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An iterative algorithm for split equality of variational inequality
problem of a finite family of pseudomonotone mappings
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Abstract. This paper presents an iterative algorithm for approximating a solution to a split equality varia-
tional problem involving a finite family of pseudomonotone mappings in Hilbert spaces. We demonstrate
the strong convergence of the sequence produced by the algorithm to a solution of the problem in Hilbert
spaces, under the assumption that the mappings are uniformly continuous. Additionally, we apply our
main findings to solve split variational inequality and split equality zero point problems for a finite family
of pseudomonotone mappings in Hilbert spaces, expanding on existing literature.

1. Introduction

The split equality problem was first introduced by Moudafi [7] and has garnered significant attention due
to its applications in various fields such as decomposition methods for partial differential equations, game
theory, medical image reconstruction, and radiation therapy treatment planning. The concept of variational
inequalities has been utilized as an analytical tool in a wide range of disciplines including engineering,
physics, optimization theory, and economics. Stampacchia [11] and Fichera [2] introduced the variational
inequality in 1964, in potential theory and mechanics, respectively, as a means to study differential equations
ininfinite-dimensional spaces with practical applications. The variational inequality problem combines key
concepts in applied mathematics such as systems of nonlinear equations, necessary optimality conditions for
optimization problems, complementarity problems, obstacle problems, and network equilibrium problems.

Pseudomonotone mappings, introduced by Karamardian [4], generalize the concept of monotone op-
erators and have been extensively studied for over 40 years. They have found numerous applications
in variational inequalities and economics. Various authors have explored pseudomonotone variational
inequality and split equality variational inequality problems in Hilbert space using different iterative algo-
rithms and classes of mappings. For instance, Shehu, Dong, and Jiang [10] introduced a single projection
method for pseudomonotone variational inequalities in Hilbert space in 2019. Reich, Thong, Dong, Li,
and Dong [9] proposed new algorithms and convergence theorems for solving variational inequalities with
non-Lipschitz mapping in 2021.

Several authors have also studied the split equality problem for variational inequality problems, known
as the split equality variational inequality problem. For example, Wega and Zegeye [12] developed an
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algorithm for approximating solutions to split equality monotone inclusion problems and obtained strong
convergence results in 2020. Izuchukwu, Ezeora, and Martinez-Moreno [3] proposed a new modified
contraction method for solving a certain class of split monotone variational inclusion problems in real
Hilbert spaces in 2020. More recently, Kwelegano, Zegeye, and Boikanyo [5] introduced an iterative
method for split equality variational inequality problems for non-Lipschitz pseudomonotone mappings in
2021.

Motivated by the research works of [3, 5, 12], the goal of this paper is to study iterative algorithms
for approximating a common solution to split equality monotone inclusion problems for a finite family of
pseudomonotone mappings in Hilbert spaces. To facilitate this study, we provide some necessary notions
and definitions. Throughout this research, we use (VIP) to denote variational inequality problems, (SEP)
for split equality problems, (SEVIP) for split equality variational inequality problems, H for a Hilbert space,
and C for a closed, non-empty, and convex subset of a Hilbert space.

Definition 1.1. Let T : C — H be a mapping.

i) T is called an L-Lipschitz mapping with Lipschitz constant L > 0 if ||[Tx — Tyl|| < Lllx — yl| for all x,y € C. If
0 <L <1, then T is a contraction. If L = 1, then T is nonexpansive.

ii) T is called a monotone mapping if (Tx — Ty, y —x) > 0 forall x,y € C.
iit) T is called a pseudomonotone mapping if {Tx,y — x) > 0 implies (Ty,y —x) > 0 forall x,y € C.

We note that pseudomonotone mappings are more general than monotone mappings.

Definition 1.2. Let A : C — H be a mapping.
The variational inequality problem is formulated to find a point x* in C such that for all x € C,

(Ax*,x —=x*) 2 0. 1)
The solution set of (1) is denoted by VI(C, A).

2. Preliminaries

In this section we recall some known results which are used in our subsequent analysis. The projection
mapping P, : H — C is defined by

IPex = x|l = infyellx = yll, (2)
and hence, P. satisfies: ||P.x — Pcyll2 <(Px—Py,x—y), forallxyeH.

Definition 2.1. The mapping T : C :— H is called sequentially weakly continuous if for each sequence {x,}, we have
{xn} converges weakly to p implies {Tx,} converges to Tp.

Lemma 2.2. Forall x,y € H, it is known that the following inequalities hold.

i) 2¢x, y) = |IxI? + llyl”* — llx — yI*.
i) llx+ yll* < IxlP? + 2y, x + v).

