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Abstract. As well-known, the perturbation theory of polynomially Riesz operators is an attractive way
to characterize certain spectral analysis in Fredholm theory, it is also a tool of great significance in the
matrix framework. The first aim of this paper is to find some new arguments of perturbations allowing
us to provide some original left-right Fredholm properties of 3 × 3 unbounded block operator matrix
form defined with maximal domain and to provide an amelioration and a continuation of the recent work
invested by Abdmouleh, Khlif and Walha in [Spectral description of Fredholm operators via polynomially
Riesz operators perturbation, Georgian Math. J. 29(3) (2022), 317-333.] in the context of the spectral
analysis in Fredholm theory of the last 3 × 3 block operator matrices. Our second goal is to express the
incidence of some essential spectra of the before-cited model of operator matrices involving the theory of
polynomially Riesz operators perturbation. Our approach allows us to present a new description in the
theory of unbounded operator matrices via a new technique and new arguments of perturbations coined
as polynomially Riesz perturbations.

1. Introduction

Spectral theory is an essential part of functional analysis. In recent years, it has witnessed an explosive
development and it has various applications in many sections of mathematics and physics including
function theory, matrix theory, control theory, differential and integral equations and complex analysis (see
[5, 7, 9] and references therein). The operator concept is one of the most general in the branch of functional
analysis that studies the properties of operators and the application of operators to the solution of various
problems in the mathematical physics field. For example, we can refer the readers to references [2, 5, 10].

Strictly speaking, the study of spectral problems in view of the theory of Fredholm operators and their
derivative sets has been extensively increased and studied in the mathematical framework. The before-
mentioned notion of operators has led to compelling advances which supply a boost for the study of
many different subjects likewise: in the theory of perturbations, in theoretical physics, in the exploration of
various classes of singular integral equations and getting lovely properties of certain differential operators.
Among the works in this direction we quote, for example, [4, 15].

Further there are many types of spectra, both for bounded or unbounded linear operators, with im-
pressive applications, for example the approximate point spectrum, essential spectrum, local spectrum, etc.
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Specifically, the invariance of essential spectra for bounded linear operators acting on Banach spaces was
advocated firstly in [12].

Afterwards, the class of polynomially Riesz operators, dates back to 2006, and was anticipated by K.
Latrach, M. Paoli and M. A. Taoudi [11] where they characterized the concept of polynomially Riesz strongly
continuous semigroups and later by S. C. Ž. Žlatanović et al. in [17–19]. Such notion of operators appears
viewed as a generalization of the class of Fredholm perturbations, polynomially Fredholm perturbations,
Riesz operators and polynomially compact operators extremely developed in the literature [1, 3, 15, 16].

Hereafter, the theory of operator matrices has attracted the attention of several mathematicians and
researchers because of their rich applications in different areas of pure and applied mathematics (see
[2, 8]). For this reason and over the last two decades, this kind of theory occurs as a new line of attack
in spectral theory and remains as an impressive tool in the proof of the interaction problems between
Fredholm operators and their derivative classes and their corresponding essential spectra. In particular,
many authors in [2], have paid attention to the research of the issue related to the spectral characteristics of
unbounded 2 × 2 operators matrices with mixed and maximal domain which developed due to powerful
classes of two-sided ideal of the set of bounded operators.

The main objective of the manuscript is to investigate under new sufficient assumptions involving
the concept of polynomially Riesz operators in order to resolve the invariance problem of some essential
spectra of an unbounded 3 × 3 block operator matrix defined with maximal domain which is not taken
considerably in the literature. By way of explanation, the common tool in this investigation is based on
the use of invertible modulo compact operators as well as the one sided invertible operators called left
and right Fredholm operators. This exploration involves a graceful use of the properties of Riesz operators
introduced by S. R. Caradus et al. in [4] simultaneously with the concept of polynomially Riesz operators in
order to characterize the interaction between upper, lower semi Fredholm, left-right Fredholm and left-right
Weyl essential spectra of unbounded 3 × 3 block operator matrix defined with maximal domain and their
diagonal entries.

In other words, an impressive perspective and a powerful approach of the concept of polynomially
Riesz operators perturbations with their properties are investigated to present some left-right Fredholm
spectral properties under less conditions related the components entries of the operator matrix M0 (see
Theorem 3.6), and an exact description of some essential spectra ofM is shown in Corollary 3.7 (see Section
3, for more details). Thus, these results appear as natural taking note of scientific progress in this field.

2. Basic concepts and mathematical tools

This section contains basic definitions and results that we will need in the sequel.
For the reader’s convenience and in order to clarify our subsequent development in the next section,

we start with the following list by introducing the usual notations and symbols needed later.

