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Abstract. In this paper, we delve into the study of pointwise semi-slant submanifolds in a Kaehler man-
ifold using a semi-symmetric metric connection within the framework of warped product geometry. Our
investigation yields fundamental and significant results that shed light on the properties of these subman-
ifolds. Furthermore, we explore the implications of our findings for the homology of these submanifolds,
providing insights into their topological characteristics. Specifically, we establish a compelling proof that,
subject to a specific condition, stable currents do not exist for these warped product pointwise semi-slant
submanifolds. The outcomes of our research contribute substantial knowledge regarding the stability and
behavior of warped product pointwise semi-slant submanifolds equipped with a semi-symmetric metric
connection. Moreover, this work establishes a solid foundation for future investigations and advancements
in this field of study.

1. Introduction

The geometry of warped product manifolds has long been recognized as a remarkable framework
for modeling spacetime near black holes and objects with significant gravitational fields. The concept of
warped product manifolds was initially introduced by Bishop and O’Neill [25] as a means to investigate
manifolds with negative curvature. These manifolds extend the notion of Riemannian product manifolds
by incorporating warping functions. Specifically, a warped product B ×b F is formed by combining two
pseudo-Riemannian manifolds, namely the base manifold (B, 1B) and the fiber (F, 1F), using a smooth func-
tion b defined on the base manifold B. This construction results in the metric tensor 1 = 1B ⊕ b21F, where
the direct sum symbol ⊕ denotes the direct sum of metric tensors. In this context, the base manifold (B, 1B)
represents the underlying space on which the warped product is defined, while the fiber (F, 1F) represents
an additional space that is warped or scaled by the warping function b. The warping function b is a smooth
function that assigns a positive value to each point in the base manifold B. Warped product manifolds with
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a conformal Killing vector have been extensively studied in the framework of Einstein-Weyl geometry. In
this setting, the warping function b assumes the role of a conformal factor, influencing the geometry of the
manifold. The geometry of such manifolds is determined by a conformal class of metrics, which captures
the essential geometric properties shared by the metrics related through conformal transformations. For
further insights and details on this subject, refer to the works of Leistner and Nurowski [11, 23].

B.-Y. Chen [4] made significant contributions to the field of submanifold theory by studying warped
products. Within the framework of almost Hermitian manifolds, Chen introduced the concept of CR-
warped product submanifolds. He provided valuable insights into the warping function and derived
an approximation for the norm of the second fundamental form within the expressions of the warping
function.

Expanding on Chen’s work, Hesigawa and Mihai [19] further explored these submanifolds in the context
of contact geometry. They investigated the contact form associated with CR-warped product submanifolds
and obtained a comparable approximation for the second fundamental form of a contact CR-warped product
submanifold immersed in a Kaehler space form.

In a separate study [6], it was concluded that the homology groups of contact CR-warped product
submanifolds immersed in odd-dimensional spheres were trivial. This conclusion was based on the non-
existence of stable integral currents and the vanishing of homology, indicating the absence of stable currents
in such submanifolds.

Advancing the research, F. Sahin [9, 10] demonstrated that CR-warped product submanifolds in both
Rn and S6 produced identical results. This observation highlighted the similarities in the topological and
differentiable structures of CR-warped product submanifolds in these two spaces. It is important to note that
different scholars have obtained varying findings regarding the topological and differentiable properties of
submanifolds by imposing specific constraints on the second fundamental form [1, 6, 14, 20, 33].

Homology groups provide an algebraic description of manifolds and are fundamental in understand-
ing their topological properties. These groups contain rich topological data related to the components,
voids, tunnels, and overall structure of manifolds, making homology theory a powerful tool with numer-
ous applications. It has found relevance in diverse fields such as root construction, molecular docking,
image segmentation, and genetic expression analysis. The study of submanifolds and homological theory
is closely intertwined. Federer and Fleming [17] established a significant connection by demonstrating that
any non-trivial integral homological group Hp(M,Z) is connected to stable currents. This result highlighted
the relationship between homology groups and the existence of stable currents in manifolds. Expanding
upon this work, Lawson and Simon [18] extended the study to submanifolds of spheres and proved that
under a pinching condition on the second fundamental form, integral currents do not exist. This result
provided insights into the non-existence of integral currents in specific submanifold scenarios. Leung [24]
and Xin [33] furthered this line of research by extending the results from spheres to Euclidean spaces.
Their studies explored the relationship between submanifolds in Euclidean spaces and the existence of
stable integral currents. In a related investigation, Zhang [32] examined the homology of tori, expanding
the understanding of homological properties in this specific context. Additionally, Liu and Zhang [20]
made an important contribution by proving that stable integral currents do not exist for certain types of
hypersurfaces in Euclidean spaces. This result shed light on the limitations and constraints related to the
existence of stable integral currents in specific scenarios.

