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The atomic characterization of weighted local Hardy spaces and its
applications
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Abstract. The purpose of this paper is to obtain atomic decomposition characterization of the weighted
local Hardy space 1!,(R") with w € A.. We apply the discrete version of Calderén’s identity and the
weighted Littlewood-Paley-Stein theory to prove that 1,(R") coincides with the weighted-(p, g, s) atomic

w
local Hardy space i/} (R") for 0 < p < 0. The atomic decomposition theorems in our paper improve the

previous atomic decomposition results of local weighted Hardy spaces in the literature. As applications,
we derive the boundedness of inhomogeneous Calderén-Zygmund singular integrals and local fractional
integrals on weighted local Hardy spaces.

1. Introduction

The real-variable theory of global Hardy spaces on IR” was essentially developed by Stein and Weiss
[25] and systematically studied by Fefferman and Stein [10]. Hardy spaces H”(IR") serve as a substitute
for LP(R") when p < 1. However, the principle of H?(IR") breaks down at some key points, for example,
pseudo-differential operators are not bounded on H”(IR"). Hence, Goldberg in [13] introduced the class of
local Hardy spaces #*(IR") with p € (0,1]. Moreover, Goldberg [13] established the maximal function char-
acterization of #”(IR") for p € ((n —1)/n, 1]. From then on, local Hardy spaces have become an indispensable
part in terms of harmonic analysis and partial differential equations. Then Peloso and Secco [21] obtained
local Riesz transforms of local Hardy spaces and extended some characterizations of Hardy spaces H?(IR")
to the local Hardy spaces h”(R") for 0 < p < 1. In 1983, Triebel [33] first established the Littlewood—-Paley
characterization of #7(IR") which is a tool to prove that #”(IR") coincides with the Triebel-Lizorkin space
Fg/z(]R”). In 1981, the weighted version K/ (IR") of h"(R") with @ € A was developed by Bui [2]. Later,

Rychkov [22] extended a part of the theory of weighted local Hardy spaces to A weights and obtained the
Littlewood-Paley function characterization of /,(R"). In 2012, Tang [32] established the weighted atomic
characterization of I,(R") with w € A% via the local grand maximal function. For more information on
various Hardy-type spaces, we refer to [20, 23, 29, 36].
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As is well-known to us, the atomic decomposition plays an important role in the study of the bounded-
ness of operators on Hardy-type spaces and many theories of it have been established. In 1974, Coifman
[3] first introduced an atomic decomposition characterization of Hardy spaces on R. Later, the extension
to higher dimensions was obtained by Latter [17]. In fact, the marked difference between the atomic
characterization of H?(IR") and #’(IR") is the cancellation property of atoms. To be precise, the vanishing
moment is needed only for the atoms with small supports in #”(IR") while the vanishing moment is needed
for all atoms in H?(IR"). In [8], Y. Ding et al. established the atomic decomposition characterization of the
weighted Hardy spaces H,(IR") for p € (0,1] and obtained the (H,(R"), L} (R"))-boundedness for singular
integrals via the discrete Calderén’s identity and the weighted Littlewood—Paley-Stein theory. In [7], W.
Ding et al. obtained the L?(R") atomic decomposition of local Hardy spaces ?(R") for 0 < p < 1. Motivated
by these results, we give the atomic decomposition characterization of the weighted local Hardy spaces
K. (R") and a proof of the convergence of the atomic decomposition in both /,(R") and L(R") norms for
any f € i (R") N L1(R"). The atomic decomposition characterization in our paper provides extensions of
the results in [18] by w-(p, g, s)-atom and w-(p, g, 5)-block. Moreover, the results have a wide applicability to
more general settings in that we avoid the maximal function characterization and the Calderén-Zymund
decomposition. Very recently, Izuki et al. [16] defined and studied the theory of local weighted Hardy
spaces with variable exponents by applying the local grand maximal function characterization.

The class of weighted local Hardy spaces 1;,(R") can be defined by the finiteness of the quasi-norm [22].

To be precise, let ® € S(R") with f @ # 0 and Oy(x) = t7'D(3), then

Mo(f)(x) = sup |®; * f(x)].

O<t<1
Then the weighted local Hardy space hZ, (R") for 0 < p < o0 and w € A is defined by
H(R") = {f € S'(R"): Mo(f) € L,,(R")},
where

U1l = [Mao(PI -

In fact, we can also define the weighted local Hardy space via the discrete Littlewood-Paley-Stein
theory. Thus, we firstly recall some definitions as follows. For more details, see [15].

Definition 1.1. Let ¢y, ¢ € S(R") with

suppgo C {& € R": [€] < 2}; ¢o(&) =1, if[&] <1, (1)
and

suppo C (& € R": % <&l <2), 2)
and for all £ € R"

Go(©F + Y 1pRTEP =1. 3)

=1

Additionally, define ¢;(x) = 2""¢(2/x) for j € N* . For any j € Z, denote I'j={Q: Q are dyadic cubes in R"
with [(Q) = 27/ and the left lower corners of Q are xo = 27/1, 1 € Z"}. By applying Fourier transform and
equation (3), we can obtain the continuous Calderén’s identity [7]:

f@) =Y 6%+ f), (4)
j=0
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where the series converges in L(R"), S(R") and &’(IR"). Furthermore, we can discretize the above identity:

f@ =Y Y 10U, * Hxa)p(x - xq).

j=0 Qell;

where the series converges in L(R"), S(R") and &’(IR").
Suppose that ¢, ¢ € S(R") satisfies (1.1)-(1.3). Based on the above reproducing formula, we give the
definition of inhomogeneous Littlewood—Paley-Stein square function

() = {Z i + f(X)IZ}

€N

and the definition of the discrete Littlewood-Paley—Stein square function

ga(NE@ =Y N 19 fxo) o)

jEIN QeTl;
Now we can give the definition of the weighted local Hardy space.