Notations and symbols:

E : Banach space,
D(T) : the domain of T,
Ker(T) : the null space of T,
R(T) : the range of T,
α(T) := dim

(
Ker(T)

)
the nullity of T, defined as the dimension of Ker(T),

β(T) := codim
(
R(T)
)

the deficiency of T, defined as the codimension of R(T),
σ(T) : the spectrum set of T,
rs(T) : the resolvent set of T.

Definition 2.1.
(i) We define the set of upper, respectively, lower semi-Fredholm operators on E as:

Φ+(E) := {T ∈ C(E) : α(T) < ∞ and R(T) is closed in E}
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resp.
Φ−(E) := {T ∈ C(E) : β(T) < ∞ and R(T) is closed in E}.

(ii) Set of Fredholm operators on E is defined by:
Φ(E) := Φ+(E) ∩Φ−(E).

(iii) For an operator T ∈ Φ(E), the index of T is defined by the number:
i(T) = α(T) − β(T).

After this, and using the previous definitions, the following sets will be essential clarified as:

Definition 2.2.
(i) the sets of left and right Fredholm operators on E, respectively, are defined as:

Φℓ(E) := {T ∈ Φ+(E) : R(T) is a complemented subset of E}
and

Φr(E) := {T ∈ Φ−(E) : Ker(T) is a complemented subset of E}.

(ii) The sets of left and right Weyl operators on E are defined respectively by:

W
ℓ(E) := {T ∈ C(E) : T ∈ Φℓ(E) and i(T) ≤ 0}

and
W

r(E) := {T ∈ C(E) : T ∈ Φr(E) and i(T) ≥ 0}.

Consequently, we deduce the set of Weyl operators on E, denoted byW(E), defined as:

W(E) :=Wℓ(E) ∩Wr(E) := {T ∈ Φ(E) : i(T) = 0}.

In order to translate the above results in terms of essential spectra, the following definition may be
essential.

Definition 2.3. Let T ∈ C(E). We define:

(i) The upper (resp. lower) Fredholm essential spectrum of T, denoted by σ+ess(T) (resp. σ−ess(T)), as the
following set:

σ+ess(T) := {η ∈ C : η − T < Φ+(E)} (resp. σ−ess(T) := {η ∈ C : η − T < Φ−(E)}).

(ii) The left (resp. right) Fredholm essential spectrum of T, denoted by σℓess(T) (resp. σr
ess(T)), as the following

set:

σℓe(T) := {η ∈ C : η − T < Φℓ(E)} (resp. σr
ess(T) := {η ∈ C : η − T < Φr(E)}).

(iii) The left (resp. right) Weyl spectrum of T, denoted by σℓw(T) (resp. σr
w(T)) as:

σℓw(T) := {η ∈ C : η − T <Wℓ(E)} (resp. σr
w(T) := {η ∈ C : η − T <Wr(E)}).

Moreover, the main tool of this paper is based on the following definition concerning Fredholm operators.
For the sake of convenience, we refer to the books of V. Müller [13] and M. Schechter [14].

Definition 2.4. Let E be a Banach space.

(i) An operator T ∈ L(E) is said to have a left Fredholm inverse if there exists Tℓ ∈ L(E) such that
I − TℓT ∈ K (E).
(ii) An operator T ∈ L(E) is said to have a right Fredholm inverse if there exists Tr

∈ L(E) such that
I − TTr

∈ K (E).
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Remark 2.5.
According to Definition 2.4 with Equation (2.1) in [2], we can extend the notion of left and right Fredholm
inverses to the case of closed densely defined operators. For more details, see [2, Section 2].

Hereafter, let T ∈ C(E) and ET := (D(T), ∥.∥T) designates a Banach space endowed with the graph norm
∥.∥T (that is, ∥x∥T := ∥x∥ + ∥Tx∥). We define these sets ΘT,ℓ(E) and ΘT,r(E) by:

ΘT,ℓ(E) := {Tℓ ∈ L(E,ET) : Tℓ is a left Fredholm inverse of T},

ΘT,r(E) := {Tr
∈ L(E,ET) : Tr is a right Fredholm inverse of T}.

By refereing to the stability problems of diverse essential spectra of closed densely defined linear
operators acting on Banach spaces, several classes of Fredholm perturbations allow us to treat this kind of
problem. To achieve this goal, we need to introduce some of these classes.

Definition 2.6. Let E be a Banach space and assume that T ∈ L(E).

(i) An operator T is said to be weakly compact if T(S) is relatively weakly compact in E, for every bounded
S ⊂ E.Note that the class of weakly compact operators is a closed two-sided ideal of L(E) containingK (E)
(see [6]).

(ii) An operator T is called a Riesz operator if λ − T ∈ Φ(X) for all scalars λ , 0.