The concept of a semi-symmetric linear connection on a Riemannian manifold was initially introduced
by Friedmann and Schouten (17). Subsequently, Hayden (18) provided a definition for a semi-symmetric
connection as a linear connection∇ existing on an n-dimensional Riemannian manifold (M, 1), with a torsion
tensor T satisfying T(Z1,Z2) = π(Z2)Z1 − π(Z1)Z2, where π is a 1-form, and Z1,Z2 ∈ TM.

Further investigations into semi-symmetric metric connections were conducted by K. Yano (21), who
analyzed some of their properties. He showed that a conformally flat Riemannian manifold equipped with
a semi-symmetric connection has a curvature tensor that identically vanishes.

Building upon these works, Sular and Oz̈gür (16) explored warped product manifolds with a semi-
symmetric metric connection, focusing specifically on Einstein warped product manifolds with such a
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connection. They investigated various aspects and properties of these manifolds. Additionally, in (24), they
obtained further results related to warped product manifolds with a semi-symmetric metric connection.

Motivated by these previous studies, the present research aims to examine the influence of a semi-
symmetric metric connection on warped product pointwise semi-slant submanifolds and their homology
within a Kaehler manifold. The objective is to understand how the presence of a semi-symmetric metric
connection affects the properties and topological characteristics of these submanifolds in the context of
warped product constructions.
2. Preliminaries

Let (M̄, 1) denote an even-dimensional Riemannian manifold. An almost Hermitian manifold is defined
as a manifold M̄ where there exists a tensor field J of type (1, 1) on M̄ such that the following conditions
hold:

J2Z1 = −Z1

1(JZ1, JZ2) = 1(Z1,Z2),

for Z1,Z2 ∈ TM̄. The well-known fact states that an almost Hermitian manifold is classified as a Kaehler
manifold if and only if the following condition is satisfied:

( ¯̄∇Z1 J)Z2 = 0, (1)

where Z1,Z2 ∈ TM̄ and ¯̄∇ is the Riemannian connection with respect to 1.
Now, defining a connection ∇̄ as

∇̄Z1 Z2 = ¯̄∇Z1 Z2 + π(Z2)Z1 − 1(Z1,Z2)P (2)

such that ∇̄1 = 0 for any Z1,Z2 ∈ TM̄. The connection ∇̄ is semi-symmetric because T(Z1,Z2) = π(Z2)Z1 −

π(Z1)Z2. Using (2) in (1), we have

(∇̄Z1 J)Z2 = π(JZ2)Z1 − 1(Z1, JZ2)P + π(Z2)JZ1 − 1(Z1,Z2)JP. (3)

Suppose that the associated vector field P is concurrent [21], that mean

∇̄Z1 P = Z1. (4)

We define a Kaehler manifold M̄ as a complex space form if it possesses a constant J-holomorphic
sectional curvature denoted by c, and it is represented as M̄(c).

The curvature tensor R̄ associated with the semi-symmetric metric connection ∇̄ is given by:

R̄(Z1,Z2)Z3 = ∇̄Z1∇̄Z2 Z3 − ∇̄Z2∇̄Z1 Z3 − ∇̄[Z1,Z2]Z3. (5)

Similarly, we can define the curvature tensor ¯̄R for the Riemannian connection ¯̄∇ as follows:
Suppose

β(Z1,Z2) = (∇̄Z1π)Z2 − π(Z1)π(Z2) +
1
2
1(Z1,Z2)π(P). (6)

Now, by the application of (2), (5) and (6), we get

R̄(Z1,Z2,Z3,Z4) = ¯̄R(Z1,Z2,Z3,Z4) + β(Z1,Z3)1(Z2,Z4)
− β(Z2,Z3)1(Z1,Z4) + β(Z2,Z4)1(Z1,Z3) − β(Z1,Z4)1(Z2,Z3).

(7)
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When utilizing the value of ¯̄R(Z1,Z2,Z3,Z4), The expression for the curvature tensor R̄ of a Kaehler space
form M̄(c) equipped with a semi-symmetric metric connection is provided in detail in [21]. This result is
further discussed in [34].

