
Filomat 38:17 (2024), 6087–6098
https://doi.org/10.2298/FIL2417087L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Nonlinear bi-skew Jordan-type higher derivations on ∗-algebras
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Abstract. This article studies the structure of nonlinear bi-skew Jordan-type higher derivations of unital
∗-algebras and proves that each nonlinear bi-skew Jordan-type higher derivation is an additive higher
∗-derivation. As applications, nonlinear bi-skew Jordan-type higher derivations on some classical unital
∗-algebras are characterized.

1. Introduction

Let B be an unital ∗-algebra, where ∗ satisfies the relation (xy)∗ = y∗x∗ and ((x)∗)∗ = x for all x, y ∈ B.
The symbol y1 ◁ y2 = y∗1y2 + y∗2y1 is called a bi-skew Jordan product for arbitrary y1, y2 ∈ B. A mapping
δ1 : B → B (not necessarily linear) is called a nonlinear ∗-derivation if δ1(y1y2) = δ1(y1)y2 + y1δ1(y2) and
δ1(x∗) = δ1(x)∗; A mapping δ1 : B→ B (not necessarily linear) is called a nonlinear bi-skew Jordan derivation
if

δ1(U2(y1, y2)) = U2(δ1(y1), y2) +U2(y1, δ1(y2))

for all y1, y2 ∈ B. Furthermore, for integer n ≥ 2 and y1, · · · , yn ∈ B, define U1(y1) = y1,U2(y1, y2) = y1 ◁ y2
and Un(y1, · · · , yn) = Un−1(y1, · · · , yn−1) ◁ yn. Then, according to [5], we introduce the concept of nonlinear
bi-skew Jordan n-derivation. If a nonlinear mappingΨ1 : B→ B satisfies an equation

Ψ1(Un(x1, · · · , xn)) =
n∑

k=1

Un(x1, x2, · · · ,Ψ1(xk) · · · , xn), (1.1)

it’s called a nonlinear bi-skew Jordan n-derivation. We now introduce a more general mapping which
contains the above mappings such as bi-skew Jordan derivations, bi-skew Jordan n-derivations, etc., as
its special form. Let N be the set of all non-negative integers and ∆ = {Ψm}m∈N be a family of mapping
Ψm : B→ B on B such thatΨ0 = idB. ∆ is called:
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(a) an additive higher ∗-derivation if

Ψm(xy) =
∑

i+ j=m

Ψi(x)Ψ j(y), Ψm(x + y) = Ψm(x) +Ψm(y) and Ψm(y)∗ = Ψm(y∗) (1.2)

for all x, y ∈ B and for each m ∈ N ;

(b) a nonlinear bi-skew Jordan higher n-derivation if

Ψm(Un(x1, · · · , xn)) =
∑

i1+···+in=m

Un(Ψi1 (x1),Ψi2 (x2), · · · ,Ψin (xn)) (1.3)

for all x1, · · · , xn ∈ B and for each n,m ∈ N .

This notion makes the best use of the definition of nonlinear bi-skew Jordan-type derivation, It’s named
similarly to [1]. The main statement is as follows: when m = 1 in (1.2) and (1.3), the mapΨ1 : B→ B is an
additive ∗-derivation and a nonlinear bi-skew Jordan n-derivation, respectively. Many mappings associated
with Jordan n-derivations have been studied by scholars, see [2–4].

In the scope of the author’s research, the structure of bi-skew Jordan derivations and their associated
maps on ∗-algebra B has attracted the attention of many scholars. In 2022, the problem of the structure
of nonlinear bi-skew Jordan derivations on prime ∗-algebras has attracted the attention of Darvish and his
collaborators[7], who characterized every nonlinear bi-skew Jordan derivation evolved into an additive
∗-derivation. In 2023, Ashraf and co-authors[6] shown that every nonlinear bi-skew Jordan-type derivation
on factor von Neumann algebra is an additive ∗-derivation. This result[6] generalizes the main conclusion
of [7]. Meanwhile, Zhao and co-authors[5] generalized the results of [7] and [6] to ∗-algebra B, that is,
they proved that every nonlinear bi-skew Jordan-type derivation on unital ∗-algebra B is an additive ∗-
derivation. It was noted that Wani and his collaborators[1] have studied the structure of multiplicative
∗-Jordan-type higher derivations on von Neumann algebras without nonzero central abelian projections,
and proved that every multiplicative ∗-Jordan-type higher derivations on von Neumann algebras is an
additive higher ∗-derivation. Based on these facts[1, 5, 7], there is a natural question:

Problem 1.1. Is a nonlinear bi-skew Jordan-type higher derivation on an unital ∗-algebra an additive higher ∗-
derivation?

