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Abstract. This paper aimed to obtain common fixed point results by using an interpolative contraction
condition given by Karapinar in the setting of complete metric space. Here in this paper, we introduce
the notion of interpolative Hardy-Rogers pair-type contraction and prove the corresponding common fixed
point theorem by adopting the notion of interpolation. The results are further validated with the application
based on them.

1. Introduction

The Banach contraction principle effectively encapsulates and reinterprets the successive approximation
techniques that were initially pioneered by several earlier mathematicians, including notable names like
Cauchy, Liouville, Picard, Lipschitz, and others. Subsequently, the fundamental proposition presented in
[13] has undergone modifications and has been explored in various directions.

In certain generalizations of the contraction mapping principle, the original inequality is relaxed, as
evident in [15]. Conversely, some variations weaken the topological structure of the underlying space, as
exemplified by [16] and its accompanying references. Amidst these explorations, a notable refinement of
the Banach fixed point theorem was introduced by Hardy-Rogers [14]. The foundational embodiment of
this advancement, as outlined in [14], is expressed as follows.

Theorem 1.1. [14] Let (E, d) be a complete metric space and T be a self-mapping of E satisfying the condition for all
x, y ∈ E, d

(
Tx,Ty

)
≤ ad (x,Tx) + bd

(
y,Ty

)
+ cd (x,Tx) + ed

(
y,Tx

)
+ f d

(
x, y

)
Where a, b, c, e, f are non-negative and a + b + c + e + f < 1. Then has a unique fixed point in E.

On the interpolative Hardy-Rogers type contractive mapping” and its generalization of Hardy-Rogers’
fixed point theorem. It’s interesting to note that E. Karapınar introduced this new type of mapping by
incorporating the concept of interpolation into the Hardy-Rogers framework. This approach likely allows
for the generation of intermediate points between known data points and expands the applicability of the
original theorem.
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The use of interpolation to generalize various forms of contractions is indeed a common practice in
mathematical research. By integrating interpolation techniques into contraction mappings, researchers can
extend the scope of existing theorems and provide a more flexible framework for analyzing fixed points in
metric spaces.

It seems that the interpolative method has been employed in other research as well as to generalize
different types of contractions. This demonstrates the versatility and effectiveness of the interpolation
approach in expanding the theory of fixed points and providing new insights into the existence and
uniqueness of solutions.

To delve further into the specific details and implications of Karapinar’s work and the generalization
of other forms of contractions using the interpolative method, I recommend referring to the cited paper
[1–8] and exploring related research in the field. These sources should provide a more comprehensive
understanding of the interpolative Hardy-Rogers type contractive mapping and its applications in fixed
point theory.

In 2018 Karapinar [3] proposed a new Kannan-type contractive mapping using the concept of interpo-
lation and proved a fixed point theorem in metric space. This new type of mapping, called interpolative
Kannan-type contractive mapping is a generalization of Kannan’s fixed point theorem.

Theorem 1.2. Let us recall that an interpolative Kannan contraction on a metric space (E, d) is a self-mapping
T : E→ E such that there exist k ∈ [0, 1) and α ∈ (0, 1) such that

d
(
Tx,Ty

)
≤ k

[
d (Tx, x)]α[d

(
Ty, y

)]1−α , (1)(
x, y

)
∈ E × E with x, y < Fix (T)

Then T has a unique fixed point in E.

Following this, Karapınar et al [1] proposed a new Hardy-Rogers type contractive mapping using the
concept of interpolation and proving a fixed point theorem in metric space. This new type of mapping,
called ”interpolative Hardy-Rogers type contractive mapping” is a generalization of Hardy-Rogers ’s fixed
point theorem.

Definition 1.3. [1] Let (E, d) be a metric space . We say that the self-mapping T : X→ X is said to be a interpolative

Hardy-Rogers type contraction if there exists k ∈ [0, 1) and α, β, γ ∈ (0, 1) with α + β + γ < 1, such that

d
(
Tx,Ty

)
≤ k

[
d
(
x, y

)]β d (Tx, x)]α[d
(
Ty, y

)
]γ.