R̄(Z1,Z2,Z3,Z4) =
c
4
{1(Z2,Z3)Z1 − 1(Z1,Z3)1(Z2,Z4)

+ 1(Z1, JZ3)1(JZ2,Z4) − 1(Z2, JZ3)1(JZ1,Z4)
+ 21(Z1, JZ2)1(JZ3,Z4)} + β(Z1,Z3)1(Z2,Z4)
− β(Z2,Z3)1(Z1,Z4) + β(Z2,Z4)1(Z1,Z3)
− β(Z1,Z4)1(Z2,Z3)

(8)

for all Z1,Z2,Z3,Z4 ∈ TM̄.

In the case of a submanifold M isometrically immersed in a differentiable manifold M̄, the Gauss and
Weingarten formulas for a semi-symmetric metric connection can be derived through a routine calculation.
These formulas are given by ∇̄Z1 Z2 = ∇Z1 Z2 + h(Z1,Z2) and ∇̄Z1 N = −ANZ1 + ∇

⊥

Z1
N + π(N)Z1, where ∇

represents the induced semi-symmetric metric connection on M, N belongs to the normal bundle T⊥M, h
denotes the second fundamental form of M, ∇⊥ represents the normal connection on T⊥M, and AN is the
shape operator. The relationship between the second fundamental form h and the shape operator is given
by the following formula:

1(h(Z1,Z2),N) = 1(ANZ1,Z2).

For vector fields Z1 ∈ TM and Z3 ∈ T⊥M, we can decompose their relationship as follows:

JZ1 = TZ1 + FZ1 (9)

and

JZ3 = tZ3 + f Z3 (10)

where TZ1 (and tZ3), FZ1 (and f Z3) are the tangential and normal parts of JZ1 (and JZ3) respectively.

The equation of Gauss for a semi-symmetric connection can be expressed in terms of the Riemannian
curvature tensor R as follows:

R̄(Z1,Z2,Z3,Z4) = R(Z1,Z2,Z3,Z4) − 1(h(Z1,Z4), h(Z2,Z3)) + 1(h(Z2,Z4), h(Z1,Z3)) (11)

for Z1,Z2,Z3,Z4 ∈ TM.
Sular and Oz̈gür (16) conducted a study on warped products denoted as M1 × f M2, where M1 and M2

are Riemannian manifolds, and f is a positive differentiable function on M1 referred to as the warping
function. Their investigation focused on these warped products in the context of a semi-symmetric metric
connection associated with a vector field P on M1 × f M2. The key findings from their work, summarized as
a lemma, provide a crucial foundation for subsequent research.
Lemma 2.1. Let M1 × f M2 be a warped product manifold with semi-symmetric metric connection ∇̄, we have

1. if P ∈ TM1, then

∇̄Z1 Z3 =
Z1 f

f
Z3 and ∇̄Z3 Z1 =

Z1 f
f

Z3 + π(Z1)Z3,

2. if P ∈ TM2, then

∇̄Z1 Z3 =
Z1 f

f
Z3 and ∇Z3 Z1 =

Z1 f
f

Z3,
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where Z1 ∈ TM1, Z3 ∈ TM2 and π is the 1-form associated with the vector field P.

Consider the warped product submanifold M = M1 × f M2 of a Kaehler manifold M̄. In this scenario,
we have the curvature tensors R and R̃ associated with the submanifold M and its induced semi-symmetric
metric connection ∇ and induced Riemannian connection ∇̃ respectively. We can express the relationship
between these curvature tensors as follows:

R(Z1,Z2)Z3 =R̃(Z1,Z2)Z3 + 1(Z3,∇Z1 P)Z2 − 1(Z3,∇Z2 P)Z1

+ 1(Z1,Z3)∇Z2 P − 1(Z2,Z3)∇Z1 P
+ π(P)[1(Z1,Z3)Z2 − 1(Z2,Z3)Z1]
+ [1(Z2,Z3)π(Z1) − 1(Z1,Z3)π(Z2)]P
+ π(Z3)[π(Z2)Z1 − π(Z1)Z2],

(12)

for any vector field Z1,Z2,Z3 on M [27].

According to part (ii) of Lemma 3.2 in [27], for the warped product submanifold M =M1 × f M2, we obtain
the following result

R̃(Z1,Z2)Z3 =
H f (Z1,Z2)

f
Z3, (13)

where Z1,Z2 ∈ TM1, Z3 ∈ TM2 respectively and H f is the Hessian of the warping function.