(iii) We call that T is a polynomially Riesz operator on E if there exists a nonzero complex polynomial p(.)
such that p(T) is a Riesz operator.
The set of polynomially Riesz operators will be defined as follows:

PR(E) := {T ∈ L(E) : there exist p(.) such that p(T) is a Riesz operator}.

(iv) We define the minimal polynomial of Riesz operators on E as the nonzero polynomial p(.) of least
degree and leading coefficient 1 such that p(T) is a Riesz operator defined as:

p(z) :=
n∏

i=1

(z − λi),

for which λi be a root of p(.).

As a continuation in this direction, let recall the following proposition on polynomially Riesz operators
which is crucial for our aim originating from the work of K. Latrach et al. in [11].

Proposition 2.7. Define the following subset EPR(E) of PR(E) as:

EPR(E) :=
{
T ∈ PR(E) : the minimal polynomial p(.) of T satisfies p(−1) , 0

}
.

If T ∈ EPR(E), then I + T ∈ Φ(E) and i(I + T) = 0.

At the end of this section, we summarize in the following list some classes that are needed repeatedly
in the sequel.

Classes:

L(E) : the set of all bounded linear operators in E,
C(E) : the class of densely defined closed linear operators on E,
K (E) : the closed ideal of compact operators in L(E),
K

p(E) := {T ∈ L(E) : Tn
∈ the class of power compact operators,

K (E) for some n ∈N}
WC(E) : the class of weakly compact operators on E,
QC(E) : the class of quasi-compact operators on E,
PC(E) : the class of polynomially compact operators on E,
R(E) : the class of Riesz operators R acting on E (that is,

R − ηI is Fredholm for every non-zero complex η),
PR(E) : the class of polynomially Riesz operators on E.



A. Bahloul / Filomat 38:16 (2024), 5655–5667 5659

The relationship between classes given in the precedent definitions was studied in [4, 6, 11, 13, 14, 16],
and is recapitulated in the following diagram. (Arrows signify inclusions).

WC(E) ←− K (E) −→ R(E) −→ EPR(E)

↓ ↓

QC(E) ←− K
p(E) −→ PC(E) −→ PR(E)

3. Spectral analysis of unbounded 3 × 3 block operator matrix via polynomially Riesz operators

The aim of this section is to formulate new criterions of perturbations on the entries of an model of
unbounded 3 × 3 block operator matrix defined with maximal domain acting in the product of Banach
spaces A := E × E × E. Our interest allows us to formulate new techniques to analyze the description of
some essential spectra of the closure of such matrix forms under the general concept of perturbations. To
explain in details this interest, we consider in A the following 3 × 3 block operator matrix :

M0 :=

 A1 A2 A3
B1 B2 B3
C1 C2 C3

 ,
defined with maximal domain

D(M0) :=
3∏

i=1

D(Ai) ∩D(Bi) ∩D(Ci).

Each operator entries of such kind of operator matrix have an appropriate domain and act on their corre-
sponding spaces as:

A1 : D(A1) ⊂ E→ E A2 : D(A2) ⊂ E→ E A3 : D(A3) ⊂ E→ E
B1 : D(B1) ⊂ E→ E B2 : D(B2) ⊂ E→ E B3 : D(B3) ⊂ E→ E
C1 : D(C1) ⊂ E→ E C2 : D(C2) ⊂ E→ E C3 : D(C3) ⊂ E→ E.

Note that, in general, the operators occurring as entries inM0 are unbounded and thatM0 is neither a
closed nor a closable operator, even if its entries are closed.

In what follows, we will assume that all entries obey to the following hypotheses:

(H1) A1 is a densely defined linear operator on E with non-empty resolvent set rs(A1).

(H2) The operator B1 (resp. C1) verifies thatD(A1) ⊂ D(B1) (resp. D(A1) ⊂ D(C1)) and for some (hence for
all) µ ∈ rs(A1), the operator B1(µ − A1)−1 (resp. C1(µ − A1)−1) is bounded.

• In particular, if B1 (resp. C1) is closable, then it follows from the closed graph theorem that P1(µ) (resp.
P2(µ)) is bounded.

• Define the operators Pi(µ), i = {1, 2}, respectively as:

P1(µ) := B1(µ − A1)−1 and P2(µ) := C1(µ − A1)−1, for µ ∈ rs(A1).

(H3) The operator A2 (resp. A3) is densely defined on E (resp. E) and for some (hence for all) µ ∈ rs(A1), the
operator (µ − A1)−1A2 (resp. (µ − A1)−1A3) is bounded on its domain.