Definition 1.2. Let 0 < p < 0, @ € A. Then the weighted local Hardy space hl,(R") is defined by
R = (f € SR ||fl, <o),
where

£l = lgaPlly; -

The definitions of the atom a and the block b are as follows. Details are referred to [29].

Definition 1.3. Let 0 <p < o0, 1 < g < 00, w € A, with critical index q, and s € Z fulfilling s > max{[n(% -

1)], =1}. Fix a constant C > 1. Then define a w-(p, q,s)-atom of h.,(R") to be a function a which is supported in a
cube Q € R" with |Q| < C and satisfies

lalls < 1QITw(Q)™F  and f a(x)x*dx = 0, for all |a| < s.
Q

Definition 1.4. Let 0 <p < oo, 1 < g < 00, w € A with critical index q, and s € Z fulfilling s > max{[n(% -
1)], —-1}. Fix a constant C > 1. Then define a w- (p, q,5)- block of W, (R") to be a function b which is supported in a
cube P € R" with |P| > C and satisfies ||b||;s < IPlﬂw(P) .

Naturally, we can give the definition of the weighted-(p, g, s) atomic local Hardy space 1>

w,atom

(R").

Definition 1.5. Let 0 < p < o0, g, < q < 00, w € Ay with the critical index q, and s € Z fulfilling s >
max{[n(% —1)], ~1). Then the weighted-(p, q,s) atomic local Hardy space I\, (R") is defined by

w,atom

W R =1 f e S'(RY): f = Z Ajaj+ Z uibje,
j j

where each a;j is a w-(p, q,s)-atom and each b; is a w-(p, q, s)-block sastifying

i /\j)((g,-1 . i HjXPj]

=1 Q)7 ||, |77 @P)r |

< 00,
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Furthermore, we have

£l = i

w,atom

i AJXQ/l . i Mm’fl

j=1 w(Qj)p I j=1 a)(Pf)p L

where the infimum is taken over all decompositions f = Y, Aja; + Y. ub;
j j

If w € A, there exists r > 1 such that w € RH,. Fix a constant g, such that g, > max{p, 1} and (%)’ <r.

Theorem 1.6. If 0 < p < o0 and w € A, then for any max{q,,q-} < q < co and any s € Z fulfilling s >
max|{[n(% - 1), -1},

Mo (R") = H o (R")
with the equivalent norms.
In fact, Theorem 1.6 can be split into two parts as follows.
Theorem 1.7. Let 0 < p < o0, @ € Aw, G, = inflg: @ € Ay}, 4o < q < o0 and s € Z fulfilling s > max{[n(‘% -
D], =1} If f € K, (R") N LI(R"), there exist a sequence of w-(p, q,s)-atoms {aj}‘]?il with a corresponding sequence of
non-negative numbers {A j}]‘?‘;l and a sequence of w-(p, q, s)-blocks {b j};?"zl with a corresponding sequence of non-negative

numbers {yj}]i’il such that
f=) Aaj+ Y ub;
j j

00 /\]XQ] ]’1]31 [ ) [ [u]XP ] ]11
[j;(w(@j)v ,, ,Z‘ (P))? il

L, L,

and

for any 0 < 1 < co. Furthermore, the series converges to f in both hf,(R") and L1(R") norms.

Theorem18 Given 0 < p < 0, @ € A, o = inflg: w € Ay}, q- < q < oo and s € Z fulfilling s >
max{[n = —1)],-1}. Suppose that {11]-}}"’ is a sequence of w-(p, q, s)-atoms with a corresponding sequence of non-

negative numbers A 1}; and {b; } is a sequence of w-(p, q, s)-blocks with a corresponding sequence of non-negative
numbers {1;}>2 i) | satisfying

i Afm,-l . i quPfl

j=1 CU(Q]')” I j=1 w(Pj)” v

< 00.

Then the series f = Y, Ajaj + Y, u;bj converges in I}, (R") and satisfies
j j

<C

Z‘ AjXQJ

j=1 w(Q])p

Hy

and

<C

Z HiXPp;

jla)(P)p

W
lm
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Theorem 1.6 follows from Theorem 1.7 and Theorem 1.8 together with the fact i”,(IR") N L1(R") is dense
in 1,(R"). As applications of the above atomic decomposition results, we shall prove the boundedness
of the inhomogenous Calderén-Zygmund singular integrals and the local fractional integrals on weighted
local Hardy spaces. The groundbreaking work of Hardy estimates for Calderén-Zygmund operators is
completed by Stein and Weiss [25], Stein [24], and Fefferman and Stein [10]. In particular, weighted Hardy
spaces estimates for singular integrals were proved by Stromberg and Torchinsky [26]. We remark that the
proof of Theorem 1.9 and 1.10 is an adaption from the ones for local variable Hardy spaces in [30]. Moreover,
fractional integrals have been investigated extensively by several authors in recent years. Weighted Hardy
space estimates for fractional integrals were first proved by Stromberg and Wheeden [27]; see also Gatto
et al. [12] and Tan [31]. Theorem 1.12 extends these results to weighted local Hardy spaces. We remark
that the proof of this theorem is similar to the proof of [5, Theorem 1.5], but we need to concentrate on the
differences.