[1
2
(
d
(
Tx, y

)
+ d

(
Ty, x

))]1−α−β−γ

(2)

for all x, y ∈ E⧹Fix (T) .

Theorem 1.4. [1] Let (E, d) be a complete metric space and T be an interpolative Hardy-Rogers type contraction.
Then, T has a fixed point in E.

In this paper, we introduce the concept of interpolative Hardy-Rogers pair contractions and demonstrate
their effectiveness through illustrative examples.

2. Main results

In this section, we are following interpolative Hardy-Rogers result in [1] to obtain a common fixed point
result.
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Definition 2.1. Let (E, d) be a metric space. A pair of mappings T,S : X → X is said to be interpolative Hardy-Rogers
pair contraction if there exists k ∈ [0, 1) and α, β, γ ∈ (0, 1) with α + β + γ < 1, such that

d
(
Tx,Sy

)
≤ k

[
d
(
x, y

)]β d (Tx, x)]γ[d
(
Sy, y

)
]α.

[1
2
(
d
(
Tx, y

)
+ d

(
Sy, x

))]1−α−β−γ

(3)

for all x, y ∈ E such that Tx , x whenever Sy , y.

Theorem 2.2. Suppose that (E, d) be a complete metric space, and (T,S) is interpolative Hardy-Rogers pair. Then, S
and T have a unique common fixed point.

Proof. Starting from x0 ∈ X, consider {xn} , given as x2n+1 = Tx2n and x2n+2 = Sx2n+1 for each positive integer
n

Take x = x2n and y = x2n+1 in (3), we get

d (x2n+1, x2n+2) = d (Tx2n,Sx2n+1) ≤ k [d (x2n, x2n+1)]β [d (x2n,Tx2n)]γ[d
(
x2n+1,Sx2n+1

)
]α

.
[1
2

(d (Tx2n, x2n+1) + d (Sx2n+1, x2n))
]1−α−β−γ

≤ k [d (x2n, x2n+1)]β+γ [d
(
x2n+1,x2n+2

)
]α.[1

2
(d (x2n+1, x2n+1) + d (x2n+2, x2n))

]1−α−β−γ

Then

d (x2n+1, x2n+2) ≤ k [d (x2n, x2n+1)]β+γ [d
(
x2n+1,x2n+2

)
]α.

[1
2

d (x2n+2, x2n)
]1−α−β−γ

[d (x2n+1, x2n+2)]1−α
≤ k [d (x2n, x2n+1)]β+γ .

[1
2

(d (x2n+2, x2n+1) + d (x2n+1, x2n))
]1−α−β−γ

(4)

Suppose that d (x2n+1, x2n) < d (x2n+2, x2n+1) .
Thus,

d (x2n+1, x2n) + d (x2n+2, x2n+1) < d (x2n+2, x2n+1) + d (x2n+2, x2n+1)
d (x2n+1, x2n) + d (x2n+2, x2n+1) < 2d (x2n+2, x2n+1)

1
2

[d (x2n+1, x2n) + d (x2n+2, x2n+1)] < d (x2n+2, x2n+1)

Consequently, the inequality (4) yields that

[d (x2n+1, x2n+2)]1−α
≤ k [d (x2n, x2n+1)]β+γ . [d (x2n+2, x2n+1)]1−α−β−γ

[d (x2n+1, x2n+2)]β+γ ≤ k [d (x2n, x2n+1)]β+γ

which implies that

d (x2n+1, x2n+2) < kd (x2n, x2n+1)

So, we conclude that d (x2n+1, x2n) > d (x2n+2, x2n+1) , which is a contradiction.Thus, we have
d (x2n+1, x2n+2) < kd (x2n, x2n+1)
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Then 1
2 (d (x2n+2, x2n+1) + d (x2n+1, x2n)) ≤ d (x2n+1, x2n) .Consequently, the inequality (4) yields that

[d (x2n+1, x2n+2)]1−α
≤ k [d (x2n, x2n+1)]β+γ . [d (x2n+1, x2n)]1−α−β−γ

[d (x2n+1, x2n+2)]1−α
≤ k [d (x2n+1, x2n)]1−α

≤ kd (x2n+1, x2n)
...