Remark 3.1. Keeping into account from (H3), we derive from the use of closed graph theorem that:

Q1(µ) := (µ − A1)−1A2 and Q2(µ) := (µ − A1)−1A3 are two bounded operators.
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(H4) The linealD(A2)∩D(B2) is dense in E and for some (hence for all) µ ∈ rs(A1), the operator B2 − B1(µ −
A1)−1A2 is closed. Set for µ ∈ rs(A1), the first Schur complement of the matrix operatorM0 as:

S1(µ) := B2 − B1(µ − A1)−1A2.

(H5) D(A3) ⊂ D(B3) and the operator B3 − B1(µ − A1)−1A3 is bounded on its domain, for some µ ∈ rs(A1)
and therefore for all µ ∈ rs(A1).

To formulate our interest, define

Q3(µ) := (µ − S1(µ))−1(B3 − B1(µ − A1)−1A3) ∈ L(E),

for some (hence for all) µ ∈ rs(A1) ∩ rs(S1(µ)).

(H6) The operator C2 satisfies that D(A2) ⊂ D(C2) and for some (hence for all) µ ∈ rs(A1) ∩ rs(S1(µ)), we
suppose that:

P3(µ) := (C2 − C1(µ − A1)−1A2)(µ − S1(µ))−1
∈ L(E).

(H7) Assume that:

(i)D(A3) ⊂ D(C3).
(ii) For some (hence for all) µ ∈ rs(A1) ∩ rs(S1(µ)), the second Schur complement of the matrixM0,

S2(µ) := C3 − C1(µ − A1)−1A3 − P3(µ)[B3 − B1(µ − A1)−1A3]

is assumed to be closable. Therefore, its closure will be denoted by S2(µ).

All assumptions cited above are used to describe the closure of the operatorM0 which are really strong
and fruitful to develop our purpose.

Theorem 3.2. [8, Theorem 3.1]
Assume that the hypotheses (H1)-(H6) are satisfied. Then, the operatorM0 is closable in A if and only if
S2(µ) is closable on E, for some µ ∈ rs(A1) ∩ rs(S1(µ)).
Moreover, for such µ, the closure ofM0 denoted byM and described as follows:

M := µ −ΠP D ΠQ , (3.1)

where

ΠP :=

 I 0 0
P1(µ) I 0
P2(µ) P3(µ) I

, ΠQ :=

 I Q1(µ) Q2(µ)
0 I Q3(µ)
0 0 I


and the diagonal operator matrix D := diag(Di) with diagonal operator entries given by D1 := µ − A1,
D2 := µ − S1(µ) and D3 := µ − S2(µ), respectively for i = {1, 2, 3}.

Remark 3.3. Let (τ, µ) ∈
(
C, rs(A1)∩rs(S1(µ)

)
and assume that the assumptions (H1)-(H7) are fulfilled. Thus,

the factorization used in Theorem 3.2 plays a substantial role below to write the operator matrix τ −M as
well:

τ −M := ΠP(µ) D(τ) ΠQ(µ) + (µ − τ)G(µ), (3.2)

where the bounded operators matrices D(τ) and G(µ) are given by:

D(τ) :=


τ − A1 0 0

0 τ − S1(µ) 0
0 0 τ − S2(µ)


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and

G(µ) :=

 0 Q1(µ) Q2(µ)
P1(µ) P1(µ)Q1(µ) P1(µ)Q2(µ) +Q3(µ)
P2(µ) P2(µ)Q1(µ) + P3(µ) P2(µ)Q2(µ) + P3(µ)Q3(µ)

 .
It is well known that R(E) is not an ideal of L(E) and the class of Riesz operators verify the Riesz-

Schauder theory of compact operators. In the spirit of the previously-defined class of operators, we start
with the following lemma which can be found in [4, 16].

Lemma 3.4. Let E be a Banach space. Assume that T and S are two commuting operators ofL(E). Then, we
have:

(i) If T ∈ R(E), then TS ∈ R(E).

(ii) If (T,S) ∈ R2(E), then T + S ∈ R(E).

Before moving to study the essential spectra of this kind of operator matrix via polynomially Riesz
operators perturbation, the following proposition may be essential.

Proposition 3.5. Let consider the following diagonal operator matrix denoted by D′ expressed as follows:

D′ := diag(A,B,C).
Then, we have:

(i) Suppose that for each A ∈ Φℓ(E), B ∈ Φℓ(E) and C ∈ Φℓ(E), there exists Aℓ ∈ ΘA,ℓ(E), Bℓ ∈ ΘB,ℓ(E) and
Cℓ ∈ ΘC,ℓ(E).

Then, we conclude that

D′ℓ :=

 Aℓ 0 0
0 Bℓ 0
0 0 Cℓ

 ∈ ΘD′,ℓ(A).