This is an interesting problem, and its solution not only extends existing results, but also solves some
problems of the same type in algebra, such as standard operator algebras, factor von Neumann algebras,
von Neumann algebras of type I1 and prime ∗-algebras, and so on.

This paper takes the above questions as the main research topic, and gives the positive answers to the
above Questions 1.1, that is, it proves that every nonlinear bi-skew Jordan-type higher derivations on unital
∗-algebra is an additive higher ∗-derivation, and gives a series of conclusions as its corollaries.

2. Nonlinear bi-skew Jordan-type higher derivations

Let us begin this section with the following concept of unital ∗-algebras B.
Suppose that the symbolB represents unital ∗-algebra with idempotents F1 and F2 satisfying the condi-

tion F2 = I − F1, where I is the identity of algebra B. We introduce the following notation to illustrate the
proof process. DefineBb = {B ∈ B : B = B∗},B11 = F1BbF1,B12 = {F1BF2+F2BF1 : B ∈ Bb} andB22 = F2BbF2.
For each B ∈ Bb, we may write B = B11 + B12 + B22, where B11 ∈ B11, B12 ∈ B12 and B22 ∈ B22. In this article,
we assume that the unital ∗-algebra Bmeet the conditions:

C =

{
YBF1 = 0 implies Y = 0

YBF2 = 0 implies Y = 0.

Under the condition of C, it contains many important algebras as its classic examples[5]: such as standard
operator algebras, factor von Neumann algebras, von Neumann algebras of type I1 and prime ∗-algebras,
and so on.



X.Liang et al. / Filomat 38:17 (2024), 6087–6098 6089

Theorem 2.1. Let B be an unital ∗-algebra with identity element I that satisfies condition C. Then every nonlinear
bi-skew Jordan higher n-derivation as defined in (1.3) is an additive higher ∗-derivation.

To prove this theorem, we use mathematical induction for m, which appears in equation (1.3). When
m = 1 in Eq (1.3), every nonlinear bi-skew Jordan higher n-derivation will evolve into a nonlinear bi-skew
Jordan n-derivation, which provides the results underlying the use of mathematical induction in this paper.
It can be seen from [5] that every nonlinear bi-skew Jordan n-derivation B is an additive ∗-derivation and
satisfies the following conditions:

H1 =



Ψ1(0) = 0; Ψ1(x) ∈ Bb for all x ∈ Bb; Ψ1(I) = Ψ1(iI) = 0;
Ψ1(C11 + C12 + C22) = Ψ1(C11) +Ψ1(C12) +Ψ1(C22) for all C11 ∈ B11,C12 ∈ B12,C22 ∈ B22;
Ψ1(C12 +D12) = Ψ1(C12) +Ψ1(D12) for all C12,D12 ∈ B12;
Ψ1(Cii +Dii) = Ψ1(Cii) +Ψ1(Dii) for all Cii,Dii ∈ Bii, i ∈ {1, 2};
Ψ1(M)∗ = Ψ1(M∗); Ψ1(iM) = iΨ1(M) for all M ∈ B.

We assume that the mapping Ψs holds for all 1 < s < m, m ∈ N on an unital ∗-algebra B satisfies the
following:

Hs =



Ψs(0) = 0; Ψs(x) ∈ Bb for all x ∈ Bb; Ψs(I) = Ψs(iI) = 0;
Ψs(C11 + C12 + C22) = Ψs(C11) +Ψs(C12) +Ψs(C22) for all C11 ∈ B11,C12 ∈ B12,C22 ∈ B22;
Ψs(C12 +D12) = Ψs(C12) +Ψs(D12) for all C12,D12 ∈ B12;
Ψs(Cii +Dii) = Ψs(Cii) +Ψs(Dii) for all Cii,Dii ∈ Bii, i ∈ {1, 2};
Ψs(M)∗ = Ψs(M∗); Ψs(iM) = iΨs(M) for all M ∈ B.

In the remaining part we will prove that the above condition Hs holds for s = m. Finally, it is proved that
a nonlinear bi-skew Jordan higher n-derivationΨm on algebraB is also an additive higher ∗-derivation. We
prove the main conclusion through a series of lemmas.

Lemma 2.2. Ψm(0) = 0.

Proof. By the hypothesis Hs (1 ≤ s ≤ m − 1), i.e.,Ψs(0) = 0, we have

Ψm(0) = Ψm(Un(0, 0, · · · , 0))

=
∑

i1+···+in=m

Un(Ψi1 (0),Ψi2 (0), · · · ,Ψin (0))

= Un(Ψm(0), 0, · · · , 0) + · · · +Un(0, · · · , 0,Ψm(0))

+
∑

i1+···+in=m,
i1,··· ,in<m

Un(Ψi1 (0),Ψi2 (0), · · · ,Ψin (0))

= 0.