Lemma 2.3. Let x € H. Then
P.x € Cifand only if (y — Pcx,x — P.x) <0, for every y € C. 3
This result implies that for all x € H

IPcx — z|I* < |lx — 2I* = ||x = P.x|*z € C. (4)
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Lemma 2.4 ([6]). Let {ax} be a sequence of real numbers that does not decrease at infinity, in the sense that there
exists a subsequence a; of {ax} such that A, < k41 forall j > 0. Define an integer sequence {}ix, as

me = maxiky <1 <k:a <aj1}.
Then, my — oo as k — co and for all k > ko
max{am,, A} < Ayt
Lemma 2.5 ([13]). Let {a,} be a sequence of nonnegative real numbers satisfying the following relation:

a1 < (1 — ap)ay + ayyy, for n > ng where {a,} € (0,1) and {y,} € R, satisfies

Z ay = oo, and limsup y, < 0. Then lim a, = 0.

n—oo
—00
n=1 n

Lemma 2.6 ([8]). Let H be a real Hilbert space, for all x; € H and a; € [0,1] for i = 1,2,3,..n, such that
ar +ap +as + ...+ a, =1, the following holds:

n
2 2 2
llagxo + ey + .+l = Y el = Y aiarjll = ;1
i=0 0<i,j<n

Lemma 2.7. Let r(x), be a real valued function on H and defined K := {x € C : v(x) < 0}. If K, is nonempty and r is
L-Lipshitz continuous with L > 0, then

1
[|[Pxx — x|| = I max{r(x), 0}, for x € C.

3. Main results

In this section, we shall make use of the following assumptions:
Assumption 1:

Al: Let T1,T, : Hi — H;j and S5,5; : Hy, — H; be sequentially weakly continuous and uniformly
continuous pseudomonotone mappings on bounded subset of H; and Hj, respectively.

A2: Let Q:={(p,q) e Hi xHy : p € VI(C, T1) N VI(C, T2),q € VI(D, S1) N VI(D, S») and Ap = Bg} # 0, where
A:H; — Hzand B : H, — Hj are bounded linear mappings with adjoints A* and B, respectively.

A3: Lett€(0,1),u>0and 6 €[5,61 (0, ;)

A4: Let {a,} C (0,€) for some constant real number € > 0 be a real sequence such that,

[ee]
lim,ett, =0, and Za” = 0.

n=1

A5: Let g3 : Hi — H; and ¢» : H, — H; be contraction mappings with constants a;,a, € (O,\L@),
respectively and we denote o = max{ay, as}.
A6 : Let the sequence y, satisfies

lAx, — Bthz

0<é<y, < ,
V |A*(Ax, — Bt,)I? + ||B*(Bt, — Ax,)|?

forne Y

otherwise, ¥, = ¥ > 0, such that the indexes

Y={ne N:Ax, - Bt, #0}.
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Algorithm 1. For arbitrary (xo, tp) € Hi X Hy, define an iterative algorithm by

Step 1. Compute

Zin = Pc(xy, — 6Tix,) and d;(x,) = x, — zin, for i=1,2, 5)
ui, = Pp(t, — 0Sit,) and di(t,) = t, —u;,, for i=1,2.
Step 2. Compute
Yin = Xn — Yind(x,), for i=1,2. ©)
Oin =ty =Y, d(ty), for i=1,2,
where, Y;, = Ui" such that j;, is the smallest nonnegative integer j; satisfying
(Tity = Ty = Vi), din)) < pilldiCxa)I,
and Y}, = /in such that Ji , is the smallest nonnegative integer j satisfying
(Sitn = Siltn = Vidi(tn)), di(ta)) < plldi(ta)|I.
Step 3. Compute
a, = Pc(x, — ynA*(Ax, — Bty),
b” = PC(tn — ’)/HB*(Btn — Axn), (7)

wy = Opa, + ,Bnpl,n + NuP2,n,
Ty = ann + ,Bnq1,n + NMnq2,n
where C;,, = {x € H : hi = (Yin — TilYin, X — Yin) < 0},
Di, ={x€H:ein = 0in=5in, x—0in) < 0}and {0,}, {B.}, {1} C [p, 1) for p > Osuch thatf,+0,+n, =1
foralln > 0 and p;, = Pc,,Xn, qin = Pp,,tn fori=1,2.
Step 4. Compute

Xn+l = angl(xn) + (1 - ay)wy,
fpp1 = anﬂZ(tn) + (1 = a,)r,.

Step 5. Setn :=n+ 1 and go to Step 1.

Lemma 3.1. Suppose that the assumption A1—Az hold, and {x,}, {tn}, {Vin}, (zin}, {ttin}, i)} arve sequences, generated
by Algorithm 1 for i = 1,2. Then, the search rules in step 2 are well defined.

Proof. Since 1 € (0,1), T; and S; are uniformly continuous on H; and H, respectively, we have
(Tixy = Ti(xy = Vidi(x)), di(x)) = 0 as j; — oo,

and
(Sitn = Silty — Vidi(t)), di(tu)) — 0 as ji — oo.

Moreover, since [|d;(x,)|l > 0 and [|d;(t,)I| > 0 there exist a non-negative integers j;, and j’ , satisfying the
inequalities in Step 2. [
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Lemma 3.2. Suppose that the assumption Ay — Az hold. If {x,}, {ta}, {Yin), (zin), {Win}, {vi,) are sequences generated

by Algorithm 1, then
1
(Tixn, di(xn)) 2 glldf(xn)ll2

and
1 2
(Sity, di(tn)) = Sndi(tn)” .