≤ k2n+1d (x0, x1)

We deduce that,

d (x2n+1, x2n+2) ≤ k2n+1d (x0, x1) (5)

Similarly, for x = x2n and y = x2n−1 in (3), we obtain that

d (x2n+1, x2n) = d (Tx2n,Sx2n−1)
≤ k [d (x2n, x2n−1)]β [d (x2n,Tx2n)]γ[d

(
x2n−1,Sx2n−1

)
]α.[1

2
(d (Tx2n, x2n−1) + d (Sx2n−1, x2n))

]1−α−β−γ

≤ k [d (x2n, x2n−1)]β [d (x2n, x2n+1)]γ[d
(
x2n−1,x2n

)
]α.[1

2
(d (x2n+1, x2n−1) + d (x2n, x2n))

]1−α−β−γ

Then

d (x2n+1, x2n) ≤ k [d (x2n, x2n−1)]α+β [d (x2n, x2n+1)]γ.
[1
2

(d (x2n+1, x2n−1))
]1−α−β−γ

We deduce that

[d (x2n+1, x2n)]1−γ
≤ k [d (x2n, x2n−1)]α+β .

[1
2

(d (x2n+1, x2n) + d (x2n, x2n−1))
]1−α−β−γ

(6)

Suppose that d (x2n, x2n−1) < d (x2n+1, x2n) .
Thus,

d (x2n, x2n−1) + d (x2n+1, x2n) < d (x2n+1, x2n) + d (x2n+1, x2n)
d (x2n, x2n−1) + d (x2n+1, x2n) < 2d (x2n+1, x2n)

1
2

(d (x2n, x2n−1) + d (x2n+1, x2n)) < d (x2n+1, x2n)

Consequently, the inequality (6) yields that

[d (x2n+1, x2n)]1−γ
≤ k [d (x2n, x2n−1)]α+β . [d (x2n+1, x2n)]1−α−β−γ

[d (x2n+1, x2n)]
α+β

≤ k [d (x2n, x2n−1)]α+β

which implies that

[d (x2n+1, x2n)]
α+β

≤ [d (x2n, x2n−1)]α+β

So, we conclude that d (x2n+1, x2n) < d (x2n, x2n−1) , which is a contradiction.Thus, we have
d (x2n+1, x2n) < d (x2n, x2n−1)
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Then 1
2 (d (x2n, x2n−1) + d (x2n+1, x2n)) ≤ d (x2n, x2n−1) .Consequently, the inequality (6) yields that

[d (x2n+1, x2n)]1−γ
≤ k [d (x2n, x2n−1)]α+β . [d (x2n, x2n−1)]1−α−β−γ

≤ [kd (x2n, x2n−1)]1−γ

≤ kd (x2n, x2n−1)
...

≤ k2nd (x0, x1)

We deduce that

d (x2n+1, x2n) ≤ k2nd (x0, x1) (7)

It follows from (5) and (7), we deduce that

d (xn, xn+1) ≤ knd (x0, x1) (8)

For m > 0. Using the triangular inequality, we obtain

d (xn, xn+m) ≤ d (xn, xn+1) + d (xn+1, xn+2) + ... + d (xn+m−1, xn+m)
≤ knd (x0, x1) + kn+1d (x0, x1) + ... + kn+m−1d (x0, x1)

≤

(
kn + kn+1 + ... + kn+m−1

)
d (x0, x1)

≤
kn

1 − k
d (x0, x1)

Taking n→ +∞ in the inequality above, we derive that {xn} is a Cauchy sequence. by completeness of (E, d),
here exists x∗ ∈ X such that lim

n→∞
xn = x∗.Using the continuity of the metric in its both variables, we can prove

that x∗ ia a fixed point of T as follows

d (Tx∗, x2n+2) = d (Tx∗,Sx2n+1)
≤ k [d (x∗, x2n+1)]β [d (Tx∗, x∗)]γ[d

(
Sx2n+1,x2n+1

)
]α.[1

2
(d (Tx∗, x2n+1) + d (Sx2n+1, x∗))