Lemma 2.3. Ψm(B) ∈ Bb for every B ∈ Bb.

Proof. For every B ∈ Bb, by the fact B = Un(B, I
2 , · · · ,

I
2 ), U2(B1,B2) = B∗1B2 +B∗2B1 ∈ Bb for any B1,B2 ∈ B and
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inductive hypothesis Hs (1 ≤ s ≤ m − 1), i.e.,Ψs(B) ∈ Bb for every B ∈ Bb, we have

Ψm(B) = Ψm(Un(B,
I
2
, · · · ,

I
2

))

=
∑

i1+···+in=m

Un(Ψi1 (B),Ψi2 (
I
2

), · · · ,Ψin (
I
2

))

= Un(Ψm(B),
I
2
, · · · ,

I
2

) +
n∑

j=2

Un(B,
I
2
, · · · , Ψm(

I
2

)︸ ︷︷ ︸
j-th component

, · · · ,
I
2

)

+
∑

i1+···+in=m,
i1,··· ,in∈{0,··· ,m−1}

Un(Ψi1 (B),Ψi2 (
I
2

), · · · ,Ψin (
I
2

))

=
I
2
{Ψm(B) +Ψm(B)∗} + (n − 1){BΨm(

I
2

) +Ψm(
I
2

)∗B}

+
∑

i1+···+in=m,
i1,··· ,in∈{0,··· ,m−1}

Un(Ψi1 (B),Ψi2 (
I
2

), · · · ,Ψin (
I
2

)).

HenceΨm(B)∗ = Ψm(B) for all B ∈ Bb.

Lemma 2.4. With notations as above, we obtain

Ψm(B11 + C12) = Ψm(B11) +Ψm(C12) and Ψm(D22 + C12) = Ψm(D22) +Ψm(C12)

for all B11 ∈ B11, D22 ∈ B22 and C12 ∈ B12.

Proof. To prove this lemma, we introduce symbol Vm = Ψm(B11+C12)−Ψm(B11)−Ψm(C12). In agreement with
Lemma 2.3, we have (Vm)∗ = Vm. Since Un(F2,B11, I, · · · , I) = 0, and inductive hypothesis Hs (1 ≤ s ≤ m− 1),
i.e.,Ψs(B11 + C12) = Ψs(B11) +Ψs(C12) for all B11 ∈ B11 and C12 ∈ B12, we get

Un(F2,Ψm(B11 + C12), I, · · · , I)

+
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F2),Ψi2 (B11) +Ψi2 (C12),Ψi3 (I), · · · ,Ψin (I))

= Un(F2,Ψm(B11 + C12), I, · · · , I)

+
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F2),Ψi2 (B11 + C12),Ψi3 (I), · · · ,Ψin (I))

= Ψm(Un(F2,B11 + C12, I, · · · , I))
= Ψm(Un(F2,B11, I, · · · , I)) +Ψm(Un(F2,C12, I, · · · , I))

= Un(F2,Ψm(B11), I, · · · , I) +
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F2),Ψi2 (B11),Ψi3 (I), · · · ,Ψin (I))

+Un(F2,Ψm(C12), I, · · · , I) +
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F2),Ψi2 (C12),Ψi3 (I), · · · ,Ψin (I))

= Un(F2,Ψm(B11) +Ψm(C12), I, · · · , I)

+
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F2),Ψi2 (B11) +Ψi2 (C12),Ψi3 (I), · · · ,Ψin (I)).
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It follows from the above equation that Un(F2,Vm, I, · · · , I) = 0, which implies that Vm
22 = Vm

12 = 0. It follows
from Un(F1 − F2,C12, I, · · · , I) = 0 and inductive hypothesis Hs (1 ≤ s ≤ m − 1) that

Un(F1 − F2,Ψm(B11 + C12), I, · · · , I)

+
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F1 − F2),Ψi2 (B11 + C12),Ψi3 (I), · · · ,Ψin (I))

= Ψm(Un(F1 − F2,B11 + C12, I, · · · , I))
= Ψm(Un(F1 − F2,B11, I, · · · , I)) +Ψm(Un(F1 − F2,C12, I, · · · , I))

= Un(F1 − F2,Ψm(B11), I, · · · , I) +
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F1 − F2),Ψi2 (B11),Ψi3 (I), · · · ,Ψin (I))

+Un(F1 − F2,Ψm(C12), I, · · · , I) +
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F1 − F2),Ψi2 (C12),Ψi3 (I), · · · ,Ψin (I))

= Un(F1 − F2,Ψm(B11) +Ψm(C12), I, · · · , I)

+
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F1 − F2),Ψi2 (B11) +Ψi2 (C12),Ψi3 (I), · · · ,Ψin (I))

= Un(F1 − F2,Ψm(B11) +Ψm(C12), I, · · · , I)

+
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F1 − F2),Ψi2 (B11 + C12),Ψi3 (I), · · · ,Ψin (I)).