By considering equations (12) and (13), we can deduce the following:

R(Z1,Z3)Z2 =
H f (Z1,Z2)

f
+

P f
f
1(Z1,Z2)Z3 + π(P)1(Z1,Z2)Z3 + 1(Z2,∇Z1 P)Z3

− π(Z1)π(Z2)Z3,

(14)

where Z1,Z2 ∈ TM1,Z3 ∈ TM2,P ∈ TM1, and H f is the Hessian of the warping function f .

Utilizing part (1) of Lemma 2.1 and referring to equation (4), we can deduce that P f
f = 0. By substituting

this result into the previous equation, we obtain the following expression:

R(Z1,Z3)Z2 =
H f (Z1,Z2)

f
Z3 + 21(Z1,Z2)Z3 − π(Z1)π(Z2)Z3. (15)

For the warped product submanifold M =M1 × f M2 of a Riemanian manifold M̄, by employing part (i)
of Lemma 2.1, we are able to deduce the following relation:

∇Z1 Z3 = Z1(ln f )Z3 (16)

and

∇Z3 Z1 = Z1(ln f )Z3 + π(Z1)Z3, (17)

where Z1,P ∈ TM1 and Z2 ∈ TM2.

It is straightforward to derive the following expression for the Laplacian ∆ f of the warping function

∆ f
f
= ∆(ln f ) − ∥∇(ln f )∥2 (18)
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3. Warped product pointwise Semi-slant submanifolds and their homology

The concept of pointwise slant submanifolds was introduced by F. Etayo in a paper where these sub-
manifolds were referred to as quasi-slant submanifolds [12]. Subsequently, B.-Y. Chen and O. J. Garay [4]
further studied the properties of pointwise slant submanifolds within the framework of almost Hermitian
manifolds. Pointwise slant submanifolds are defined as submanifolds M of an almost Hermitian manifold
(M̄, 1) where, for every point x ∈ M, the angle µ = µ(X) between JX and TxM remains constant for all
nonzero vectors X ∈ TxM. This angle, denoted by µ(X), is known as the slant function on M. The necessary
and sufficient condition for M to be pointwise slant is that the endomorphism T satisfies the following
relation:

T2Z = −λZ (19)

for any Z ∈ TM,where λ = cos2 µ. The following formulae can be deduced by using (19) and (9)

1(TZ1,TZ2) = cos2 µ1(Z1,Z2), (20)

1(FZ1,FZ2) = sin2 µ1(Z1,Z2). (21)

In a recent study, Şahin [8] focused on the investigation of warped product pointwise semi-slant sub-
manifolds in the context of Kaehler manifolds. Notably, he established a significant result by proving the
nonexistence of warped product pointwise semi-slant submanifolds of the form M = Nµ × f NT, where Nµ
represents a proper pointwise slant submanifold and MT denotes a complex submanifold. Building upon
this finding, Şahin shifted his attention to warped products of the form M = NT× f Nµ. Through this analysis,
he obtained a range of interesting results, which included characterizations and inequalities. Furthermore,
he provided several illustrative examples of pointwise semi-slant submanifolds and their corresponding
warped products.

Our analysis begins by considering a specific type of submanifold known as warped product pointwise
semi-slant submanifolds. These submanifolds take the form of Nµ × f NT in a Kaehler manifold equipped
with a semi-symmetric metric connection and a concurrent vector field P. Here, Nµ denotes a pointwise
slant submanifold, and NT represents an invariant submanifold satisfying ξ ∈ TNT. Our investigation
results in the following finding

Theorem 3.1. Let (M̄, 1) be a Kaehler manifold with ssm connection. Then there does not exist wppss submanifold
of the type Nµ × f NT, such that P is a concurrent vector field tangent to NT.

Proof. For any Z1,Z2 ∈ TNT and Z3 ∈ TNµ, Using part (ii) of Lemma 2.1, the Gauss formula, and equations
(2.7) and (2.4), we can derive the following expression:

Z3(ln f )1(Z1,Z2) = 1(J∇̄Z1 Z3, JZ2) =1(∇̄Z1 (TZ3, JZ2) + 1(∇̄Z1 (FZ3, JZ2)
− 1(π(JZ3)Z1 − 1(Z1, JZ3)P
+ π(Z3)JZ1 − 1(Z1,Z3)JP, JZ2).