(ii) Suppose that for each A ∈ Φr(E), B ∈ Φr(E) and C ∈ Φr(E), there exists Ar
∈ ΘA,r(E), Br

∈ ΘB,r(E) and
Cr
∈ ΘC,r(E).

Then, we conclude that

D′r :=

 Ar 0 0
0 Br 0
0 0 Cr

 ∈ ΘD′,r(A).

(iii) Moreover, assume that (U,V) are bounded and boundedly invertible. Then,

V
−1D′ℓ U

−1
∈ ΘUD′V,ℓ(A)(

resp.V−1D′r U
−1
∈ ΘUD′V,r(A

)
.

Proof. The results may be obvious from the use of Definition 2.4 with the fact that D′ℓ and D′r are both
diagonal operator matrices.

In order to obtain our main result, we start by introducing some general assumptions on the entries of
the operator matrixM0 that are required to provide a new characterization of some essential spectra ofM
involving the theory of polynomially Riesz operators perturbations and the concept of Fredholm inverse.

For µ ∈ rs(A1) ∩ rs(S1(µ)),we suppose:
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(Z1) Sℓ1P1(µ) = P1(µ)Aℓ1. (Z′1) Sr
1P1(µ) = P1(µ)Ar

1.

(Z2) Sℓ2P2(µ) = P2(µ)Aℓ1. (Z′2) Sr
2P2(µ) = P2(µ)Ar

1.

(Z3) Sℓ2P3(µ) = P3(µ)Sℓ1. (Z′3) Sr
2P3(µ) = P3(µ)Sr

1.

(Z4) Sℓ1Q3(µ) = Q3(µ)Sℓ2. (Z′4) Sr
1Q3(µ) = Q3(µ)Sr

2.

(Z5) Aℓ1Q2(µ) = Q2(µ)Sℓ2. (Z′5) Ar
1Q2(µ) = Q2(µ)Sr

2.

(Z6) Aℓ1Q1(µ) = Q1(µ)Sℓ1. (Z′6) Ar
1Q1(µ) = Q1(µ)Sr

1.

(Z7) P1(µ) = P2(µ). (Z′7) P2(µ) = P1(µ).

On the basis of the above hypotheses, left-right Fredholm properties of the operator matrix τ −M in
terms of polynomially Riesz operators are given in the following theorem.

Theorem 3.6. Let τ ∈ C and assume that the conditions (H1)-(H7) are fulfilled, for some (hence for all)
µ ∈ rs(A1) ∩ rs(S1(µ)). Thus, we have:

(i) If Aℓ1 ∈ Θτ−A1,ℓ(E), Sℓ1 ∈ Θτ−S1(µ),ℓ(E) and Sℓ2 ∈ Θτ−S2(µ),ℓ(E) such that the assumptions (Z1)-(Z7) are satisfied,
for some (hence for all) µ ∈ rs(A1) ∩ rs(S1(µ)).
Then, we obtain:

G(µ) ∈ R(A) ⇒ τ −M ∈ Φℓ(A) with i
(
τ −M

)
= i
(
D(τ)
)
.

(ii) If Ar
1 ∈ Θτ−A1,r(E), Sr

1 ∈ Θτ−S1(µ),r(E) and Sr
2 ∈ Θτ−S2(µ),r(E) such that the assumptions (Z′1)-(Z′7) are satisfied,

for some (hence for all) µ ∈ rs(A1) ∩ rs(S1(µ)).
Then, we obtain:

G(µ) ∈ R(A) ⇒ τ −M ∈ Φr(A) with i
(
τ −M

)
= i
(
D(τ)
)
.

Proof. Assume that the conditions (H1)-(H7) are fulfilled, for some (hence for all) µ ∈ rs(A1) ∩ rs(S1(µ)). Let
consider τ ∈ C for which τ , µ. Thus, from the Frobenius-Schur factorization used in Remark 3.3, we infer
that the operator matrix τ −Mmay be written as:

τ −M := ΠP(µ) D(τ) ΠQ(µ) + (µ − τ)G(µ)

= T +J ,

where T := ΠPD(τ)ΠQ and J := (µ − τ)G(µ).
Hence, to obtain the desired result, it is remains to prove it by the use of Theorem 3.1 in [2] for the bounded
operators T and J .

(i) Suppose, for some (hence for all) µ ∈ rs(A1) ∩ rs(S1(µ)), that Aℓ1 ∈ Θτ−A1,ℓ(E), Sℓ1 ∈ Θτ−S1(µ),ℓ(E) and
Sℓ2 ∈ Θτ−S2(µ),ℓ(E). In order to achieve our goal, we will proceed by the following steps:

• Step I : Proofing that T has a left Fredholm inverse.