Now we recall the inhomogeneous Calderén-Zygmund singular integrals in [6]. Define D(IR") to be
the space of all smooth functions with compact support. The operator T is said to be an inhomogeneous
Calder6n-Zygmund integral if T is a continuous linear operator from D(IR") to ’(IR") defined by

T() = [ Ko iy

for all f, g € D(R") with disjoint supports, where K(x, y), the kernel of T, satisfies the following conditions

1
|x _ yln’ |X _ y|n+6

K (x, y)| < Cmin{ } for some 6 > 0and x # y

and fore € (0,1)

, , ly-yr
1K e, ) = K (x, v+ 1Ky, ) = K, 0] < cﬁ
where [y — y'| < %Ix -yl

Theorem 1.9. Let ;i < p < coand w € Auny, where n = € A 6. Suppose that T is an inhomogeneous Calderén—

Zygmund singular integral. If T is a bounded operator on L>(R"), then T can be extended to an (H,,(R"), L} (R"))-
bounded operator. To be precise, there exists a constant C such that

T, < Cllfll -
To state the (4, (R"), i’ (R"))-boundedness of T, we assume one additional condition on T, fRn T(a)(x)dx =
0 for the w-(p, g,5)-atom a. Then if T satisfies the above moment condition, we write T/(1) = 0.

Theorem 1.10. Let nan <p<ocandweA 1y, where 11 = € A 0. Suppose that T is an inhomogeneous Calderdn-

Zygmund singular integral. If T is a bounded operator on L*(R") and T\(1) = 0, then T has a unique extension on
1 (R™) and, moreover, there exists a constant C such that

Irhll,, < clif
forall f € H,(R").

p
he

We also recall the following local fractional integral which is introduced by D. Yang and S. Yang [35].

Definition 1.11. Let a € [0,n) and let g € D(IR") be such pg = 1 on Q(0,1) and supp(po) € Q(0,2). The local
fractional integral I°(f) of f is defined by

Po(y)

re [y

IX(f)(x) = flx—y)dy.
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q

Now we show that the local fractional integrals are bounded from #”,(R") to L!

and from h’:} ,(R") to hz,q (R")when0<g< 1.

(R") when1 < g < o

Theorem 1.12. Let 0 < a <nand 0 <p < %. Define by ; = 5 — 5. If a weight w is such that o € RHy, then
4

1'% admits a bounded extension from i’ ,(R") to L! (R") when 1 < q < oo and I'° admits a bounded extension from
hi,,(]R”) to hZﬂ(IR”) when 0 < g < 1.

Throughout this paper, C or ¢ denotes a positive constant that is independent of the main parameters
involved but may vary at each occurrence. To denote the dependence of the constants on some parameter
s, we will write C;. We denote f < Cgby f <g. If f S g < f, wewrite f ~ gor f = g. Denote Q(x,1(Q))
the closed cube centered at x and of side-length /(Q). Similarly, given Q = Q(x,/(Q)) and A > 0, AQ means
the cube with the same center x and with side-length A/(Q). We denote Q" = 2 y/nQ. Moreover, we use the
notation j A k = min(j, k}. We write N ={0,1,2,...}.

2. Preliminaries

In this section, we present some known results that will be used in the next sections and establish a new
reproducing formula.

Firstly, we recall some known results about weights. For more details, see [4, 9, 11]. Suppose that a
weight w is a non-negative, locally integrable function such that 0 < w(x) < oo for almost every x € R". It is
said that w is in the Muckenhoupt class A, for 1 < p < co if

p-1
[w]a, ZSSp(éLw(x)dx) (éfgw(x)p%dx) < oo,

where Q is any cube in R” and when p = 1, a weight w € A; if for almost every x € R",
Mow(x) < Cw(x),

where M is the Hardy-Littlewood maximal operator defined by

1
M) = sup 15 fQ Fdu

Therefore, define the set

Ao= | ] 4,

1<p<oo
Given a weight w € A, define
do = inflg > 1: w € Ay}.

Given a weight w € A, and 0 < p < co. Then the weighted Lebesgue space is defined by

LZ,(]R") = {f f ()P w(x)dx < oo},
Rﬂ

where f are measurable functions on R". A weight w € A if and only if w € RH, for some r > 1: that is, for
every cube Q,

1 e
(@Lw(x) dx) < |Q|f(;a)(x)dx.
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Furthermore, we can obtain the property that w € RH, if and only if ©" € A. Given 1 < p, g < 00, a weight
satisfies the A, ; condition of Muckenhoupt and Wheeden if for every cube Q,

1 i 1 . v
(@Lw"dx) (I—QILa)”dx) <C

It follows from the defintion that w € A, if and only if @7 € A;, 1. When p = 1and g > 1, it is said that
4
w € Ay, if for every cube Q and almost every x € Q,

ﬁ@fa)(x)qu < Cw(x)?,
Q

which is clearly equivalent to v € A;.
Given0 <a <nand1<p <%, define g by % - % = . If w € Ay, the fractional maximal operator

o1
Mcy(f)(36)=s’g}:>lan(IQI fQ If(y)ldy)m(x)

is bounded from L’ZV (R™) to Lzﬂ (R™).
Now we recall two lemmas which will be applied to the proofs in Section 3. First we need the weighted
Fefferman-Stein vector-valued maximal inequality [1] as follows.

Lemma2l. Let1<p, g<oo,w €Ay, f={filiez, fi € Lnc(R"),

I, < C 1],
where M(f) = {M(fi)}iez.

Remark 2.2. If we let f; = xq,, for some collection of cubes Q;, then given 0 < p < 0o, T > 1 and w € A, there
exists r > 1 such that w € A,,. Thus we have that

2], <z} ol

Lemma 2.3 ([5]). Fix q > 1. Suppose that 0 < p < qand w € RH 1y We are given countable collections of cubes

<

~

»
L, !

r
<
»
LZ} Lm

Q j}‘]?":l, of non-negative numbers {/\j}]i’il and of non-negative measurable functions {a j};?"zl such that supp(a;) C Qj,

“aj“m < |Q]|%w(Q1)_% Then

i A]'aj i —AJXQ/
j=1

1
=1 @(Q))?
In order to obtain the atomic decomposition, we need a new reproducing formula. Thus, we introduce
test functions as follows.