(22)

Upon further simplification, we obtain

Z31(Z1,Z2) = −1(∇̄Z1 T2Z3,Z2) − 1(∇̄Z1 FTZ3,Z2) − 1(h(Z1, JZ2),FZ3)

= cos2 µ1(∇Z1 Z3,Z2) + 1(AFTZ3 Z1,Z2) − 1(h(Z1, JZ2),FZ3).
(23)

Again using equation (17), we find

sin2 µZ3(ln f )1(Z1,Z2) = 1(h(Z1,Z2),FTZ3) − 1(h(Z1, JZ2),FZ3). (24)

By substituting P for Z1 and Z2, and utilizing equation (4), we arrive at the expression sin2 µZ3 ln f = 0.
This equation implies that f is a constant, thereby proving the theorem.
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In this study, our focus will be on wppss submanifolds of the form NT × f Nµ that possess an ssm
connection, where P ∈ TNT is a concurrent vector field. With this objective in mind, we will now introduce
the initial results as follows:

Lemma 3.2. Let M = NT × f Nµ be a non-trivial wppss submanifold of a Kaehler manifold with a semi-symmetric
metric connection and a concurrent vector fileld P then

1(AFZ3 Z4,Z1) = 1(AFZ4 Z3,Z1), (25)

for ξ,Z1 ∈ TNT and Z3,Z4 ∈ TNµ.

Proof. Making use of Weingarten formula along with (9), we have

1(AFZ3 Z4,Z1) = −1(∇̄Z1 JZ3,Z4) + 1(∇̄Z1 TZ3,Z4). (26)

Now, using (3) and (16), we get the required result.

Lemma 3.3. Let M = NT × f Nµ be a non-trivial warped product proper pointwise semi-slant submanifold of a
Kaehler manifold admitting a semi-symmetric metric connection and a concurrent vector field P then

1(h(Z1,Z4),FTZ3) = −2π(JZ1)1(TZ3,Z4) − JZ1(ln f )1(TZ3,Z4) − Z1(ln f ) cos2 µ1(Z3,Z4) (27)

for Z1 ∈ TNT and Z3,Z4 ∈ TNµ.

Proof. By utilizing part (i) of Lemma 3.1 and the Weingarten equation, we obtain the following expression:

1(h(Z1,Z4)FTZ3) = 1(AFTZ3 Z4,Z1) = 1(AFZ4 TZ3,Z1)

using (9), (3) and (17), we obtain

1(h(Z1,Z4),FTZ3) = −1(∇̄TZ3 (JZ4 − TZ4),Z1)
= −1((∇̄TZ3 J)Z4,Z1) + 1(∇̄TZZ Z4, JZ1) − 1(TZ4,∇TZ3 Z1)
= −1(π(Z4)TZ3 − 1(TZ3,TZ4)P + π(Z4)JTZ3

− 1(TZ3,Z4)JP,Z1) − 1(∇TZ3 JZ1,Z4) − 1(∇TZ3 Z1,TZ4),

(28)

using equation (17), we get

1(h(Z1,Z4),FTZ3) = cos2 µπ(Z1)1(Z3,Z4) − 1(TZ3,Z4)π(JZ1) − 1(JZ1(ln f )TZ3

+ π(JZ1)TZ3,Z4) − 1(Z1(ln f )TZ3 + π(Z1)TZ3,TZ4)
= −2π(JZ1)1(TZ3,Z4) − JZ1(ln f )1(TZ3,Z4)

− Z1(ln f ) cos2 µ1(Z3,Z4),

(29)

This result is the desired outcome.

Lemma 3.4. Let M = NT× f Nµ be a non-trivial wppss submanifold of a Kaehler manifold admitting a ssm connection
and a concurrent vector field P then

(i) 1(h(Z1,Z3),FTZ3) = −Z1(ln f ) cos2 µ∥Z3∥
2,

(ii) 1(h(JZ1,Z3),FZ3) = Z1(ln f )∥Z3∥
2 + 2π(Z1)∥Z3∥

2,

for Z1 ∈ TNT and Z3 ∈ TNµ.
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Proof. By substituting Z4 with Z3 in equation (3.2), we obtain part (i). By employing the Gauss formula in
conjunction with equation (2.7), we can derive the following expression:

1(h(JZ1,Z3),FZ3) = 1(∇̄Z3 JZ1, JZ3) − 1(∇̄Z3 JZ1,TZ3). (30)

On applying Gauss formula and equation (17), we get

1(h(JZ1,Z3),FZ3) = 1((∇̄Z3 J)Z1, JZ3) + 1(J∇̄Z3 Z1, JZ3) − 1(∇Z3 JZ1, JZ3).

Further using equations (3) and (17), we get the required result.

In this study, we focus on investigating stable currents on warped product pointwise semi-slant sub-
manifolds. Our main objective is to prove that under certain specific conditions, the existence of stable
currents is ruled out. Furthermore, we highlight the notable results established by Simons, Xin, and Lang,
which hold significant recognition in the field.