Since ΠP and ΠQ are two bounded and boundedly invertible operators with the fact that Aℓ1, Sℓ1 and Sℓ2
are left Fredholm inverses of the operators τ − A1, τ − S1(µ) and τ − S2(µ), respectively, we deduce from
Proposition 3.5 that:

T
ℓ := Π−1

Q D
′

ℓ Π
−1
P ∈ ΘT ,ℓ(A),

where D′ℓ ∈ ΘD(τ),ℓ(A).

• Step II : Proofing that −JT ℓ ∈ EPR(A).

A short computation reveals that T ℓJ may be expressed as:

T
ℓ
J :=

 ı11(µ) ı12(µ) ı13(µ)
ı21(µ) ı22(µ) ı23(µ)
ı31(µ) ı32(µ) ı33(µ)

 ,
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where:

ı11(µ) := −Q1(µ)Sℓ1P1(µ) −Q1(µ)Q3(µ)Sℓ2P3(µ)P1(µ) +Q2(µ)Sℓ2P3(µ)P1(µ)
+ Q1(µ)Q3(µ)Sℓ2P2(µ) −Q2(µ)Sℓ2P2(µ),

ı12(µ) := Aℓ1Q1(µ) +Q1(µ)Q3(µ)Sℓ2P3(µ) −Q2(µ)Sℓ2P3(µ),

ı13(µ) := Aℓ1Q2(µ) −Q1(µ)Sℓ1Q3(µ),

ı21(µ) := Sℓ1P1(µ) +Q3(µ)Sℓ2P3(µ)P1(µ) −Q3(µ)Sℓ2P2(µ),

ı22(µ) := −Q3(µ)Sℓ2P3(µ),

ı23(µ) := Sℓ1Q3(µ),

ı31(µ) := −Sℓ2P3(µ)P1(µ) + Sℓ2P2(µ),

ı32(µ) := Sℓ2P3(µ),

ı33(µ) := 0.

On the other side, we will also calculate −JT ℓ as:

JT
ℓ := −

 ȷ11(µ) ȷ12(µ) ȷ13(µ)
ȷ21(µ) ȷ22(µ) ȷ23(µ)
ȷ31(µ) ȷ32(µ) ȷ33(µ)

 ,
where:

ȷ11(µ) := −Q1(µ)Sℓ1P1(µ) −Q1(µ)Q3(µ)Sℓ2P3(µ)P1(µ) +Q2(µ)Sℓ2P3(µ)P1(µ)
+ Q1(µ)Q3(µ)Sℓ2P2(µ) −Q2(µ)Sℓ2P2(µ),

ȷ12(µ) := Q1(µ)Sℓ1 +Q1(µ)Q3(µ)Sℓ2P3(µ) −Q2(µ)Sℓ2P3(µ),

ȷ13(µ) := Q2(µ)Sℓ2 −Q1(µ)Q3(µ)Sℓ2,

ȷ21(µ) := P1(µ)Aℓ1 +Q3(µ)Sℓ2P1(µ)P3(µ) −Q3(µ)Sℓ2P2(µ),

ȷ22(µ) := P1(µ)Q2(µ)Sℓ2P3(µ) − P2(µ)Q2(µ)Sℓ2P3(µ) −Q3(µ)Sℓ2P3(µ),

ȷ23(µ) := Q3(µ)Sℓ2,

ȷ31(µ) := P2(µ)Aℓ1 − P3(µ)Sℓ1P1(µ),

ȷ32(µ) := P3(µ)Sℓ1,

ȷ33(µ) := 0.

We keep into account that the assumptions (Z1)-(Z7) are satisfied, for some (hence for all)µ ∈ rs(A1)∩rs(S1(µ)).
Then, we obtain that T ℓJ = JT ℓ.
Now, according to the fact that T ℓ ∈ L(A) and G(µ) ∈ R(A), we conclude in view of Lemma 3.4 that:

−JT
ℓ
∈ R(A) ⊂ EPR(A).

• Step III : Proofing that τ −M ∈ Φℓ(A) with i
(
τ −M

)
= i
(
D(τ)
)
.

The use of Theorem 3.1 in [2] with respect to the fact that −JT ℓ ∈ EPR(A), affirms that:

T +J ∈ Φ⋆(A) with i
(
T +J

)
= i
(
T

)
.

for which Φ⋆(A) := {Φ+(A), Φℓ(A)}.
Since ΠP and ΠQ are two bounded and boundedly invertible operators. Hence, we infer that:

i
(
T

)
= i
(
ΠPD(τ)ΠQ

)
= i
(
D(τ)
)
.