<C

L, L,

Definition 2.4. Let ¢, 1) € S(IR") satisfies
suppyo C {x e R": |x| < 1}; flpo =1, (5)

suppy C {x e R": |x| < 1}; fl/)(x)x"‘dx =0, forallla| <M, (6)
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and
[Po©F + Y [pRIOP =1, forall £ € R, 7)
j=1

where a constant M = My, ,, is large enough.

Lemma 2.5. Let 0 <p < 00, w € A, G, = inflg: w € Ay} and q,, < g < 00. Suppose that 1y, 1 € S(R") satisfies
(2.1)-(2.3). Then there exists a positive integer N such that for any f € hl,(R") N L1(R")

f@ =YY, QY - ug); +huo),

jG]N QEH]urN
where ug is any point in Q and h € K (R™) N L1(IR™) satisfies

Wil ~ [\l Wiy, ~ 7], -

Moreover, the series converges in L1(IR").

Proof. Applying the Calderén reproducing formula on L%(R") and the Coifman’s decomposition, we have
that

F) =) i+ ()

jEN
DD M RCE T v
jEN Qelljn
= Tn()(®) + Ra()(),
where
TN =Y Y 1QI(x — ug)(; * lug),
jEN QeIljn

Rv(H =Y. ¥ f [ = (W, * @) = ilx = u)(W; * flug) e,

jGIN QGl_IiJrN

the positive integer N will be chosen later and u is any point in Q.
Details are similar to those in [14, 18, 34]. By a standard almost orthogonality estimation, we can prove
that

[Rn (A, < €27 IAlly, - and - [RNCA, < 27 1], -

We can choose N large enough so that C2N < 1. Since I = Ty + Ry and Ry is bounded on /! (R") and

LI(R"), then Ty and Ty! are bounded on K, (R") and L%(R"). Moreover, Ty = X (Rn)". Let h(x) = T (f)(x)
n=0

and then

Al ~ “f”h”w  Mhllzs ~ “f”m :

Furthermore,

£ = TnAR @ = Y Y 1Qi(x - o)W * h)(uig)-

jE]N QGH,‘H\]
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where the series converges in L2(R").

Next we will prove that the series above converges in L(R") for any 1 < g < oo. Since L(R") N L?(R") is
dense in L1(R"), it suffices to show that the series converges in L(R") for any function f € L1(R") N L?(R").
Let

B ={Q: I(Q)=27"N, Qc B(O,]), ljl <1},
where B(0,]) are balls centered at origin with radii / in R". Write g = ¢;. We claim that for each function

f € LI(R") N L2(R")

— 0, as L — +oo.

Y ) 1QIwo - ug)(wo * (o)

I>L QeB;

L1

In fact, by the duality argument and the fact that 1 is radial, we have that

Z Z IQIq(x = ug)(Yg * h)(uq)

I>L QeB; 10
= sup <Z Z IQlYo(x —ug)(Yo * h)(uQ),g>
llgll, <1 Vi5L QeB,

= sup Y Y100 huo) [ bt = uo)g(eks

llll,» <1 1>L QeBy

= sup
llall,,- <1

Y. ) 1Qe * W) o * 9)(uo)

I>L QE€B

fR Z Z(IPQ * 1) (uQ) (g * 9)ug) xo(y)dy

" I>L QeB,

< sup [ {ZD@Q*h)(uQ)me}z

llg], <1 I>L QeB,

X {Z Z (Yo * g)(MQ)I2XQ(y)} dy

I>L QeB;

1

{Z PR g)(uQ)|2XQ(y)}Z

I>L QeB;

< sup
lltl, <1

L
1

X {Z Z (Yo * h)(”Q)|2XQ(y)}

I>L QeB; 9

1

<C {): Y |(4’Q*h)(”Q)|2XQ(]/)} :

I>L QeBy .

which tends to zero as L goes to infinity. Then by a standard density argument, we can obtain the desired
result. O

By Lemma 2.5, we can obtain the following corollary.
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Corollary 2.6. Let 0 < p < 00, w € Aw, o < g < 00. Suppose that ¢y, 1P € S(R") satisfies (2.1)-(2.3). Then for
any f € hi,(R") N LI(R"),

jEN QEH/'+N ue

A1l ~ {Z Y suplp;+ fw)Pxo(x)
L,

Proof. From the above proof, we know that

vl =1 Y., 106 = ug)w; * Hug)
jEN Qelljun "
<ClRY. Y. 1w+ Hwo)Pro
jENQEH/+N UZ,

Hence, for any f € L] (R") N k! (IR"), we can obtain that

I£lly = 175" © TN (P,
< Cl[Tv A,

1

2

<R, Y 1w« Hulray |

jEN QEH/'+N

L
which implies that
2
Al <clkY., Y inflw;« AP
© 1eN QETT ueQ p

Then, repeating the same process, we can obtain that

2

Y. ) supl@y= Aoy || <ClIfl, -
jEN QelT;,y 4ER 7
Details are similar to those in [7]. Furthermore, we have that

2

Al (1YY suplw;« Hurxe

jEN Qelljyy 4€ ,
L,

Therefore, we complete the proof. [J

Then we give the following lemma which is need for the proof of Theorem 1.8. The proof of the lemma
is similar to but easier than those in [8, 29].

Lemma 2.7. Let 0 < p < o0, w € Aw. Then for any f € S'(R"),

IAll, ~ ool -
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We also recall the following key lemmas which are need for the proof of Section 4. For more details, see

[5].

Lemma 2.8. Fixq> 1. If0 <p < qand w € RH uy, then for all sequences of cubes {Qx} and non-negative functions
P

{gx} such that supp(gx) € Qk,

1 i
gl s (— f 9"dy) xo,
; Zk: Qi Jo, %

Lemma 2.9. Suppose0 <a <n,0<p <%, and % =
{Qk}and Ay >0,

)94

w

P
Lﬂ!