Lemma 3.5. [18, 20]. Let Mn be a compact submanifold of dimension n in a space form M̄(c) with positive curvature
c. If the second fundamental form satisfies the inequality

p∑
i=1

n∑
s=p+1

(2|h(xi, x j)|2 − 1(h(xi, xi), h(xi, xs))) < pqc, (31)

then there are no stable currents in Mn. Here, p, q ∈ Z+ with p + q = n, {x1, . . . , xn} is an orthonormal basis in TxM,
and x ∈ M. Furthermore, we have H̃p(Mn,Z) = 0 and H̃q(Mn,Z) = 0, where H j(M,Z) denotes the j-th homology of
M with integer coefficients.

Theorem 3.6. Let Mp+q = Np
T × f Nq

µ be a compact wppss submanifolds of complex space form M̄(4) with ssm
connection and a concurrent vector field P. If the following inequality holds

∆ f +
p∑

i=1

β(xi, xi) +
p
q

q∑
j=1

β(x j, x j) > (csc2 µ + cot2 µ + 1 − q)∥∇(ln f )∥2 −
q
f
π(∇ f ) − 3p, (32)

Therefore, there are no p-stable currents present in Mp+q. Furthermore, the homology groups Hp(Mn,Z) = 0 and
Hq(Mn,Z) = 0 are satisfied, where H j(M,Z) represents the j-th homology group of M. Here, p and q denote the
dimensions of the invariant submanifold Np

T and the pointwise slant submanifold Nq
µ respectively.

Proof. Suppose dim Np
T = p = 2α and dim Nq

µ = q = 2β, where NT and Nµ are the integral manifolds of in-
variant distribution DT and the pointwise slant distribution Dµ. Let {x1, x2, . . . , xα, xα+1 = Jx1, . . . , x2α = Jxα}
and {x2α+1 = x∗1, . . . , x2α+β = x∗β, x2α+β+1 = x∗β+1 = secµTx∗1, . . . , xp+q = x∗q = secµTx∗β} to be orthonormal basis

of TNp
T and TNq

µ respectively. Therefore, an orthonormal basis for the normal subbundle FDµ is {xn+1 = x̄1 =
cscµFx∗1, . . . , xn+β = x̄β = cscµFx∗1, xn+β+1 = x̄β+1 = cscµ secµFTx∗1, . . . , xn+2β = x̄2β = cscµ secµFTx∗β}.

Thus, we can establish the following relationship

p∑
i=1

n∑
j=p+1

{2∥h(xi, x j)∥2 − 1(h(xi, xi), h(x j, x j))} =
p+2q+1∑
r=n+1

p∑
i=1

n∑
j=p+1

(hr
i j)

2

+

p∑
i=1

n∑
j=p+1

{∥h(xi, x j)∥2 − 1(h(xi, xi), h(x j, x j))}.

(33)
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Applying Gauss equation (11)

p∑
i=1

n∑
j=p+1

{2∥h(xi, x j)∥2 − 1(h(xi, xi), h(x j, x j))} =
p+2q+1∑
r=n+1

p∑
i=1

n∑
j=p+1

(hr
i j)

2

+

p+1∑
i=1

q∑
j=1

1(R(xi, x j)xi, x j) −
p+1∑
i=1

q∑
j=1

1(R̄(xi, x j)xi, x j).

(34)

On making use of formula (8) for a complex space form M̄(4)

p∑
i=1

n∑
j=p+1

{2∥h(xi, x j)∥2 − 1(h(xi, xi), h(x j, x j))} =
p+2q+1∑
r=n+1

p∑
i=1

n∑
j=p+1

(hr
i j)

2

−pq − p
q∑

j=1

β(x j, x j) − q
p∑

i=1

β(xi, xi) +
p∑

i=1

q∑
j=1

1(R(xi, x j)xi, x j).

(35)

By considering equation (2.13), we can express the relation for the submanifold Np
T × f Nq

µ of M̄p+q(4) as
follows

p∑
i=1

q∑
j=1

1(R(xi, x j)xi, x j) =
p∑

i=1

q∑
j=1

H f (xi, xi)
f

1(x j, x j)

+

p∑
i=1

q∑
j=1

{21(xi, xi)1(x j, x j) − π(xi)π(xi)1(x j, x j).