As maintained by the first equation and the last equation, we arrive at Un(F1 − F2,Vm, I, · · · , I) = 0, and
then we get Vm

11 = 0. Combining the equations Vm
ij = 0 (1 ≤ i ≤ j ≤ 2) can be obtained Vm = 0, i.e.,

Ψm(B11 + C12) = Ψm(B11) +Ψm(C12) for all B11 ∈ B11 and C12 ∈ B12.
Using similar computational techniques, we can obtain Ψm(D22 + C12) = Ψm(D22) + Ψm(C12) for all

D22 ∈ B22 and C12 ∈ B12.

Lemma 2.5. With notations as above, we have

Ψm(B11 + C12 +D22) = Ψm(B11) +Ψm(C12) +Ψm(D22)

for all B11 ∈ B11, C12 ∈ B12 and D22 ∈ B22.

Proof. To prove this, we introduce notation Vm = Ψm(B11 + C12 + D22) −Ψm(B11) −Ψm(C12) −Ψm(D22). In
accordance with Lemma 2.3, we have (Vm)∗ = Vm. By combining Eq. Un(F1,D22, I, · · · , I) = 0 and Lemma
2.4 with the induction hypothesis Hs (1 ≤ s ≤ m − 1), i.e.,Ψs(B11 + C12 +D22) = Ψs(B11) + Ψs(C12) + Ψs(D22)
for all B11 ∈ B11, C12 ∈ B12 and D22 ∈ B22, we know

Un(F1,Ψm(B11 + C12 +D22), I, · · · , I)

+
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F1),Ψi2 (B11) +Ψi2 (C12) +Ψi2 (D22),Ψi3 (I), · · · ,Ψin (I))

= Un(F1,Ψm(B11 + C12 +D22), I, · · · , I)

+
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F1),Ψi2 (B11 + C12 +D22),Ψi3 (I), · · · ,Ψin (I))

= Ψm(Un(F1,B11 + C12 +D22, I, · · · , I))
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= Ψm(Un(F1,B11 + C12, I, · · · , I)) +Ψm(Un(F1,D22, I, · · · , I))

= Un(F1,Ψm(B11 + C12), I, · · · , I) +
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F1),Ψi2 (B11 + C12),Ψi3 (I), · · · ,Ψin (I))

+Un(F1,Ψm(D22), I, · · · , I) +
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F1),Ψi2 (D22),Ψi3 (I), · · · ,Ψin (I))

= Un(F1,Ψm(B11) +Ψm(C12), I, · · · , I) +
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F1),Ψi2 (B11) +Ψi2 (C12),Ψi3 (I), · · · ,Ψin (I))

+Un(F1,Ψm(D22), I, · · · , I) +
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F1),Ψi2 (D22),Ψi3 (I), · · · ,Ψin (I))

= Un(F1,Ψm(B11) +Ψm(C12) +Ψm(D22), I, · · · , I)

+
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F1),Ψi2 (B11) +Ψi2 (C12) +Ψi2 (D22),Ψi3 (I), · · · ,Ψin (I)).

Then, we have Un(F1,Vm, I, · · · , I) = 0, which implies that Vm
11 = Vm

12 = 0.
On the other hand, we also combine Eq. Un(F2,B11, I, · · · , I) = 0 and Lemma 2.4 and the induction

hypothesis Hs (1 ≤ s ≤ m − 1) can be obtained

Un(F2,Ψm(B11 + C12 +D22), I, · · · , I)

+
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F2),Ψi2 (B11 + C12 +D22),Ψi3 (I), · · · ,Ψin (I))

= Ψm(Un(F2,B11 + C12 +D22, I, · · · , I))

= Ψm(Un(F2,D22 + C12, I, · · · , I)) +Ψm(Un(F2,B11, I, · · · , I))

= Un(F2,Ψm(D22 + C12), I, · · · , I) +
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F2),Ψi2 (D22 + C12),Ψi3 (I), · · · ,Ψin (I))

+Un(F2,Ψm(B11), I, · · · , I) +
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F2),Ψi2 (B11),Ψi3 (I), · · · ,Ψin (I))

= Un(F2,Ψm(B11) +Ψm(C12) +Ψm(D22), I, · · · , I)

+
∑

i1+···+in=m,
i2∈{0,··· ,m−1}

Un(Ψi1 (F2),Ψi2 (B11 + C12 +D22),Ψi3 (I), · · · ,Ψin (I)).