% — 2. If o’ € RHy, then for any countable collection of cubes
P

S

Y Al xo,
k

Y ke
k

Here and throughout this paper, we assume that ® € S(R") with f ® # 0 and supp(P) c B(0, R), where
Ris a given constant in (0, o).

q 4
Lm’i L P

wl

Lemma 2.10. Fix N > 0and 0 < a < n. Let K be a distribution such that IV? (&)l s &7, Suppose further that
away from the origin K agrees with a function in CN*1, and for all multi-indices p such that |p| < N + 1,

OB (x)| < ||+ IA

Define the operator T by Tf = K * f. Let a be any w-(p, q,5)-atom with supp(a) C Q for 0 <p < coand1 < q < oo.
Then for all x € (Q*),

Mo, (X))

1 7

w(Q)?

Mo (Ta)(x) <

where T = “—2’*1 and a; = a/T.

Lemma 2.11. Given 0 <a <mn,1<r<oo,and1<p <%, defineqby , — ¢ =45 Ifw € Ay, then

[;%gk)’]1 [; mr]ly

<

q 4
Lm‘l Lml”

3. Proofs of Theorems 1.7 and 1.8

In this section, we will establish the atomic decomposition characterization of W (R") for 0 < p < o0 and
@ € Aw. Now we give the proof of the atom decomposition.

Proof of Theorem 1.7. Suppose that f € h!(R") N L1(IR"), 0 < p < o0, q,, < g < c0. By Lemma 2.5, we can obtain

FO =Y IQuGx = ug)(p; *hug)
jENQEHj+N
= Y 1QWo(x — u)(Wo+ () + Y | Y 1QIj(x — ug) (W * h)(ug)
Qelly j=1 Qelljn

=1+IL
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Define
%
S (x) = { Y suplyo h(u)lz)(p(X)}
Pelly ueP

and

1
2

S =1Y, Y, suply;hw)Pro®)

21 QeTl;y 1eQ
Foranyie€ Z and k=0,1, set

Qi = {x € R": Sk(h)(x) > 2/}

and
Qi = {x € R": M(xq,)(x) > m}
Denote
1 1
Bio = {P: P e Ty, IPN Qigl > 51PL, IP 1 Qisaol < 517
and

1 1
Bji =40Q: Qe [ JMiw, 100 Qutl > 7101 1Q N Qi < 5101

=1

Denote that é € B;1 are maximal dyadic cubes in B;;. If [(Q) = 277N use Yg to denote ¢;.

Now we estimate II. We can rewrite

=YY Y Qes gt -0

1=-% 0eB;; QcQ,QeB;;

= Z Z Asal(@),
1==% QeB;,
where
‘ 1
as(x) = — ) 1QIWo * M (uohpolx = u)
Q QcQ

and

AL = 5@ Y g+ h(uo)Pxo

1QI" |\ oo

L1

5936

By the definition of 1o, we find that 11’5 is supported in 1Q where ¢; = 2V*2 and the vanishing moment

condition of aéj follows from the vanishing moment condition of {g. There exists a constant C > 1 such
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that |c;Q| < C. Then we try to obtain the size condition of a%. By the duality argument,

Y QI * (uo)palx — ug)

QcQ La

= sup <2 1QI(g * h(ug)yolx - ug), g>
ol <1\

= sup | ¥ (o * uavio * )ty
”gHLLI/ <1 ! Qcé

< sup f[ZKE”Q*h)(uQ)lzXQ(]/)]

ol =1 % ( 5

X [Z l(Yq * 9)(”Q)|2XQ(]/)] dy
Q<Q

1
q 1

< sup f [Z |(¢Q*h)(”Q)|2XQ(y)J dy
”9”m’51 R QcQ

q 7

X f [2|(¢Q*9)(MQ)|2XQ(y)] dy
® o

llgll, o <1 QcQ

< sup |[S'@)||, {2I(¢Q*h)(ug)lzxg(y)} :
L1

Therefore, we can choose an appropriate constant C such that

<19
“ W@

oo

In conclusion, each aié(x) is a w-(p, q,5)-atom of i, (R").

Then, we try to prove that for any 0 < n < co, we have

)\’;XQ@ i
ez ] o
L,

.1
T Gepy, \ @(Q)7

We claim that

1

{ZWQ . h(uQ)FXQ} <c2|o
i

QcQ

1
q
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When x € Qand Q € Bj1, M()(me2 (x) > % Moreover, since

i,l\QHl,l)

XQ(X) < 2M(XQO(~)M\Q> )(X),

i+1,1

then

XQ(x) < 4M2(XQ05L1\Q4 )(x).

i+1,1
By Lemma 2.1, forany 1 < g < oo,

14
2

Y bo* hug)Pxa
QcQ L0

- [ | X wo+htuoixat]| ax
® e

q
2

Y o * hu) M (X ong o, )| dx

IA
o
T

QcQ
%
=C Z LN h(uQ)|2XQﬂ5i,l\Qi+L1 ()| dx
oo
q
2
<C f~ B Y 1o+ hug)Pro() | dx
QNQi1\Qis11

QcQ
C ﬁ ) (Sl(h))qusCZiq|§|.
QNQN\Qiv

Hence, we finished the proof of the claim (8). Now we can obtain

IN

px ()] <z y e

1 Q¢Bi; CL)(Q)!’ LE) i QEB,l LFZ,

Since Q;; C ﬁiJ foranyi € Z and |§1’,1| < ClQ; 1] for any x € R", we have

Xg, @) < CM (xa,)(),

5938

where y is large enough such that yp > g, and yn > 1. Applying Lemma 2.1 with w € A,,,, we can obtain

1 QEBH LV
L

[Z (2§?M(m,1))w] W

1

<G,

vp 4
Ly Ly,
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It is easy to know that Q.17 C ;7 and | () Q;1] = 0. Then for almost every x € R", we have
i=1

[Z 2”7)@:1(")] [Z 2”7X0,1\0,+11(x)