Proof. From equations (5), forn > 0 and i = 1,2, we have,
llxn = Pe(atn = 0Tixa)lP < (= (0 = 0Tix), X = Pl — 0Tixy))
KTixy), xn — Pc(xy — 0Tixn)),
which implies (Tixy, di(x)) > 1lIdi(x,)I.
Similarly, we get (Sit,, di(ty)) > $ldi(t)I*. O

Lemma 3.3. Suppose the assumptions Ay — Az holds. Let (p,q) € Q, let hi,(x,) = (TiYin, Xn —

ein(tn) = {Sivin, Xy — Vi n). Then,
1
hin(p) 0, ein(@) <0, hi(x) 2 Yuls = wlldixa)I?,

1
and e; ,(t,) > Y;(S — Wi

In particular, if di(x,) # 0 and d;(t,) # 0, then h; ,(x,) > 0 and e; ,(t,) > 0.

Proof. For the fact that (p, q) € (), we have
(Tip, yin—p> 2 0.
This inequality and the fact that T; is pseudomonotone mapping, we obtain
hu(p) = {Tiyn, Yin —p) 20,

which gives us,

hin(p) = (TiYin, P — Yin) < 0.

Similarly, we obtain ¢;,(q) < 0. In addition, from Step 2, of Algorithm 1, we have,
hin(n) = TilYin, Xn = Yin) = {Tilin, Xn — (X0 = Yudi(xn)) = (TiYin, di(x,)).
Furthermore, from the inequalities in Step 2, we have,
(Tixy = Tiyin, d(xa)) < plldCxa)II?,
which implies
(Tilin, di(xn)) = (Tixtn, di(xa)) = plld(xa)I

From Lemma 3.2 and inequality above, we obtain

(T ) = (5 = IR

Yiny, and let



M. A/Gojjam et al. / Filomat 38:16 (2024), 5637-5654 5642

By combining (8) and (9), we obtain,

1
hi,n(xn) = Yn(g - H)”di(xn)uz-
Similarly, we obtain,
, 1
€in(Xn) = Yn(g - M)Hdi(tn)”z,

fori=1,2. O

Lemma 3.4. Suppose that the assumption A1—Ay hold, and {x,}, {t.}, {Vin}, {Zin}, (0 n}, (Vi n} are sequences, generated
by Algorithm 1 for i = 1,2. Let {(xp,, ts,)} be a subsequence of {(x,, t,)} such that

s Yu) = (0, 9), l}g{}o 1, = Zin |l = 0 and ]}ggo Itn, — il = 0.
Then (p,q) € [VI(C, T1) N VI(C, T»)] X [VI(D, S1) N VI(D, S1)].

Proof. For the fact that z;,,, = Pc(x,, — 6Tixy,), from (3), we get
(X, = OTiXy, — Zi, X — Xn,) 0Vx €C,
which implies
X = Zier X = Zigme) < OTixy,, X — i) VX € C,
and hence
e = Zigner X = Zine) + (Tixny, Zin, — Xy < O(TiXp,, X — X, ) Vx € C.
Since I}l_)n; [1%n, — Zin |l = 0 and the fact that T; is bounded, we obtain
hgglf@ixnwx —xu)20,VxeC (10)

Moreover, let {&} be a sequence of decreasing numbers such that £ — 0 as k — oo and w be an arbitrary
element of C. Using inequality (10), we can find a large enough N such that

(Tixy,, w — xp,) + & 2 0, Vk = Ni. (11)
From (11) and the fact that Tix,, # 0, we get
(Tixn,, Exdi + W — xy,) = 0,Vk = Ny, (12)

for some dy € C satisfying (Tix,,, di) = 1. In addition, from definition of T; and inequality (12), we have
(Ti(w + & diw), w + Erdw — Xnk> > 0,Yk > N,
which implies that

(Tiw, w — xp,) 2 (Tiw — A1(w + Epdkw), w + Epdikw — Xy, )
—&(Tiw, di), Yk > N. (13)

Since & — 0 as k — oo and T; is continuous, then from inequality (13), we obtain
(Tiw,w —p) = liininf(Tiw,w —Xxp) = 0,Yw e (C,

and fori = 1,2. Thus, p € VI(C, T1) N VI(C, T,). Similarly, we get
(Siz,z—q) = likm inf(S;z,z - t,)>0,Yz€ D,

and fori =1,2. Thus, g € VI(D,5) N VI(D, S;). O
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Theorem 3.5. Suppose the assumptions A1 — Ay hold. Then, the sequence {(xy, t,)}, generated by the Algorithm 1 is

bounded in Hilbert space, C X D.

Proof. Now, from Lemma 2.6, and (4), we get

“wn - P||2 = ”6nan + ,Bnpl,n + MuPon — P||2
10, (an — P) + ﬁn(Pmen - P) + ,Bn(PCZJ,xn - P)||2
Onlla, — P”Z + ,BnHPCL,,xn - P||2 + T]nHPCz,”xn - P||2
Onlla, — P||2 + ﬁn[“xn - P||2 - ”PCL,,xn - xn”2]

+T]n[||xn - P||2 - ||PC2,,,xn - anZ]-

IA 1l

IA

Similarly, we obtain
e —ql> < Oullby — gl + Bulllts — gI* = 1IPp,, tw — tall’]
+0ullltn = ql* = 1P, tn — tal].
Thus, by adding inequalities (14) and (15), we get
l[w, = pI? +1lrn = qI* < Bulllan = pl* + 1Ibs = qI°]
+Bulllx — pIF = IPc,, xn — x4l]
+1ullln = pIP = 1Py, %0 — xul’]
+Balllts = ql* = I1Ppy, tn = tull’]
+1ullltn = gl = 1P, tn = tal 1.
In addition from (7) and (4), we obtain
IPc(xty = ynA*(Ax, — Bty) = pl?
X = A" (Axy = Btul? = llan = (X0 = ynA*(Ax, = Bty)|P
lxXn = pIP + YRl A*(Axy, = Btn)IP> = yullAx, = Bl
Iy = @y = yuA*(Ax, — Bt)IIP.