Then, we have Un(F2,Vm, I, · · · , I) = 0, which implies that Vm
22 = 0. Thus Vm = 0.

Lemma 2.6. With notations as above, we have

Ψm(B12 + C12) = Ψm(B12) +Ψm(C12)

for all B12,C12 ∈ B12.

Proof. Set B12,C12 ∈ B12, according to the construction method of the elements in set B12, for B,C ∈ Bb, we
know B12 = F1BF2+F2BF1 and C12 = F1CF2+F2CF1, which implies that B12+C12 = F1(C+B)F2+F2(C+B)F1 ∈

B12.
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According to Lemma 2.4 and the following two relations Un(F1 + B12,F2 + C12, I
2 , · · · ,

I
2 ) = B12 + C12 +

B12C12 +C12B12 and B12C12 +C12B12 = F1(BF2C+CF2B)F1 +F2(BF1C+CF1B)F2 ∈ B11 +B22 and the induction
hypothesis Hs (1 ≤ s ≤ m − 1), i.e.,Ψs(B12 + C12) = Ψs(B12) +Ψs(C12) for all B12,C12 ∈ B12, we know that

Ψm(B12 + C12) +Ψm(B12C12 + C12B12)
= Ψm(B12 + C12 + B12C12 + C12B12)

= Ψm(Un(F1 + B12,F2 + C12,
I
2
, · · · ,

I
2

))

=
∑

i1+···+in=m

Un(Ψi1 (F1 + B12),Ψi2 (F2 + C12),Ψi3 (
I
2

), · · · ,Ψin (
I
2

))

=
∑

i1+···+in=m

Un(Ψi1 (F1),Ψi2 (F2),Ψi3 (
I
2

), · · · ,Ψin (
I
2

))

+
∑

i1+···+in=m

Un(Ψi1 (F1),Ψi2 (C12),Ψi3 (
I
2

), · · · ,Ψin (
I
2

))

+
∑

i1+···+in=m

Un(Ψi1 (B12),Ψi2 (F2),Ψi3 (
I
2

), · · · ,Ψin (
I
2

))

+
∑

i1+···+in=m

Un(Ψi1 (B12),Ψi2 (C12),Ψi3 (
I
2

), · · · ,Ψin (
I
2

))

= Ψm(Un(F1,F2,
I
2
, · · · ,

I
2

)) +Ψm(Un(F1,C12,
I
2
, · · · ,

I
2

))

+Ψm(Un(B12,F2,
I
2
, · · · ,

I
2

)) +Ψm(Un(B12,C12,
I
2
, · · · ,

I
2

))

= Ψm(B12) +Ψm(C12) +Ψm(B12C12 + C12B12).

And then it yields thatΨm(B12 + C12) = Ψm(B12) +Ψm(C12).

Lemma 2.7. With notations as above, we have

Ψm(Cii +Dii) = Ψm(Cii) +Ψm(Dii)

for all Cii,Dii ∈ Bii, i ∈ {1, 2}.

Proof. The main purpose of this lemma is to prove that the nonlinear map Ψm agrees with additivity on
Bii (i ∈ {1, 2}), i.e.,Ψm(Cii +Dii) = Ψm(Cii) +Ψm(Dii) for all Cii,Dii ∈ Bii, i ∈ {1, 2}. We just need to prove the
case where i = 1, and the case where i = 2 can be calculated in a similar way. So as to prove the conclusion,
we make Vm = Ψm(C11 +D11) −Ψm(C11) −Ψm(D11).

It follows from Eq. U2(F2,C11) = U2(F2,D11) = 0 and the induction hypothesis Hs (1 ≤ s ≤ m − 1), i.e.,
Ψs(C11 +D11) = Ψs(C11) +Ψs(D11) for all C11,D11 ∈ B11 that

Un(F2,Vm, I, · · · , I) =Un(F2,Ψm(C11 +D11) −Ψm(C11) −Ψm(D11), I, · · · , I)
=Un(F2,Ψm(C11 +D11), I, · · · , I)
−Un(F2,Ψm(C11), I, · · · , I) −Un(F2,Ψm(D11), I, · · · , I)

=
∑

i1+···+in=m

Un(Ψi1 (F2),Ψi2 (C11 +D11),Ψi3 (I), · · · ,Ψin (I))

−

∑
i1+···+in=m

Un(Ψi1 (F2),Ψi2 (C11),Ψi3 (I), · · · ,Ψin (I))

−

∑
i1+···+in=m

Un(Ψi1 (F2),Ψi2 (D11),Ψi3 (I), · · · ,Ψin (I))
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=Ψm(Un(F2,C11 +D11, I, · · · , I)) −Ψm(Un(F2,C11, I, · · · , I))
−Ψm(Un(F2,D11, I, · · · , I))
=0.