Hence, together with Corollary 2.6, we conclude that

.
: L
f [Z 2 XQIl\Qle] x)dx = CZ f iPa)(x)dx

Q;1\Qis11

P 1P

n
[Z 2”’XQL,1 \Qis11 ]

1

==

<C

P
Lm

<C f]R ” (8'h) 0@z < £,

Next we estimate I. We can use P to denote Q if Q € I'ly and rewrite

I=) Y uhbh()
i PeBjy
where bj,(x) = -FIPI(o * h)(up)o(x — up) and i, = Cl(o * h)(up)). Let C = 2-Nne(P)#|P| "7 [[9o]|,- Similarly,
by the def1n1t10n of 1o, we find that b, is supported in coP where ¢y = 3. Moreover, there exist a constant
C > 1 such that|coP| > C. It is easy to prove that [[bi|,, = PP * (up)(fs ol = up)idx)1 < |P|7w(P)F.

In conclusion, each b »(x) is a w-(p, g, 5)-block of i (R™). Repeatmg the similar but easier argument, we can

obtain
1
[Ji Xe ny\n
Tz (2] bt
L,

7 PeBy \ w(P)?

Consequently, we can know that

rx ()] Jrp )] o

i QeB, w(Q) i PeBy \ W(P)7 y

LP

Therefore, we complete the proof. m]
Next we will prove the reconstruction theorem for the atomic decomposition.
Proof of Theorem 1.8. Notice that for almost every x € R"

9N < Y Ajlg@)@)l + Y wlg)))l = +11
j=1 =1
For II,

1= uilg@)E)lr, @) + ) g @)xary ()

= =1
=11 +IL,.
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Now we estimate the term II;. Denote /j(x) = g(b;)(x)xap;- By the size condition of atoms and g > g,, we
obtain

s, < oL, < Clpill,, < PPy

Together with the fact supp(h;) C 4P, Lemma 2.3 and Remark 2.2, we obtain

i Hj)(élpi i [,l]')(pjl
7

MLl = ihj(x)
j=1 a)(P]‘)” %4 j=1 a)(Pf)P

<C

p
L,

<C

Next we estimate II,. For all x € (4P;)°, we have
(@ 5)I < [ 16 = ity
Pj

<sup|q§(x—z|f|b (y)ldy

2€P;j

< szé—_mw ol 1217
2 \P;{11P/|7
T (1 + 2 — xp M a)(p,)l
2in 1(P™
(1 + 2ix — xp, )M w(P; )

for some sulfficient large M > n > 0. Observe that |P;| > C > 1 and if M > n,

i o C
L+ 2= =

Therefore, we obtain

Uz—ZH; {Z i b<x>|} Xeapy ()

ieN

i [Z"Pl b(x)|]X(4p)f(X)

i€N

i w(P)) " (P

o ——— 1 Xw@p) (%)

=1

LetM=n+s+1andy =% We have

= 1 1P \"\
< CZ #jw(Pj)_”((lx(_;lw) ) Xy (x)

Z jw(P)) 7 (M, ()

II

N
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Since w € A with the critical index g, and s > max{[n(%’ —-1)], -1}, we know that yp > g, and thenw € A,,.
Applying Lemma 2.1 yields that

V4

0 y 0 AV
iy < oy L)y ey J
= oy |, |\ F ey )|,
" g
. [i ”jXP’;] _ |y
=1 w(Pj)? =1 @(P)7 ||

By Lemma 2.7 and the estimates of I; and II;, we obtain

Youbil <CY wew)| <c|Y, =
=) " =1 b =1 WPy |,
Similarly, for I, we can find that
1= Y Alga)lao + Y Alg@)@ixagy )
j=1 j=1
=1 + Ip,
and
Ihlly, <Cll}, ——%
j=1 a)(Q]')” 7

Note that Q; = Qj(x;,[(Q;)). Denote by pi the sum of first s + 1 terms in the Taylor expansion of ¢:(y — z) at
y — x;. Details are similar to those in [28]. Applying the vanishing moment and size condition of a; and the
smoothness conditions on ¢, we can obtain

2
w0 = 1| [ oo itz o
(Q)) PI(Q D

|]/ _ xj|2(n+s+1)

Lety =

ntstl By repeating the similar analysis as in the estimate of II, we can obtain

i AJXle

j=1 CU(Q]')'; %4

Therefore, it concludes that

Ll <C

Aixo,
j=1 w(Q])”
Observe that
Aixo. p.
]XjS lu]XPJl < 0,
=1 w(Qj)? = (P ||,
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which implies that

o AjXo o LjXP;
Z ]—Q]l + Z 'uj—]l — 0, as N — oo.
N @@ || [lEN @)

Thus,
= AjXo; = LjXP;
sim [y 2R <o, im Y EE <o
TN @(@Q)7 | TN 0P|
Notice that
Z/\]ﬂ]‘ <C Z / Q]l ;
[ =N @(Q)" ||,

i#ibj <C i iR
=N ‘

@

p
L,

Therefore, we can obtain

=0, lim Z}“Vyjbj =0,
]:

(o]
N—ocoo || 4
j=N W

12
Ui

which implies that the series ), Aja; + ). u;b; converges in W (R™). O
j j

4. Proofs of Theorems 1.9, 1.10 and 1.12

This section is devoted to proving the boundedness results given in Theorems 1.9 and 1.10 for the
inhomogenous Calderén-Zygmund singular integrals and Theorem 1.12 for the local fractional integrals.
Proof of Theorem 1.9. Recalling the atomic decomposition of weighted local Hardy spaces in Theorem 1.7,
we know that if f € W (R™) N LI(R"), there exist a sequence of w-(p, g, s)-atoms {a j}]f’il with a corresponding
sequence of non-negative numbers {A ]-}]f"’:l and a sequence of w-(p, 4, s)-blocks {b j}]f";l with a corresponding

sequence of non-negative numbers {u j}]i"’:l suchthat f =}  Aja;+) u;b;in W (R™)NLT (]R”)with(”nﬂ)p <g<oco,
i i
and that