2
lla, — pll

IANIA

Similarly, we get
16, = ql> < litw = qI* + Y31IB"(Bty = Axi)I* = yull Axy — Bl
~litw = by = yuB*(Bty — Axy)I.
By adding inequalities (17) and (18), we get
lla, = pI? +1lbs = ql> < 1l = pI? +11t, — 4l
+yalllA"(Ax, = Bt)IP + |IB*(Bt, — Ax,)I’]
=2y ullAx, = Btall® = Il = @ — yuA'(Ax, — Bt
—lty = by — yuB*(Bt, — Ax,)|
Moreover, (19) and (A6), we obtain
lla, = pI? +1lbs = gl < 1l = pl? + 11t = gl = ullAx, — Bl
Xy = an = ynA*(Axy = Bty)|I?
—llty = by — yuB*(Bt, — Ax,)|.

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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Now, by substituting (20) in (16), we get
lwn = pIP +llra =gl <l = pI + litw = 4l
_ﬁn[HPCLnxn - xn“2 + ”PDLntn - tn”Z]
_nn[”PCz,y,xn - xn”2 + ||PD2,,,tn - tn”z]
—0uYullAxy = Bty|* = Oullxy — ay — yuA*(Ax,, — Bty)|P
—Oulltn — by — ynB*(Bty — Ax,)II%. (21)
From (21), Lemma 2.6 and (A5), we get
Icwsr = pIF + lltwsr — gl = Nlanga () + (1 — a)wy — plP?
+||ang2(tn) + (1 —a)r, - q||2

< aullgr () — pIP + (1 = an)llw, — pIP
+aullga(ta) — ql* + (1 = a)lry — pII®

< au(lgr(xa) — @I + llgr(p) — pl)* + (1 = a)llxy — pIf?
+an(lg2(tn) — 22Nl + llg2(9) — qI)* + (1 — an)lits — gl

< apla?llxg = pl* + g1 () = pIPT + (1 = a)llx, — plf?
+a[@Pllty — gl + llg2(ta) — qlP] + (1 = a)lltn — gl

< 2a,(@Plxy = pl +lg1(p) — pIP) + (1 = an)llxy — pIP?

+20, (It = qIP + llg2(9) — qII%)
+(1 = an)lltn — gl (22)
By setting R,(p,q) = |lx, — pl* + |It, — glI%>, from inequality (22), we get
Run(p,g) < (Q-an(l- 20‘2))Rn(Pr q)
+2a(Ilg1(p) = PIP + l92(q) = q1)

IA

max (Ru(p,4), == (1p) = pIP + ) ~ 1),

and hence by induction

2(llg1(p) = pIP + llg2(q) — qllz)}
1-2a2 !
which implies that {x,}, {t,} and hence {y;,}, {vi,}, {Tix,} and {S;v,} fori = 1,2 are bounded. O

R(p, q) < max{Ro(p, q),

Theorem 3.6. Suppose the assumption (Al) — (A6) hold. Then, the sequence {(xy,t,)}, generated by Algorithm 1
converges strongly to (p,q) = Pa(g1(p), 92(9)).

Proof. Now, let (p, q9) = Pa(g1(p), 92(9))- Then, from equation 2, for i = 1,2, we have,
I = pinll < llp = xal® = 1l = piul®.
Similarly, we get
19 = qinl® < 1lg = tal® = lltn = gl (23)

Since for i = 1,2, T; is bounded on bounded subset of H; ,Then their exists L; > 0, such that ||T;y,|| < L;, for
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alln>0andi=1,2. Thus,

i (2) = hin(@) = KTiYin, 2 = Yin) = {TiYin, W = Yiu)l

=KTiYin,z —w)
<N Tiyiullllz — wl|
< Lillz — wl|,

which gives us that h; , is L;- Lipschitz continuous on H;. Thus, from Lemma 2.7 and Lemma 3.3, we obtain

hi,nxn

1
1% = piall? = > Y7, (5 = w3l (24)
212 6

Thus, from (23) and (24), fori = 1,2, we get

1
I = pinll?® < llp = xal* — Yﬁn(g — Wldi(xa)lI*. (25)

Similarly, fori = 1,2, we get
21
g = ginll® < llg = tall® - Yi,n(g — w2lldict )N

Now, from Lemma 2.6, (25), (21) and (17), we get

“wn - P||2 + “rn - q||2 = ||9nan + ﬁnpl,n + T]an,n - P||2
+||9nbn + ﬁn‘]l,n + 7711‘72,71 - q||2