And then, we have Un(F2,Vm, I, · · · , I) = 0, which implies that Vm
22 = Vm

12 = 0.
For arbitrary element E ∈ B, let’s say G12 = F1EF2+F2E∗F1, it is obvious that G12,U2(C11,G12),U2(D11,G12) ∈

Bb.
In agreement with Lemma 2.6, and the induction hypothesis Hs (1 ≤ s ≤ m − 1), we have

Un(Vm,G12, I, · · · , I) =Un(Ψm(C11 +D11) −Ψm(C11) −Ψm(D11),G12, I, · · · , I)
=Un(Ψm(C11 +D11),G12, I, · · · , I)
−Un(Ψm(C11),G12, I, · · · , I) −Un(Ψm(D11),G12, I, · · · , I)

=
∑

i1+···+in=m

Un(Ψi1 (C11 +D11),Ψi2 (G12),Ψi3 (I), · · · ,Ψin (I))

−

∑
i1+···+in=m

Un(Ψi1 (C11),Ψi2 (G12),Ψi3 (I), · · · ,Ψin (I))

−

∑
i1+···+in=m

Un(Ψi1 (D11),Ψi2 (G12),Ψi3 (I), · · · ,Ψin (I))

=Ψm(Un(C11 +D11,G12, I, · · · , I)) −Ψm(Un(C11,G12, I, · · · , I))
−Ψm(Un(D11,G12, I, · · · , I))
=0.

It follows from Vm
22 = Vm

12 = 0 that 0 = Un(Vm,G12, I, · · · , I) = Un(Vm
11,G12, I, · · · , I) for all G12 ∈ B12. In other

words, Vm
11(F1EF2) + (F2E∗F1)Vm

11 = 0. In the above equation, multipling the left by F1 and the right by F2,
we pick up Vm

11(F1EF2) = 0. Consistent with C, we get your hands on Vm
11 = 0. To sum up, it can be seen that

Vm = 0.
Likewise, we get hold ofΨm(C22 +D22) = Ψm(C22) +Ψm(D22) for all C22,D22 ∈ B22.

Lemma 2.8. Ψm is additive on Bb.

Proof. Considering Lemma 2.5-Lemma 2.7 uniformly, we obtain that this lemma holds.

Based on the additivity of mappingΨm, we introduce the imaginary number i in the remaining part to
prove that the mapping Ψm is an additive higher ∗-derivation. Therefore, we give the new decomposition
form of the element.

For arbitrary X ∈ B, we obtain that X = X−X∗
2 +i(−i X+X∗

2 ). It follows from Eq (i)∗ = −i that (−i X+X∗
2 )∗ = i X+X∗

2
and ( X−X∗

2 )∗ = −( X−X∗
2 ). Based on this, for any element X ∈ B, we have the following decomposition

X = X1 + iX2 for some X1
∗ = −X1,X2

∗ = −X2.

Lemma 2.9. Following the notation above, we realize

(1) Ψm(I) = Ψm(iI) = 0;

(2) Ψm(L)∗ = −Ψm(L) andΨm(iL) = iΨm(L) for arbitrary L∗ = −L.

Proof. In the proof process, we carry out the proof process of conclusion (1) and conclusion (2) together.
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In harmony with Lemma 2.3, Lemma 2.8 and the induction hypothesis Hs (1 ≤ s ≤ m− 1), i.e.,Ψs(I) = 0,
we have

2n−1Ψm(I) = Ψm(2n−1I) = Ψm(Un(I, I, · · · , I))

=

n∑
k=1

Un(I, I, · · · , Ψm(I)︸︷︷︸
k-th component

, · · · , I)

+
∑

i1+···+in=m,
i1,··· ,in∈{0,1,··· ,m−1}

Un(Ψi1 (I),Ψi2 (I), · · · ,Ψin (I))

=

n∑
k=1

Un(I, I, · · · , Ψm(I)︸︷︷︸
k-th component

, · · · , I)

= 2n−1nΨm(I).

And thenΨm(I) = 0. Thanks toΨm(I) = 0, L∗ = −L and Lemma 2.8, we attain

0 = Ψm(Un(L, I, · · · , I)) = Un(Ψm(L), I, · · · , I) = 2n−2(Ψm(L)∗ +Ψm(L)).