[

Z Ajxo; N Z HjXp; SC“th/j,'

1 1
=1 wQ)7 |, |77 @PpF |,

To prove the theorem, it will suffice to prove that

[e9)

XA PV
Tl < |y, 222 v ) 22

1
=1 @(Q))" ||, =1 w(Pj)r

4
Lm
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In fact, for x € R", we have

IT(HE)| < Y IIT@IO!+ Y T =: 1+ 1.
i j

First we can prove that

i /\J')(Qfl

Il < C
= @) |,

For x € R",
< Y IT@)@)o () + Y IIT@)@lxiy () = h + b,
= =1

Since T is a bounded operator on L?(R"), from the Calderén-Zygmund real method in [19, Section 7.3], we
know that T is bounded on LI(IR") for any 1 < g < co. Together with the size condition of a;, we obtain that

forany( hyp < g < oo

1 1

q a: ﬁ
[ 1* f IT(ﬂj)XQﬂqu] < ” J”qu < |Q]l| < C .
Qi1 Jo; QT w(@)IQl (@)

Sincew € A (1), then there exists r > 1 such that w € RH,. Fix g9 > max{p, 1} such that (%0)’ <r. For I, by
Lemma 2.8 and Remark 2.2, we can get that

Il <

Y AIT@)lxo
j

P
Ly,

1 o
<C ZAJ[@ fQ* IT(aj)XQ;I%dX] XQ;
] ] j 17
Ajxg; Ajxq
<c|y, —=|| =c|). ==

T w(Q)) 7 w@)7 |,

P
Lm

For I, note that x € (Q;)C and cq; is the center of Q;. We can know that [x—cq,| > 2|y —cq,land [y —cq,| < 1(Q)).
Applying the smooth condition of the kernel K, we obtain that

@)l = l J. 7ty

y—co Q)"
<C | femoq ey < O f Iy
j

SJWme—W@%wMWW
Qj

Qj lx
cc ng,-)”*e . (M(m,)(x))%
w(Qj>ﬁ|x—cQ,|"+f w(Q))’

Denote that y = 1. Notice that yp > 1 and w € A,,. Applying Fefferman-Stein vector-valued maximal
inequality yields that



X. Chen, ]. Tan / Filomat 38:17 (2024), 5925-5949 5944

Y

A:MY Qi v
<C [E i el (X /)]
L,

~ w(Q))

Z 1AM (xo;)

Ll <C T
7 w(Q))?

Ly
Combining the estimates of I; and I;, we can obtain the desired result.

Then we can prove that

(o)

Z HiXp;

M|y < C 1
=1 w(Pj)?

L,

By repeating the similar argument, we can know that for x € R",

II< Z T @) xp: (x) + Z LT X @) () = I + 1T

= =
and
" HiXp
My < |y —=| -
j=1 LL)(P}‘)V I

For I,, when x € (P;)C and y € P;, we have |[x — y| ~ |[x — cp| and |x — y| > 1/2. By using the size condition of
K and the fact that |P;| > C, we can get that for any x € (P;)C,

|T<b;->(x>|=‘ | #ew ) < | o oy

1 1 1
< o J, WMy = s [l e

n+n

I(P))" <C (M(xp))(x)) .

S C 1 - 1
w(Pj)7|x = cp "0 w(Pj)r
Then, it concludes that
HjXPp;
MLl < C 1
Y]
j w (B Ll
Therefore, by a density argument, we finish the proof of the theorem. m]

Proof of Theorem 1.10. By the argument similar to that used in the above proof, it will suffice to prove that
for f € H,(R") N LI(R") with (5)p < g < oo,

o Aixo, o LiXP
()|, = [IMa(T(F),, <C N (e L
” Hh ” D ”L 1 ]Z_;a)(Qj)v . 2 j_Zla)(Pj)P ,

We claim that for x € R”, we have

sup D+ T(f) ()| < I +1I,

O<t<1
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where

A .
I= Z . T (M(T(ﬂj))(x))(wag;(x) + (M(XQ,)(x))yX(Z\/EQ;)L‘(x))
T w(Q))”

and

1= Y (M) i () + M)V X iy ()

7 w(Pj)r

withy = nnﬂ Applying the claim and repeating the nearly identical argument to the proof of Theorem 1.9,
we can obtain the desired result. In fact, when x € 2 \/EQ;, we just need the pointwise estimate

Mo(T()_ Ajap)(x) < C Y A;M(T(@)().
j j

When x € (2 \/EQ;)C, we have

|©; * T(a;)(x)| = ‘ fR D = yT@)(ydy| < ™ fB . IT(aj)(y)ldy < sup)IT(ﬂf)(y)l-

yeB(x,t

Notice that [Q;| < Cand x € (2 \/EQ;)C. If0 <t <|x—cql/2, we can get that y € (Q;)C. Therefore, from the
proof of Theorem 1.9, we conclude that

(M(xg,)(x))"

sup |T@a)(y)l <C
yEB(x,t) a)(Q]-)P

Then we consider the case that ¢t > |[x — cg|/2. Observe that a; satisfies f]R,, T(aj)(x)dx = 0. For any
xe2 \/EQ;)C, applying the mean value theorem and Holder’s inequality yields that

D¢+ T(aj)(x)| =

St_"f

<Clx - CQ].I_"_1 {L ly — colIT(@p)(y)ldy + j(‘Q*) ly — CQ,-IIT(aj)(y)Idy]
; ;

1(Qj)™ dy]

%l —-C ‘|n+r]—1
Y~

(@ = ) - Dix 0 )T )|

R"

Y=<l
7 ||¥'((x — cq, + Olcq, = y)/DIIT(@))(y)ldy

< Clx = o, " [1Q) 7 || T (@), f
x = cq, [(Q]) [T@l|,, + @ @(Q)
(M(xg)(x))”

< Clx — o " Q)" w(Q) 7 < C -
w(Qj)?