< Oullan = pIP + Bullprn — pIP + Nullp2,. — pIP
+0,1b, — qllz + ﬁn”ﬂl,n - qllz + T]n”qz,n - q||2
< Oullx, - P”z + ﬁn“xn - p”2nn“xn - P||2 + T]n“xn - P||2
+0,lt, — ‘1“2 + ﬁn”tn - 11||277n||fn - qllz + nn”tn - 11||2
1 1
(Y75 = Pl el + 5,5 = Pl
1 1
(Y05 = Pt + 05, (5 = P lda(t))
<l = plP + 11t — gl

1 1
(03,5 = WM @Il + Y5, (5 = ) lldao)I*)
> 1
(55 = Pl el

YL, (5~ WP E)I) o0
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By Lemma 2.2, Lemma 2.6 and (26), we obtain

Rn+1 (Pr Q)

which gives us

IA

IN

IA

g1 () + (1 = a)w(n) — pl* + llanga(ta) + (1 — a)r(n) — qlI*
llan(91(x) = 91(0)) + (1 = )@ — p) + an(g1(p) — PI”

Hlan (g2 (t) = 92(9) + (1 = @) (1 — ) + an(92(q) — I

20,[{g1(p) = P, X1 = P) +<92(9) = G, tus1 — D]

aallx, = plF + (1 = a)llw, — pli* + aaullitys — ql* + (1 = a)llr, — gl
+2a|lg1(n) — pllllxnsr — xall + 2anllg2(tn) — glllitner — tall
+2a,[{g1(p) = p, X0 — ) +4{92(q) — 9, tn — D]

(1= (1 = @)au)Ru(p, )

+2a|lg1(xn) = pllllxnsr = xall + 2anllg2(tn) — glllitner — tall
+2a,[{g1(p) = p, X0 — ) +{02(9) — 9, tn — P)]

(=), 5~ WP @I + 3,5~ ) (el)

(= @)X, (5 = BRI + 5,5~ pPa(e),

(1= )13, (5 = WPl ol + 3,5 — Pl

a1 a1
+(1 = an)(Y], (5 = WP I + Y5, (5 — pPda (6
< Ru(p,9) = Rusa(p, 9)
+2anllg1(xXn) — pllllxnsr — xull + 2aullg2(tn) — gllllEnsr — tall
+2au[{g1(p) = p, xn — P) +<92(q) = 9, tn — P].

In addition, from (21), we get

Rua(p,q)

<

Ru(p,9) + 204 [<g1(p) = p, Xns1 — p) +<92(9) — 9, tus1 — P)]
—BulllPc,, xn = Xull® + IPp, , tw — tull’]

~1ulliPc,,, Xn = Xull® + 1Py, £ — tull’]

=0 yullAxy = Btyl* = Oullxy — an — ynA*(Ax, — Bty)I?
—Oulltn — by — yuB*(Bt, — Axy)|I*.

5646

(27)

(28)

Next, we show that the sequence {R,(p, q)} converges strongly to zero. For this we consider two cases as

follows:

Case 1: Assume that there exist 11y € N, such that the sequence of real numbers {R,(p,q)} is decreasing for
all n > ny. Thus, the sequence {R,(p, )} convergent and hence from (28) and the fact that &, — 0, we obtain

lim ”PCLV,xn - xn”2 = lim ”PCz,nxn - xnllz =0,
n—oo n—oo

r}i_f};lo”PDl,ntn —tll = r}i_f};lo”PDz,,,tn —tll =0,

lim ||Ax, — Bt,|| =0,
n—oo

and

&g?o [l — an — ynA*(Axn - Btn)” = }gl; [t — by — VnB*(Btn - Ax,)|l =0,
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which implies that
Lim [, — apll < [l = an = yuA'(Axy = Bto)|* + llynA" (Ax, = Bty = 0, (29)
and
Lim (It = ball < lltn = by = yuB'(Btu — Axy)I* + llyuB’ (Bty — Axy)l| = 0,
In addition, from (27), we have
Lim Y3, llds (el = lim Y3, lida (el = 0,

and , .
lim Y7 fldh () = lim Y7, lda(t)I* = 0,

Then, from this we obtain that
lim Y/l (5| = lim 1l ()| = 0,
and
lim Yyl ()P = lim Y, lda(ta) I = 0. (30)

Since the sequence {(x;, t,)} is bounded, there exists a subsequence {(x,,, (x,,)}, of {(xy, t,)} which converges
weakly to (p,q) € H; X H, and

lim sup[{g1(p) = p, xn = p) +4g2(0) = Pt = )]

= Um[g(p) = p, X = p) + 92(9) = 4, tu, = D]- (31)
Now, we prove that fori = 1,2

I}Lm ||xl’lk - Zi,nk” = 0/ ]}I_)m ”tnk - ui,nk“ = O (32)

First consider the case, when lim inf Y}, > 0 In this case there is Y > 0 such that Y, > Y > 0, for all k € N.