Thus, due to the reason that D(τ) is a diagonal operator matrix, we deduce that:

i
(
T

)
= i
(
D(τ)
)
= i
(
τ − A1

)
+ i
(
τ − S1(µ)

)
+ i
(
τ − S2(µ)

)
.



A. Bahloul / Filomat 38:16 (2024), 5655–5667 5664

Finally, we conclude that:

i
(
τ −M

)
= i
(
τ − A1

)
+ i
(
τ − S1(µ)

)
+ i
(
τ − S2(µ)

)
. (3.3)

(ii) Let τ ∈ C. Assume, for some (hence for all) µ ∈ rs(A1) ∩ rs(S1(µ)), that Ar
1 ∈ Θτ−A1,r(E), Sr

1 ∈ Θτ−S1(µ),r(E)
and Sr

2 ∈ Θτ−S2(µ),r(E) such that the conditions (Z′1)-(Z′7) are fulfilled.

Obviously, the use of Proposition 3.5 with Remark 3.3 in view of the fact that ΠP and ΠQ are two bounded
and boundedly invertible operators shows that T r := Π−1

Q D
′
r Π
−1
P is a right Fredholm inverse of T .

Furthermore, a short computation signifies that:

JT
r :=

 f11(µ) f12(µ) f13(µ)
f21(µ) f22(µ) f23(µ)
f31(µ) f32(µ) f33(µ)

 and T
r
J :=

 g11(µ) g12(µ) g13(µ)
g21(µ) g22(µ) g23(µ)
g31(µ) g32(µ) g33(µ)

 ,
where:

f11(µ) := g11(µ) := −Q1(µ)Sℓ1P1(µ) −Q1(µ)Q3(µ)Sℓ2P3(µ)P1(µ) +Q2(µ)Sℓ2P3(µ)P1(µ)
+ Q1(µ)Q3(µ)Sℓ2P2(µ) −Q2(µ)Sℓ2P2(µ),

f12(µ) := Q1(µ)Sℓ1 +Q1(µ)Q3(µ)Sℓ2P3(µ) −Q2(µ)Sℓ2P3(µ),

g12(µ) := Aℓ1Q1(µ) +Q1(µ)Q3(µ)Sℓ2P3(µ) −Q2(µ)Sℓ2P3(µ),

f13(µ) := Q2(µ)Sℓ2 −Q1(µ)Q3(µ)Sℓ2,

g13(µ) := Aℓ1Q2(µ) −Q1(µ)Sℓ1Q3(µ),

f21(µ) := P1(µ)Aℓ1 +Q3(µ)Sℓ2P1(µ)P3(µ) −Q3(µ)Sℓ2P2(µ),

g21(µ) := Sℓ1P1(µ) +Q3(µ)Sℓ2P3(µ)P1(µ) −Q3(µ)Sℓ2P2(µ),

f22(µ) := P1(µ)Q2(µ)Sℓ2P3(µ) − P2(µ)Q2(µ)Sℓ2P3(µ) −Q3(µ)Sℓ2P3(µ),

g22(µ) := −Q3(µ)Sℓ2P3(µ),

f23(µ) := Q3(µ)Sℓ2,

g23(µ) := Sℓ1Q3(µ),

f31(µ) := P2(µ)Aℓ1 − P3(µ)Sℓ1P1(µ),

g31(µ) := −Sℓ2P3(µ)P1(µ) + Sℓ2P2(µ),

f32(µ) := P3(µ)Sℓ1,

g32(µ) := Sℓ2P3(µ),

f33(µ) := g33(µ) := 0.

Hence, based on the assumptions (Z′1)-(Z′7), we deduce that:

JT
r = T r

J .

As a consequence, we have J ∈ R(A) which commutes with the bounded operator T r. Then, we obtain
according to Lemma 3.4 that:

−T
r
J ∈ R(A) ⊂ EPR(A).

Directly, Theorem 3.1 in [2] proves that:

τ −M ∈ Φ⋆(A) with i
(
τ −M

)
= i
(
T +J

)
= i
(
T

)
.

for which Φ⋆(A) := {Φ−(A), Φr(A)}.
Thus, asserts that:

i
(
τ −M

)
= i
(
T

)
= i
(
D(τ)
)
= i
(
τ − A1

)
+ i
(
τ − S1(µ)

)
+ i
(
τ − S2(µ)

)
, (3.4)

where ΠP and ΠQ are bounded and boundedly invertible operators and D(τ) is a diagonal operator ma-
trix.
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However, in Corollary 3.7 below we express some essential spectra of the operator matrixM involving
the concept of polynomially Riesz perturbations.