(36)

Ultimately, the subsequent equation is obtained.

p∑
i=1

q∑
j=1

1(R(xi, x j)xi, x j) =
q
f

p∑
i=1

1(∇xi∇ f , xi) + 2pq − q. (37)

We first compute the term ∆ f , which represents the Laplacian of f . The derivation is as follows

∆ f = −
n∑

k=1

1(∇xk∇ f , xk) = −
p∑

i=1

1(∇xi∇ f , xi) −
q∑

j=1

1(∇x∗j∇ f , x∗j). (38)

Using the adapted orthonormal frame, we can express the components of Nq
µ as follows

∆ f = −
p∑

i=1

1(∇xi∇ f , xi) −
β∑

j=1

1(∇x∗j∇ f , x∗j) − sec2 µ

β∑
j=1

1(∇Tx∗j∇ f ,Tx∗j). (39)

Since Np
T is totally geodesic in Mn and ∇ f ∈ TNT, we can deduce the following:

∆ f = −
1
f

β∑
j=1

(1(x∗j, x
∗

j) + sec2 µ1(Tx∗j,Tx∗j))∥∇ f ∥2 −
p∑

i=1

1(∇xi∇ f , xi), (40)

or

∆ f
f
= −q∥∇(ln f )∥2 −

1
f

p∑
i=1

1(∇xi∇ f , xi) −
q
f
π(∇ f ). (41)
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By utilizing equation (18), we can determine that

1
f

p∑
i=1

1(∇xi∇ f , xi) = −∆(ln f ) + (1 − q)∥∇(ln f )∥2 −
q
f
π(∇ f ) (42)

or

q
f

p∑
i=1

1(∇xi∇ f , xi) = −q∆(ln f ) + q(1 − q)∥∇(ln f )∥2 −
q2

f
π(∇ f ). (43)

By plugging in the aforementioned value into equation (37), we get:

p∑
i=1

q∑
j=1

R((xi, x j)xi, x j) = −q∆(ln f ) + q(1 − q)∥∇(ln f )∥2 + 2pq − q −
q2

f
π(∇ f ). (44)

Therefore by equation (35)

p∑
i=1

n∑
j=p+1

{2∥h(xi, x j)∥2 − 1(h(xi, xi), h(x j, x j))} =
p+2q+1∑
r=n+1

p∑
i=1

n∑
j=p+1

(hr
i j)

2

− (p + 1)q − (p + 1)
q∑

j=1

β(x j, x j) − q
p∑

i=1

β(xi, xi)

− q∆(ln f ) + q(1 − q)∥∇(ln f )∥2 + 2pq − q − −
q2

f
π(∇ f ),

(45)

or,

p∑
i=1

n∑
j=p+1

{2∥h(xi, x j)∥2 − 1(h(xi, xi), h(x j, x j))} =
p+2q+1∑
r=n+1

p∑
i=1

n∑
j=p+1

(hr
i j)

2

− (2 − p)q − p
q∑

j=1

β(x j, x j) − q
p∑

i=1

β(xi, xi)

− q∆(ln f ) + q(1 − q)∥∇(ln f )∥2 −
q2

f
π(∇ f ).

(46)

Now, let Z1 = xα(1 ≤ α ≤ p) and Z3 = x∗β(1 ≤ β ≤ q)

p+2q∑
r=n+1

p∑
i=1

n∑
j=p+1

(hr
i j)

2 =

p+2q+1∑
r=n+1

p∑
i=1

n∑
j=p+1

1(h(xi, x∗j), x̄
∗

r)
2

=

p∑
i=1

β∑
j,r=1

{1(h(xi, x∗j), cscµFx∗r)
2 + 1(h(xi, x∗j), cscµ secµFTx∗r)

2
}

=

α∑
i=1

β∑
j,r=1

{1(h(xi, x∗j), cscµFx∗r)
2 + 1(h(xi, x∗j), cscµ secµFTx∗r)

2
}

+

α∑
i=1

β∑
j,r=1

{1(Jxi, x∗j), cscµFx∗r)
2 + 1(h(Jxi, x∗j), cscµ secµFTx∗r)

2
}.

(47)
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Applying Lemma 3.4 to the equation above, we obtain:

p+2q+1∑
r=n+1

p∑
i=1

n∑
j=p+1

(hr
i j)

2 = (csc2 µ + cot2 µ)
α+1∑
i=1

β∑
j=1

(xi(ln f ))21(x∗j, x
∗

j)
2 + 2β

+ (csc2 µ + cot2 µ)
α∑

i=1

β∑
j=1

(Jxi(ln f ))21(x∗j, x
∗

j)
2 + 2β,

(48)

or equivalently,

p+2q+1∑
r=n+1

p∑
i=1

n∑
j=p+1

(hr
i j)

2 = q(csc2 µ + cot2 µ)∥∇(ln f )∥2 + 2q. (49)

By employing equations (46) and (49), we observe that:

p∑
i=1

n∑
j=p+1

{2∥h(xi, x j)∥2 − 1(h(xi, xi), h(x j, x j))} − 4pq = q(csc2 µ + cot2 µ

+ 1 − q)∥∇(ln f )∥2 − q∆(ln f ) − 3pq − p
q∑

j=1

β(x j, x j) − q
p∑

i=1

β(xi, xi) −
q2

f
π(∇ f ).