Furthermore, we haveΨm(L)∗ = −Ψm(L).
Now let’s prove that conclusionsΨm(iI) = 0 andΨm(iL) = iΨm(L) are true.
Because of (i)∗ = −i, Ψm(I) = 0, Ψm(L)∗ = −Ψm(L) for arbitrary L∗ = −L, Lemma 2.8, and inductive

hypothesis Hs (1 ≤ s ≤ m − 1), i.e.,Ψs(iI) = 0, we arrive at

0 = 2n−1Ψm(I) = Ψm(2n−1I) = Ψm(Un(iI, iI, I, · · · , I))
= Un(Ψm(iI), iI, I, · · · , I) +Un(iI,Ψm(iI), I, · · · , I)

+
∑

i1+···+in=m,
i1,i2∈{0,1,··· ,m−1}

Un(Ψi1 (iI),Ψi2 (iI), · · · ,Ψin (I))

= Un(Ψm(iI), iI, I, · · · , I) +Un(iI,Ψm(iI), I, · · · , I)
= −2niΨm(iI).

And then we can get Ψm(iI) = 0. For any element L that satisfies Eq L∗ = −L, Because of Ψm(L)∗ = −Ψm(L),
Ψm(I) = 0, andΨm(iI) = 0. we have

−2n−1Ψm(iL) = Ψm(−2n−1iL) = Ψm(Un(iI,L, I, · · · , I))
= Un(iI,Ψm(L), I, · · · , I)

= −2n−1iΨm(L).

So we haveΨm(iL) = iΨm(L).

Lemma 2.10. According to the above registered symbols, we obtain

Ψm(T1 + T2) = Ψm(T1) +Ψm(T2) and Ψm(T1 + iT2) = Ψm(T1) + iΨm(T2)

for arbitrary T1 = −T∗1 and T2 = −T∗2.

Proof. As a result of Lemma 2.8 and Lemma 2.9, we obtain

i(Ψm(T1 + T2)) = Ψm(i(T1 + T2)) = iΨm(T1) + iΨm(T2)

for all T1 = −T∗1 and T2 = −T∗2. In addition, We can see that the first conclusion is true. Now let’s prove the
second conclusion.
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Because the following two equations are true, which means

2n−1iΨm(T1) = Ψm(Un(T1 + iT2, I, · · · , I))

=
∑

i1+···+in=m

Un(Ψi1 (T1 + iT2),Ψi2 (I), · · · ,Ψin (I))

= Un(Ψm(T1 + iT2), I, · · · , I)

= 2n−2(Ψm(T1 + iT2)∗ +Ψm(T1 + iT2))

and
−2n−1iΨm(T2) = Ψm(Un(T1 + iT2, iI, I, · · · , I))

=
∑

i1+···+in=m

Un(Ψi1 (T1 + iT2),Ψi2 (iI),Ψi3 (I), · · · ,Ψin (I))

= Un(Ψm(T1 + iT2), iI, I, · · · , I)

= 2n−1i(Ψm(T1 + T2)∗ −Ψm(T1 + iT2)).

Combining the above two expressions, we obtainΨm(T1 + iT2) = Ψm(T1) + iΨm(T2).

Lemma 2.11. According to the above registered symbols, for arbitrary B ∈ B, we obtain

(1) Ψm(iB) = iΨm(B) andΨm(B∗) = Ψm(B)∗;

(2) the nonlinear mappingΨm is additive on B.

Proof. (1). For arbitrary B ∈ B, we arrive at B = B1 + iB2, where B∗j = −B j, j ∈ {1, 2}. By reasons of Lemma 2.9
and Lemma 2.10, it is obvious thatΨm(iB) = iΨm(B) andΨm(B∗) = Ψm(B)∗.

(2). For arbitrary B ∈ B and C ∈ B, we arrive at B = B1 + iB2 and C = C1 + iC2, where B∗j = −B j and
C∗j = −C j, j ∈ {1, 2}. In conformity with Lemma 2.10, we prevailΨm(B + C) = Ψm(B) +Ψm(C).

Lemma 2.12. According to the above marked symbols, we obtain that the nonlinear mapping Ψm is an additive
higher ∗-derivation on B.