Corollary 3.7. Let τ ∈ C and suppose that the assumptions (H1)-(H7) are satisfied, for some (hence for all)
µ ∈ rs(A1) ∩ rs(S1(µ)). Thus, we have:

(i) If Aℓ1 ∈ Θτ−A1,ℓ(E), Sℓ1 ∈ Θτ−S1(µ),ℓ(E) and Sℓ2 ∈ Θτ−S2(µ),ℓ(E) such that the conditions (Z1)-(Z7) are fulfilled,
for some (hence for all) µ ∈ rs(A1) ∩ rs(S1(µ)).
Then, we get:

G(µ) ∈ R(A) ⇒ σ̃(M) ⊂ σ̃(A1) ∪ σ̃(S1(µ)) ∪ σ̃(S2(µ)),

for σ̃(.) ∈ {σ+ess(.), σℓess(.), σℓw(.)}.

(ii) If Ar
1 ∈ Θτ−A1,r(E), Sr

1 ∈ Θτ−S1(µ),r(E) and Sr
2 ∈ Θτ−S2(µ),r(E) such that the conditions (Z′1)-(Z′7) are fulfilled,

for some (hence for all) µ ∈ rs(A1) ∩ rs(S1(µ)).
Then, we get:

G(µ) ∈ R(A) ⇒ σ̃(M) ⊂ σ̃(A1) ∪ σ̃(S1(µ)) ∪ σ̃(S2(µ)),

for σ̃(.) ∈ {σ−ess(.), σr
ess(.), σr

w(.)}.

Proof. (i) We start with the left Weyl spectrum case. Assume that:

τ < σℓw(A1) ∪ σℓw(S1(µ)) ∪ σℓw(S2(µ)).

Hence, τ−A1 ∈ W
ℓ(E), τ− S1(µ) ∈ Wℓ(E) and τ− S2(µ) ∈ Wℓ(E). That would allow us to conclude in view

of Theorem 3.6 with (Eq). 3.3 that:
τ −M ∈Wℓ(A),

while i
(
τ − A1

)
≤ 0, i

(
τ − S1(µ)

)
≤ 0 and i

(
τ − S2(µ)

)
≤ 0.

For the upper and left Fredholm essential spectra, the result may be obvious according to Theorem 3.6.
Indeed,

τ < σ̃(A1) ∪ σ̃(S1(µ)) ∪ σ̃(S2(µ)) ⇒ τ < σ̃(M),

for σ̃(.) ∈ {σ+ess(.), σℓess(.)}.

(ii) We adopt the same reasoning as the item (i) to obtain our desired result. It suffices to use Theorem 3.6
with (Eq). 3.4.

We close this section by the following question which arises in a natural way from our main result.

Question 3.8. Do the achieved results shown in Corollary 3.7 remain true if we replace its hypotheses by
compact arguments?

At the end of this paper, We are unable to decide whether, in the presence of L1−spaces, the answer to
the previous question is affirmative, even in the case of weakly compact assumptions. To explain this:

Let E1 denotes the space L1(Ω, dϑ), where (Ω,Σ, ϑ) stands for a positive measure space. It is worthy
to point out that the incidence of some essential spectra of such kind of 3 × 3 unbounded operator matrix
M defined with maximal domain is still always true with regard to compact (resp. weakly compact)
arguments.

That is if we change the following conditions:

↷ G(µ) ∈ EPR(A).

↷ The conditions (Z1)-(Z7) and (Z′1)-(Z′7) are fulfilled, for some (hence for all) µ ∈ rs(A1) ∩ rs(S1(µ)).

Only by:
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↷ The operators
(
Pi(µ),Qi(µ)

)
∈ K

2(E)
(
resp.

(
Pi(µ),Qi(µ)

)
∈ WC

2(E1)
)
, for i = {1, 2, 3}.

We end this paper with the following conjecture.

Conjecture 3.9. Let consider the following block 3 × 3 of operator matrix

M :=

 A1 B1 B2
C1 A2 B3
C2 C3 A3

 .
We ask the following question:
Without considering the case of perturbed upper or lower triangular operator matrix form, what are the
conditions that we will impose on the entries components of the operator matrixM involving the notion
of polynomially Riesz operator perturbations to provide that:

σ̃(M) =
3⋃

i=1

σ̃(Ai)

for σ̃(.) ∈ {σ+ess(.), σℓess(.), σℓw(.), σ−ess(.), σr
ess(.), σr

w(.)}?

4. Conclusion

The central subject of the work presented in this paper is the spectral analysis of perturbed unbounded
3 × 3 block operator matrix by means of the concept of polynomially Riesz operators perturbations. Such
analysis allows us to derive the interesting results intervening in the theory of Fredholm operators. Our
approach allows us to investigate a new technique and a general assumption than provided in the literature
in the investigation of some relative essential spectra in Banach space for unbounded block 3 × 3 operator
matrix defined with maximal domain.
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