k—o0

Thus, we have
1 1
”xnk - an||2 = 'Y*_Ynk”xnk - Z?lkHz < _Tnk”xnk - Zl’lkllz-
Ny
From this inequality and (30), we obtain
111_)1?0 ”xnk - anllz =0

and hence
lim [jx,, =zl
k—o0

Second consider, when lim in1 fy_,0o Y, = 0. In this case

%im Yin =0and %im (12, — Z,-,nkll2 =c>0 (33)

: _1 1
Consider, yl’./nk = YinZin + (1= ) i Xin
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Thus, from (33), we have
. , .1
%1_)11010 ”yi,nk - Zi,nk” = l}l—{?o IYi,nk”-xnk - Zi,nkH =0 (34)

From inequality in Step 2 and definition of y; , we obtain

plln, = zinl® < X, = Y, + T, = Tidus X, = Zin,)
< e = Yo X = Zin) + Ty, — TiXng, X = Zi)
< b, = Y 1, = Zi
+ M+ Ty}, — Tixnlllxcn, — zin, Il (35)

From (34), (35) and the fact that T; is uniformly continuous, we get lim,_,c ||Xn, — zin, || = 0, which contradict
(33). In a similar way we can show that lim,, e ||t;, — Ui/l = 0 Thus, from this fact the equations (32) hold.
Moreover, since {(xy,, ts, )}, which converges weakly to (p, ), then x,,, — p and t,, — 7. Thus, from (33) and
Lemma 3.4, we getp € VI(C, T1) N VI(C, T,) and q € VI(D, S1) N VI(D, Sy).
Next we show that Ap = Bg. But, observe that from Lemma 2.2 (ii) we get

lAp — Bg|> |Ap — Ax,, + Bt,, — Bj + Ax,, — Bt,|I*
lAx,,, — Bt,, |I> + 2(Ap — Bg, Ap — Ax,, + Bt,, — BJ),

— 0ask — oo,

IN

and this implies Ap = Bg. That is (p,q) € Q. From the definition of x,+1 and t,.+1, we have |[x,41 — wyll =
nllgr(xn) — wyll = 0, as n — oo, and ||t,4+1 — 74l = aullgz(ts) — rull = 0, as 1 — oo, since a, — o0, as n — co.
From (27) and (29), we get

nir = Xall - < [Xns1 = wall + llwn = Xl
< ||xn+1 - wn” + ||6nan + ,Bnpl,n + Uan,n - xn”
< Pxnsr = wall + Onllay — xall
+,Bn||Pl,n — x|l + ﬂn”PZ,n — Xyl > 0asn — 0. (36)
Moreover,
1xy = wyll < Bullan, — x,ll +ﬁn”pl,n — Xyl + 7]71||P2,n — x|l = 0, asn — 0. (37)

Thus, from (36) and (37), we obtain

IXpe1 —xall = xps1 — Wy + Wy — x4l

IA

1Xn+1 = wall + [[wy = xull = 0, as n — 0. (38)
Similarly we can show that
ltns1 = tall  — 0, asn — 0.

From (31) and Lemma 2.3, we have

limsup[{g1(p) —p, Xn —p) +<92(9) =g, ta =] < }}Lrgo[<g1(p) -4, Xn, —P)
+g2(9) — g, tn, — D]
= (g -pp-p+<@-9.9-9
< 0. (39)

Now, we show that the sequence {R,(p, 9)} converges strongly to 0. Indeed, from Lemma 2.2 and 26, we
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obtain

Run(p,9) < (1-(1-a)2a,)R.(p,q)
2
1= (1) = p, X1 = p)
Hg2(9) — 4, tpsr — P (40)

Finally, from (40), (38), (39) and Lemma 2.5, we get R,(p,q) — 0, as n — oo and hence x, — p and t, — g as

n — o9,

Case 2: Suppose that there exists a subsequence {R,;(p, 9)} of {R.(p, )} such that

+a,(1 - a)

Ru,(p,9) < Ru41(p, q), for j > 0. (41)

Thus by Lemma 2.4 there exists a non-decreasing sequence {my]}, of the set of positive integer of numbers
such that my — 0, as k — oo,
[, =PI < Ilxm+1 = plI* and

max{Ry, (p, 9), Re(p, 9} < Ru1(p, g) forall k > 1.
Following the method of Case 1, we obtain

. 2 _ 1 2
lim ||Pc,,, Xm, — Xm|I” = im [|Pc,,, Xp, — XplI~ =0,
k—o0 k k—o0 K

%52 IPp,,, t, = tm, |l = khﬁn(r}o IPD,,, Xm, = tml =0,
lim [|Ax,, = Bty | = 0,
and
([, = e = Y A" (A, = Bl Il = 0l = b, = B (B, = Aol =0,
In addition, by following the method of Case 1, from the inequality (31), for i = 1,2, we obtain
K %, = i = Jim [l = i, = 0.
In addition, fori=1,2
,}i_{g”xm = Zim || =0 = }}i_{glltmk = Uim |l =0,
%Lngo 1%, = X1l = 0 = I}g{}o lltm, — twall = 0,
and

lim sup[{g1(p) = p, Xme+1 — p) +£92(q) — 4, tm1 — P < 0. (42)
k—o0

Now, from (40), we get

Rmk+1(p/ q) S (1 - (1 - a)amk)Rle(pr ‘7)

