have
u@ﬂ (Thyor = Thos) £) @)
[#@A@@%¢MA¢Q|LMMm A (34)
When 0 < < n + 4, we only need to show that

lim | (p(2)*Ai(p(@) - (W@ A )| =0, (35)
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where i € {0,1,2,3}, k € Ny, such that 0 < k < 4 —i. It follows from the assumption that

lim o)A, (p(@) ~ $EAWE) =0,

lim | (2)) - A )] =

The rest of (35) can be obtained by applying the above iterative scaling method. Hence, when0 </ < n+4,
(34) is also holds.

Thus, we obtain (T T o, w) fie Zuo,80 ( ione — Lo )p € Zy, for all polynomial p. Since the

U101, U202,
polynomial setis densein Bfand T}, ,, ,— T}, ., , : Bj = Zyisbounded, we have (Tf,’l 010~ Lityom, LP) feZuo
for f € B7. Hence, the proof of boundedness of T} ,, , = T} ' : B — Z,0 has been completed. O
Next, we characterize the compactness of T}, , , =T}, o 185 — Z,0-

Theorem 4.2. Let n € IN, @ > 0, ug,u,v1,v, € H(D), ¢, ¥ € S(D) and u € W(ID). Suppose that any three

conditions co, c1, 2, 3 are valid. Then T}, o= TZZ o : Bf — Zyp is compact if and only if the remaining condition
holds.

Proof. Suﬁiciency According to the equivalence relation between condition (2) and (3) in Theorem 4.1, we
have T" : B — Z,0 is bounded.

u oL, uz v, "

Let L = { feB; lfllg: < } be a closed subset in Bj. Following the calculations in (7), we have

ll}m suP H(Z) ' ( u,o1,p uz V2, IP)f (Z)'

3
s lim ) sup (lpn @)] p(2) + o (2) = P @)]) =0
A7 00 feL

Lemma 2.6 implies the difference Ty , , — T} P : B — Z,p0 is compact.

. " - " . .
Necessity. Assume Ty ., o~ TM2 o - BO - Z 1,0 is compact and any three of conditions ¢y, c1, ¢, c3 are

valid, thenitis evident that T}, , , —T} v’ By — Zypisbounded. Similarly, according to the equivalence
relation between condition (2) and (3) in Theorem 4.1, it is proved that the remaining condition holds.

In sum, we have proved the compactness equivalence condition of Ty , , =T} ' 185 — Zyo- O
Remark 4.3. The conclusions of Theorem 4.1 and Theorem 4.2 can be summarized by saying that the boundedness

n
and compactness of Ty, o, , =T} v : B) — L0 are equivalent.

5. Some corollaries

In this section, we degenerate the conclusions of Ty , , — T} - Letor =0, =0in (6), the following

corollaries are valid.

Corollary 5.1. Letn € N, a > 0, uy, up € H(D), ¢, € S(ID) and p € W(ID). Suppose that any two of conditions
ap, 11,0, are valid Then the following statements are equivalent.

(1) D, — W 1 BY — Z, is bounded.

(2) D, — : B) — Z,, is bounded.

(3) The remaining condition holds.
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Corollary 5.2. Letn € N, & > 0, u1,u € H(D), ¢, ¢ € S(ID) and p € W(ID). Suppose that neither Dy, nor Dy .,

is compact but they are both bounded and any two of conditions by, b1, by are valid. Then the following statements are
equivalent.
(1) Dg,., D" 1B > Z, is compact.

(2) D, DZ " : By — Z,, is compact.

(3) ()D(p) = D(y);
(ii)For {zn} € T'(p) NI (), the remaining condition hold.

Corollary 5.3. Let n € N, a > 0, uy,up € H(ID), ¢, € S(D) and yu € W(D). Suppose that Dy, nor
D’:U o B* — Z, is bounded and any two of conditions co,cy,cy are valid, then the following statements are
equivalent.

(1) DY 1 B — Z, 0 is bounded.

U w 1
(2) Dg,, - Dz u, - By = Lo is bounded.
3) D(P " D” B" — Ly is compact.
(4) The remamzng condztzon holds.
(5) Fori € {0,1,2},

lim fp(z) — Y(2)| - max {| ¢
lim | A (2)) - Ai@)] = 0

(6) Fori e {0,1,2},

lim |p(@)4(p(2) - PRAWE)| =

|z|l—1

lim |A(p(2)) - A(2)| =

|z|l—1

Further fixing u; = up = 1, the above corollaries can degenerate the difference of C,D" — CyD". On the
other hand, choosing 11 = u,u> = 0 in the above corollaries, it confirms that the corresponding results in

[1].
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