]1−α−β−γ

≤ k [d (x∗, x2n+1)]β [d (Tx∗, x∗)]γ[d (x2n+2, x2n+1)]α.[1
2

(d (Tx∗, x2n+1) + d (, x2n+2, x∗))
]1−α−β−γ

Letting n→ +∞we get d (Tx∗, x∗) = 0 that is Tx∗ = x∗.
Similarly,

d (x2n+1,Sx∗) = d (Tx2n,Sx∗)
≤ k [d (x2n, x∗)]β [d (Tx2n, x2n)]γ[d (Sx∗, x∗)]α.[1

2
(d (Tx2n, x∗) + d (Sx∗, x2n))

]1−α−β−γ

≤ k [d (x2n, x∗)]β [d (x2n+1, x2n)]γ[d (Sx∗, x∗)]α.[1
2

(d (x2n+1, x∗) + d (Sx∗, x2n))
]1−α−β−γ1−α−β−γ

Letting n→ +∞we get d (x∗,Sx∗) = 0 that is Sx∗ = x∗.
To establish the uniqueness of x∗ as the shared fixed point of S and T, assume the existence of another

common fixed point x for S and T. Then,

d (x∗, x) = d (Tx∗,Sx) ≤ k
[
d (x∗, x)

]β d (Tx∗, x∗)]γ[d (Sx, x)]α.
[1
2

(d (Tx∗, x) + d (Sx, x∗))
]1−α−β−γ
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Hence d (x∗, x) = 0, so x∗ = x.

Example 2.3. Let E =
{
a, b, x, y

}
be endowed with the metric defined by the following

d (a, a) = d (b, b) = d (x, x) = d
(
y, y

)
d (a, b) = d (b, a) = 3
d (a, x) = d (x, a) = 4
d (b, x) = d (x, b) = 3

2
d
(
a, y

)
= d

(
y, a

)
= 5

2
d
(
b, y

)
= d

(
y, b

)
= 2

d
(
x, y

)
= d

(
y, x

)
= 3

2
Define self mapsT,S as follows

T :
(
a b x y
a y x y

)
, S :

(
a b x y
a b y x

)
Choose k = 8

9 , α =
1
3 , β =

1
2 and γ = 1

7 Then, we have to check that (3) holds.
Case-I
d (Tb,Sx) = d

(
y, y

)
= 0

d (b, x) = 3
2

d (Tb, b) = d
(
y, b

)
= 2

d (Sx, x) = d
(
y, x

)
= 3

2
d (Tb, x) = d

(
y, x

)
= 3

2
d (Sx, b) = d

(
y, b

)
= 2

1
2 [d (b, x)]

1
2 [d (Tb, b)]

1
7 [d (Sx, x)]

1
3 .

[
1
2 (d (Tb, x) + d (Sx, b))

] 1
42
=

8
9

[
3
2

] 1
2 [2]

1
7 [ 3

2 ]
1
3 .

[
1
2

(
3
2 + 2

)] 1
42
≃ 1, 394

Therefore, (3) holds.
Case-II
d
(
Tb,Sy

)
= d

(
y, x

)
= 3

2 = 1.5
d
(
b, y

)
= 2

d (Tb, b) = d
(
y, b

)
= 2

d
(
Sy, y

)
= d

(
x, y

)
= 3

2
d
(
Tb, y

)
= d

(
y, y

)
= 0

d
(
Sy, b

)
= d (x, b) = 3

2

1
2
[
d
(
b, y

)] 1
2 [d (Tb, b)]

1
7 [d

(
Sy, y

)
]

1
3 .

[
1
2
(
d
(
Tb, y

)
+ d

(
Sy, b

))] 1
42
=

8
9 [2]

1
2 [2]

1
7 [ 3

2 ]
1
3 .

[
1
2

(
0 + 3

2

)] 1
42
≃ 1.577. Thus, (3) holds

From all the above three cases, we obtain that (T,S) is interpolative Hardy-Rogers pair. Thus, by Theorem 2.2,
Hence, a is is the common fixed point of T and S.
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