2
15 [91(P) =P, X1 = p)
H72(9) — 4, tme1 — P

(1 -1 -a)2ay)Ru+1(p, 9)

2
1= K1) = P Xmr = p)

+72(9) = 4, tmes1 — P

+a,, (1 —a)

IN

+a, (1 - a)
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which implies that

2
(1= R (p,q) < am (1= a)7——[{01(p) =P, Xm1 = P)

+(g2(q) = g, twee1 — D1 (43)
Thus, from (41) and (43), we have

2
Rip, ) < Rumeip, ) < 7= Kar(p) =P, X =)
+<92(Q) =, b1 — q>]
Hence using (42), we get

. . 2
limsupRi(p,q) < limsup m[(gl ) —p, Xm+1 — )
k—o0 k—o0

+G2(q) = 4t =PI <0,
which implies

limsup Re(p,q) =0,

k—o0

and hence xy = pand ty = gas, k - co. [0

We note that the method of proof of Theorem 3.6 provides the following result for split equality variational
inequality problems of a finite family of pseudomonotone mappings in Hilbert spaces.

Algorithm 2. For arbitrary (xo, ty) € H1 X Ha, define an iterative algorithm by

Step 1. Compute

Zin = Pc(x, — 0Tix,) and di(x,) = x, —zipp, for i=1,2,---,m
Ui, = Pp(t, — 0Sit,) and di(t,) = t, —u;,, for i=1,2,---,m.

Step 2. Compute

Yin =Xy — Yind(x,), for i=1,2,---,m
Uip = t, =Y} d(ty), for i=1,2,---,m

where, Y;, = gin such that jin is the smallest nonnegative integer j; satisfying
(Tixn = Tiln — Vi), di(x)) < pilldiCen)I,

and Y/, = Jin such that J . is the smallest nonnegative integer j satisfying
(Sitn = Si(tn — Uidi(ty)), di(tn)) < plldi(ta)].

Step 3. Compute

an = Pc(xy — ynA*(Ax, — Bty),

by = Pc(ty — ynB*(Bt, — Axy),

Wy = Only + BiuPin + PouPon + - + BunPmns
Tn = Onby + BLuGin + BonGon + - - + BunGmn,s

where C;, = {x € H: hjyy = Yin — TilYin, X — Yin) < 0},
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Di, ={x € H:ein = 0in=5in, x—0in) < 0}and {0,}, {B.}, {1} C [p, 1) for p > Osuch thatp,+0,+n, =1
foralln > 0 and pi = Pc,,xn, Gin = Pp, ta fori=1,2,---,m.
Step 4. Compute

Xn+l = angl(xn) + (1 - ap)wy,
the1 = ang2(tn) + (1= ay)ry.

Step 5. Setn :=n + 1 and go to Step 1.

Theorem 3.7. Suppose Assumption (A3) — (A6) hold. Let T; : Hi — Hy and S; : Hy — H, sequentially weakly
continuous and uniformly continuous pseudomonotone mappings on bounded subset of Hy and H,, respectively for
i=1,2,..., msuch that

Q:={(p,q e Hi xHy: pen,VI(C,T),q € N, VI(D, S;) and Ap = Bg} # 0.
Then, the sequence {(x,, t,)} generated by Algorithm 2 converges strongly to an element (p, q) = Pa(g91(p), 92(9)).

Corollary 3.8. Suppose Assumption (A3)—(A6) hold. Let T; : Hy — Hyand S; : Hy — H» be uniformly continuous
monotone mappings on bounded subset of Hy and Hy, respectively for i = 1,2, ..., m such that

Q:={(p,q) e Hi xHy:pen,VI(C,T;),q €N, VI(D, S;) and Ap = Bg} # 0.
Then, the sequence {(x,, t,)} generated by Algorithm 2 converges strongly to an element (p, q) = Pa(g91(p), 92(9)).

If in Theorem 3.7, we assume g;(x) = u for all x € C and g(t) = v for all t € D, we get the following result.

Corollary 3.9. Suppose Assumption (A3),(A4) and (A6) hold. Let T; : Hi — Hj and S; : Hy — H; sequentially
weakly continuous and uniformly continuous pseudomonotone mappings on bounded subset of H1 and H,, respectively
fori=1,2,..., m such that

Q:={(p,q) e Hi xHy: pe N, VI(C,T)),q € "', VI(D, S;) and Ap = Bg} # 0.

Then, the sequence {(x,, t,)} generated by Algorithm 2 g,(x) = u for all x € C and g,(t) = v for all t € D converges
strongly to an element (p, q) = Po(u, v).

4. Application

In this section we present some applications of Theorem 3.7.

4.1. Split Variational Inequality Problem

Let H; and H> be real Hilbert spaces. Let C C H; and D C H; be two nonempty, closed and convex
sets; let T : Hy — Hj and S : H, — H, be two given mappings and A : H; — Hj be a bounded linear
mapping. The split variational inequality problem (SVIP) introduced by Censor, Gibali and Reich [1] can
mathematically be formulated as the problem of finding:

x* € Csuch that (T(x*),x —x*) > 0 for allx € C,
and
y = Ax" € Dsolves (S(y),y— y*) = 0forall y € D.