(50)

Under the assumption that condition (32) is satisfied, we can deduce the following inequality

p∑
i=1

n∑
j=p+1

{2∥h(xi, x j)∥2 − 1(h(xi, xi), h(x j, x j))} < 4pq. (51)

Applying Lemma 3.5 to the complex space form with c = 4 brings us to the final conclusion of our
theorem.

4. Conclusion

In the realm of Riemannian manifolds, two prominent types of differentiable connections have garnered
significant attention: the Levi-Civita connection and the semi-symmetric metric connection. These connec-
tions possess distinct characteristics, prompting extensive efforts to compare and contrast the geometric
properties of submanifolds associated with each connection type. While considerable research exists on the
homology of warped product submanifolds with respect to the Levi-Civita connection, the homology of
such submanifolds in the presence of semi-symmetric metric connections remains unexplored. Motivated
by this gap in knowledge, our paper embarks on an investigation into the homology and stable currents of
poinwise semi-slant warped product submanifolds within Kaehler manifolds, utilizing a semi-symmetric
connection. By focusing on this specific setting, we aim to shed light on the topological properties and
behavior of generalized warped product submanifolds. We hope that the findings of our study will not only
contribute to the understanding of homology and stable currents in the context of semi-invariant warped
product submanifolds but also serve as a catalyst for further research in the realm of generalized warped
product submanifolds and their associated topological characteristics.
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[10] F. Şahin, Homology of submanifolds of six dimensional sphere, J. Geom. Phys., 145 (2019), 103471
[11] F. Leistner, Conformal Killing forms on Riemannian manifolds, Ann. Global Anal. Geom., 22 (1) (2002), 73-93.
[12] F. Etayo, On quasi-slant submanifolds of an almost Hermitian manifold, Pub. Math. Debrecen, 53 (1998), 217-223.
[13] H. W. Xu, E. T. Zhao, Topological and differentiable sphere theorems for complete submanifolds, Commun. Anal. Geom., 17 (2009),

565-585.
[14] H. W. Xu, F. Ye, Differentiable sphere theorems for submanifolds of positive k-th ricci curvature, Manuscripta Math., 138 (2012),

529-543.
[15] H. A. Hayden, Subspace of a space with torsion, Proceedings of the London Mathematical Soc. II Series 34 (1932), 27-50.
[16] H. P. Fu, H. W. Xu, Vanishing and topological sphere theorems for submanifolds in a hyperbolic space, Int. J. Math., 19 (2008),

811-822.
[17] H. Federer, W. Fleming, Normal and integral currents, Ann. Math., 72 (1960), 458-520.
[18] H. B. Lawson, J. Simons, On stable currents and their application to global problems in real and complex geometry, Ann. Math.,

98 (1973), 427-450.
[19] I. Hasegawa, I. Mihai, Contact CR-warped product submanifolds in Sasakian manifolds, Geometriae Dedicata, 102 (2003), 143-150
[20] J. C. Lui, Q. Y. Zhang, Non-existence of stable currents in submanifolds of the Euclidean spaces, J. Geom., 96 (2009), 125-133.
[21] K. Yano and M. Kon, structures on Manifolds, World Scientific, 1984.
[22] K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl., 15 (1970), 1579-1586.
[23] P. Nurowski, Differential equations and conformal structures, J. Geom. Phys., 55 (1) (2005), 19-49.
[24] P. F. Leung, On a relation between the topology and the intrinsic and extrinsic geometries of a compact submanifold, Proc.

Edinburg Math. Soc., 28(3) (1985), 305-311.
[25] R. L. Bishop, B. O’Neill, Manifolds of Negative curvature, Trans Amer. Math. Soc., 145(1965), 1-49.
[26] R. Bryant, Metrics with exceptional holonomy, Ann. of Math., 126(3) (1987), 525-576.
[27] Sibel Sular and Cihan Oz̈gür, Warped products with a semi-symmetric metric connection, Taiwanese J. Math., 15 (4) (2011),

1701-1719.
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