7

where 6 € (0, 1).
Similarly, when x € 2 \/ﬁP}, we can get that

Ma(T(Y | b)) < C ) i M(T(B)()
j i

and when x € (2 \/r_zp;)c,

|@; + T(bj)(x)| < sup |T(b;)(y)l.
yeB(x,f)
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Notice that |Pj| > C. Then we can get that y € (P;)C. Then, repeating the same argument as used above, we
can obtain that

, 4
sup |T(bj)(y)| < CM-
yeB(xt) a)(Pj)”

Therefore, we complete the proof of the theorem. m]
Proof of Theorem 1.12.  To prove the first part of this theorem, we apply the argument similar to that used
in the proof of Theorem 1.9 and Theorem 1.10 and so we only need to concentrate on the differences. Now
we consider the case when 1 < g < co. By the atomic decomposition of //,(R") and a dense argument, in
order to show that ' admits a bounded extension from h’;p (R™) to Lzﬂ(]R”), we only need to prove that

Aixo
Y @) sa|Y ©)
j qu ] CU(Q])” U’p
and
oc HjXp
Y wieep|  <c|Y =] (10)
j I j CU(P]')” r

Wl WP
where each a; is w-(p, t, s)-atom, each b; is w-(p, t, s)-block and the exact value of ¢ will be chosen below.
Then we prove (9). We first estimate the condition that |x — cg| < Z(Q;). Since w” € RH4, 7 € A, there
r

exists ¥ > 1 such that w7 € RH,. Fix qp > max{g, 1} such that (%0)' <r. Then o' € RH(LO)f. Define py > 1 by
q

1_1

P . Moreover, we choose t = pg. Thus, by Lemma 2.8, we have that

Y Al < (1Y A @l
]- .

L:]M ! LZH
) W
<C Z/\j *fllﬁfc(ﬂj)XQ;lq“dx Xq
- Qi1 Jo; r

1
1 Po
<C ZMIQ}I 7o (f |ﬂj|”°dXJ XQ
- Q
] i L

_1 1
Qi1 ©1Qj1™ Xxq:
e
7 w(Qj)r T
q

*\ X "
Q) xo

l
<C /\]‘ T
; (‘)(Qj)E o,

of

q
e

Ajxq;

e
7 @(Q))" ||
WP

where the third inequality follows from the boundedness of I'° on classical Lebesgue spaces ([35, Lemma
8.9]) and the last inequality follows from the Lemma 2.9, Remark 2.2.
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Let Py(y) be the Taylor polynomial of degree d of the kernel of I'’° centered at cg . where the exact value
of d will be chosen below. When |x — cg,| > Z(Q;), by the moment condition of 4; and the Taylor expansion

theorem, we obtain that
1Q)* (Mxg, ()
(@) < C——————,
w(Qj)”
where y = tl=a = Gince o’ € RH 1 then wf € Aw. We choose d such that yq > g.,. Therefore, by

n+1
Fefferman-Stein vector-valued maximal inequality and Lemma 2.9, we have

<C ZA«Z(Qj)a(MXQf(x))V

=" @)

Z /\fXle
j

w(Q]’)V 7

1
Z Al @)x
! Loy Ly

Q]) XQ]
a)(Q]

<C

L
Now we prove (10). Notice that
supp(I“(b;)) C Pj(cp,, I(P}) +4) C 10P;.
Repeating the similar argument, we can obtain that

2 HjXP;

j a)(Pj)F’ %

)| <c

q
Lmq

Therefore, we have proved the first part of the theorem.
Now we consider the boundedness of I'“ from i’ ,(R") to h? (R"). To end this, we need to prove that

Aixo:
Y Mo @ <c|Y (11)
j Lzyq ] C()(Q])p )is
and
oc HiXp
Mo(I@)||  <C|) ——= (12)
v, j CU(P]‘)E I

where each g; is w-(p, t, N)-atom, each b; is w-(p, t, N)-block and the exact values of t and N will be chosen
below.
First we prove (11). For x € R",

(L3 (a)()

< Y AMo( @) ()l () + Y AIMal @) @lxioy ()
i j

=1+l
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To estimate I, arguing as before we may assume that gqo > max{g, 1}. Define py > 1 by plo -L1l=2

q0
Together with the fact that Me is bounded on L% (IR"), we can obtain that

1

1 I q0 o
Ml < C ZAJ[@ fQ (Mol(a)) dx] Xo
] j

q
Lm’i

1
90
<c|Y rigrs [ | |1£$C<aj>|‘7°dx] xo
- o
] j 17
XQ;

AjlQiln

j

<C Z 1 i

7 w(Q)) w,
Aixo.

<c|y ==

7 MQW’W

To estimate II, we choose N so that

n—-a+N+1
. q> Gan-
Lett = '“”M Then, since % - qu = 7., we have that

LY —T(l—gﬂ—(n_a+N+1)
(tp) P m) n 7

Let v = w+. Then we have that v™ = @ € A, _u_. Equivalently, we have that v € A ;. Therefore, by
@)
Lemma 2.10 and Lemma 2.11 applied to the fractional maximal operator M,_,

Af(Ma, ()" | Aixgr | Ajxo

Iy < C ZM <C Z j Q,l _c Z j Q]l .

o j &)(Q])P Lﬁ;_[ j &)(Q])P LP;T j CL)(Q])P U;p

Then we prove (12). From the definition of Mg (I'*(b /), we can obtain that
supp(Mao(Iy“(b)))) C Pj(ce,, I(P)) +8) € 20P;.

Applying the similar argument in the above proof, we can obtain the desired results. m]
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