Thus, in Algorithm 2, we assume H, = Hs and B = I, then split equality variational inequality problem
reduces to split variational inequality problem for pseudomonotone mappings and the method of proof of
Theorem 3.7 provides the following corollary for approximating a solution of split variational inequality
problem for a finite family of pseudomonotone mappings in Hilbert spaces.
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Corollary 4.1. Suppose Assumption (A3) — (A6) hold. Let T; : Hy — Hj and S; : Hy — H; sequentially weakly
continuous and uniformly continuous pseudomonotone mappings on bounded subset of Hy and H,, respectively for
i=1,2,..., msuch that

Q:={(p,q) e Hy xHy: pe N, VI(C,T)),q € "L, VI(D, S;) and Ap = q} # 0.

Then, the sequence {(x,, t,)} generated by Algorithm 2 converges strongly to an element (p,q) = Pa(g1(p), 92(7)).

4.2. Split Equality Zero Point Problem

If in Algorithm 2, we assume C = Hy and D = H,, then Pc = I, Pp = I, and hence VI(C, T)) = Ti‘l(O)
and VI(C, S;) = 5;(0) where I; and I, are identity mappings in H; and Hy, respectively. Thus, split equality
variational inequality problem reduces to split equality zero point problem and the method of proof of
Theorem 3.7 provides the following corollary for approximating a solution of split equality zero point
problem for pseudomonotone mappings in Hilbert spaces.

Corollary 4.2. Suppose Assumption (A3) — (A6) hold. Let T; : Hi — Hy and S; : Hy — H» sequentially weakly
continuous and uniformly continuous pseudomonotone mappings on bounded subset of Hy and H,, respectively for
i=1,2,...,msuch that

Q:={(p,q) € H xHy : p € N, T71(0),q € N, S7(0) and Ap = Bg} # 0.

Then, the sequence {(x,, t,)} generated by Algorithm 2 converges strongly to an element (p,q) = Pa(g1(p), 92(7)).

5. Numerical Example

In this section, we provide a numerical example to explain the conclusion of our main result. The following
numerical example verifies the conclusion of Theorem 3.6.

Example 5.1. Let H; = Hy = Hz = R3 be with the standard topology. Let C = {x € R® : ||x|| < 1} and
D={xeR®: x| <2} Let Ty, T» : C — R be defined by T1(x) = 3x — ||x|lx and T»(x) = x, were x = (x1,x2,x3) €
R3. Let 1,5, : D — R be defined by Si(x) = (x1 + 1,x2 — 1,2x3) and Sy(x) = (’“;1, 2x23_2, 1), then Ty and
T, are continuous pseudomonotone and hence they are sequentially weakly continuous and uniformly continuous
pseudomonotone mappings on C with VI(C, T1) N VI(C, T2) = {(0,0,0)}. In addition, one can observe that Sy and
Sy are monotone and hence they are sequentially weakly continuous and uniformly continuous pseudomonotone
mappings on D with VI(C,51) N VI(D, S;) = {(-1,1,0)}. Let A, B : R3 - R3 be defined by A(x) = (2x1, x2, 3x3)
and B(x) = (0,0,2x3), were x = (x1,X2,x3) € R3. Thus, A(0,0,0) = (0,0,0) = B(~1,1,0) and hence Q # 0. Let
g1 : Hi — Hyand g, : Hy — Hy be defined by g1(x) =  and ga(x) = 3, respectively, were x = (x1,%2,X3) € R3.
Now, if we assume ay = 75555, 1 =05, 1 =0.9,0 =1, By = 55 + 0.02 = O, and 1, = 0.96 — —355 for all
n > 0, and take different initial points (xo, to) = ((0.1,0.2,0.3), (1.0, 1.0,0.0)), (xé, t;J) =((0.4,0.3,0.1),(1.2,0.6,0.1))
and (xg,tg) = ((0.3,0.1,0.2),(=1.0,0.5,0.3), then in all cases, the numerical experiment results using MATLAB
provide that the sequence {(x,, t,)} generated by Algorithm 1 converges strongly to (p, q) = ((0,0,0),(=1,1,0)). (see,

Figure 5.1, below).
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Figure 1: The graph of ||(x,, t,) — (p, 9)ll versus number of iterations with different choices of (xy, fo)
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Figure 2: The graph of ||Ax, — Bt,|| versus number of iterations with different choices of (xo, to)

In addition, we have sketched the difference term ||Ax, — Bt,|| for each initial point. From the sketch we
observe that ||[Ax, — Bt,|| — 0 as n — oo (see, Figure 5.1, below).

6. Conclusions

In conclusion, this research article has focused on studying iterative algorithms for approximating a
common solution to split equality monotone inclusion problems for a finite family of pseudomonotone
mappings in Hilbert spaces. The significance of the split equality problem and variational inequalities in
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various fields such as decomposition methods for partial differential equations, game theory, and medical
image reconstruction has been highlighted. Building on the works of previous researchers, this study
contributes to the understanding and development of algorithms for solving split equality variational
inequality problems. By introducing necessary notions and definitions, the paper lays the foundation
for further exploration and advancement in this area of applied mathematics. The findings and methods
presented in this article provide valuable insights for future research in the field of variational inequalities
and optimization theory.
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