Proof. For arbitrary B ∈ B and C ∈ B, in concert with Lemma 2.11, we have

2n−2iΨm(B∗C − C∗B) = Ψm(2n−2i(B∗C − C∗B))
= Ψm(Un(B, iC, I, · · · , I))

=
∑

j1+···+ jn=m

Un(Ψ j1 (B),Ψ j2 (iC),Ψ j3 (I), · · · ,Ψ jn (I))

=
∑

j1+ j2=m

Un(Ψ j1 (B), iΨ j2 (C), I, · · · , I)

= 2n−2i
∑

j1+ j2=m

(Ψ j1 (B)∗Ψ j2 (C) −Ψ j2 (C)∗Ψ j1 (B)),

which implies that

Ψm(B∗C − C∗B) =
∑

j1+ j2=m

(Ψ j1 (B)∗Ψ j2 (C) −Ψ j2 (C)∗Ψ j1 (B)).
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In addition, we also need to consider the following equation:

2n−2Ψm(B∗C + C∗B) = Ψm(2n−2(B∗C + C∗B))
= Ψm(Un(B,C, I, · · · , I))

=
∑

j1+···+ jn=m

Un(Ψ j1 (B),Ψ j2 (C),Ψ j3 (I), · · · ,Ψ jn (I))

=
∑

j1+ j2=m

Un(Ψ j1 (B),Ψ j2 (C), I, · · · , I)

= 2n−2
∑

j1+ j2=m

(Ψ j1 (B)∗Ψ j2 (C) +Ψ j2 (C)∗Ψ j1 (B)),

which implies that
Ψm(B∗C + C∗B) =

∑
j1+ j2=m

(Ψ j1 (B)∗Ψ j2 (C) +Ψ j2 (C)∗Ψ j1 (B)).

According to the above equation and additivity of mapΨm, it can be seen that

Ψm(B∗C) =
∑

j1+ j2=m

Ψ j1 (B)∗Ψ j2 (C).

Furthermore, according to conclusion (2) in Lemma 2.11, we have

Ψm(BC) =
∑

j1+ j2=m

Ψ j1 (B)Ψ j2 (C).

In summary, combining Lemma 2.11, it can be concluded that mappingΨm is an additive higher ∗-derivation
on B.

It immediately follows from Theorem 2.1 and [5] that the following corollary holds.

Corollary 2.13. [5, Theorem 2.1] LetB be an unital ∗-algebra with identity element I that satisfies condition C. Then
every nonlinear bi-skew Jordan-type derivation is an additive ∗-derivation.

According to Theorem 2.1, we can immediately deduce the following from the typical example of unital
∗-algebra, prime ∗-algebras, factor von Neumann algebra, von Neumann algebra of type I1 and standard
operator algebra.

We know from the concept of prime ∗-algebras[7, 3.Corollaries] that prime ∗-algebras satisfy condition
C, and then we obtain that the following corollary holds.

Corollary 2.14. Let B be a prime ∗-algebra. Then every nonlinear bi-skew Jordan-type higher derivation on B is an
additive higher ∗-derivation.

At the same time, the above inference improves on the existing results[7, Theorem 2.3].

Corollary 2.15. [7, Theorem 2.3] Let B be a prime ∗-algebra. Then every nonlinear bi-skew Jordan derivation is an
additive ∗-derivation.

An algebra B(S) composed of all bounded operators is defined on a complex Hilbert space S. If the
center Z(A) of an von Neumann algebra A ⊆ B(S) satisfies condition Z(A) = CI, then A is called a factor
von Neumann algebra. It is clear that the algebraA is a prime algebra, and the following corollary holds.

Corollary 2.16. Let A be a factor von Neumann algebra acting on complex Hilbert space with dim(A) ≥ 2. Then
every nonlinear bi-skew Jordan-type higher derivation onA is an additive higher ∗-derivation.
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At the same time, the above Corollary 2.16 improves on the existing results[6, Theorem 2.1].

Corollary 2.17. [6, Theorem 2.1] Let A be a factor von Neumann algebra acting on complex Hilbert space with
dim(A) ≥ 2. Then every nonlinear bi-skew Jordan n-derivation is an additive ∗-derivation.

We use the symbol G(S) ⊆ B(S) to denote the subalgebras of the algebra B(S) formed by all finite rank
operators. If a subalgebra R contains G(S), it is called a standard operator algebra.

Corollary 2.18. Let S be an infinite dimensional complex Hilbert space and R be a standard operator algebra on S
containing the identity operator I. Suppose thatR is closed under the adjoint operation. Then every nonlinear bi-skew
Jordan-type higher derivation on R is an additive higher ∗-derivation.

Corollary 2.19. [5, Corollary 3.3] Let S be an infinite dimensional complex Hilbert space and R be a standard
operator algebra on S containing the identity operator I. Suppose that R is closed under the adjoint operation. Then
every nonlinear bi-skew Jordan-type derivationΨ1 onR is an additive ∗-derivation. Moreover, there exists an operator
T ∈ B(S) satisfying T + T∗ = 0 such thatΨ1(A) = AT − TA for all A ∈ R. This isΨ1 is inner.
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