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Abstract. This article deals with the investigation concerning the existence and uniqueness of anti-periodic
boundary value solutions for a kind of Riesz-Caputo fractional differential equations. The equation is as
follows

Dja(t) + T (1, @(1), K°Dja(1)) = 0,7 € J = [0,1],
a10(0) + bio(l) = 0,3, (0) + br,@'(I) = 0,a30" (0) + b30" (1) = 0,

where 2 < C < 3and, 1 <n <2, gCDf is the Riesz-Caputo fractional derivative of order x« € {7},
T: I xRxR — Ris a continuous function and a;, b; are non-negative constants with a; > b;, i = 1,2,3.
Uniqueness is demonstrated using Banach contraction principle, and existence is demonstrated employing
the fixed point theorems of Schaefer and Krasnoselskii. Our results are supported by suitable numerical
illustrations.

1. Introduction

Fractional calculus is an interesting branch of mathematical sciences which covers plenty of different
prospects of defining real number or complex number powers of the differentiation operator and of the
integration operator and flourishing a broader calculus for aforementioned operators generalizing the
classical one. In fact, the fractional order models provide a more compelling explanation of memory and
genetic processes than integral order models. A lot of contributions have been made to different fractional
differential equations and inclusions. Of late, fractional differential equations or inclusions with anti-
periodic boundary value problems (APBVD, in short) have been the subject of extensive research due to
their widespread use in many fields. There are plenty of interesting articles and books related to fractional
differential equations, see [1, 3-5, 7, 9-12, 15, 20, 22, 24, 32, 33] as well as the references within.
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In recent years, Riemann-Liouville and Caputo derivatives have been widely used in research on
fractional boundary and initial value problems. These fractional operators, are one-sided and can only
change the past or the future. The Riesz space fractional operator, in contrast to the other fractional
operators, is a two-sided operator that captures both past and present non-local memory effects. This
is significant because present states in mathematical models of physical processes on finite domains are
influenced by both forgotten and upcoming memory consequences. In the anomalous diffusion problem,
as an example, the Riesz fractional derivative is applied to explain the memory outcomes in past and as
well as the future agglomerations [25, 26, 28]. In 2017, Chen et al.[17] investigated the following fractional
APBVP

§CD (1) = V(r,a(1)), Ce(01], 0<t<L
@(0) = a, ®(L) = b, (1.1)

where gcﬂi is the Riesz-Caputo derivative (RCD, in short) and W : [0, L] xR — R is a continuous function.
Moreover, Gu et al. [19] used the Leray-Schauder and Krasnoselskii fixed point theorems to demonstrate
the existence of positive solutions. In addition, Chen et al. [16] also discussed the following fractional
APBVP

§CDLo(T) =¥(ra(r), tel0,L], 1<C<2,

®(0) + (L) =0, @' (0)+o'(L) =0,

where chCL is the Riesz-Caputo derivative 1 < C < 2 and ¥ : [0, £] x R — R is a continuous function
with respect to @ and 7. By means of novel fractional Gronwall inequalities and a few fixed point results,
the authors proposed some existence results of the solutions for the aforementioned kind of fractional
differential equations under different conditions. Of late, Naas et al. [27] discussed the existence and
uniqueness of solutions of the succeeding kind of fractional differential equations concerning Riesz-Caputo
derivative

KeDfa(7) + T (1,0(1), §Dja(1)) =0, 1€ :=10,1],
@0)+o() =0, pa'(0)+oa’(l)=0,

wherel <(<2,0<n<1, gCD;‘ is the Riesz-Caputo fractional derivative of order x € {C, 7}, T : I XxRXR —

R is a continuous function, and y, o are non-negative constants with y > 0. They used the Banach fixed

point theorem for uniqueness, and Schaefer and Krasnoselskii’s theorem to obtain existence results.
Motivated by their interesting findings, in our manuscript, we enquire for the existence and uniqueness

of solutions of the subsequent type of fractional differential equations concerning Riesz-Caputo derivative
KDt (1) + (1, 0(7), KD] (1)) = 0,1 € T :=[0,1],
a1 @(0) + bio(l) = 0,40’ (0) + brd'(I) = 0,a30” (0) + bs@”'(I) = 0, (1.2)

where 2 < ( <3, 1<n<2, gCDf is the Riesz-Caputo fractional derivative of order ¥ € {C,n}, and
T: 9 xRxR — Ris a continuous function. Intent readers are referred to a few recent publications that
deal with a Riesz-Caputo derivative [2, 13, 14, 18, 21, 23, 27, 29-31]. The class of fractional differential
equations with boundary conditions involving Riesz-Caputo fractional derivatives studied in the research
article has various applications across different fields.

By studying the existence and uniqueness of solutions for this class of equations, researchers can
better understand the behaviour of various complex systems in different fields and develop more accurate
predictive models.

This paperis arranged in a way such that Section 2 includes definitions and some of the most fundamental
results in the literature of fractional calculus. In Section 3, Schaefer and Krasnoselskii fixed point theorems
are employed to obtain the existence of solutions of problem (1.2) using Riesz-Caputo derivatives. Further,
Banach fixed point theorem employed to guarantee the uniqueness of the obtained fixed points. Besides,
the results are verified by two illustrative numerical examples. Finally, in Section 4, we come up with the
conclusion and a problem for future research ventures.
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2. Preliminaries

In this section, we recall a few fundamental concepts, and findings from the literature which are crucial
in view of our article. Suppose f > 0,andn—1 < <n,n € Nand n = [v], where [.] the ceiling of a number.

Definition 2.1. ([6, 28]) Let T : J X R xR — R. For 0 < t <, the classical Riesz-Caputo fractional derivative is
defined by

8eDiE(r) =

1 l _ pt=C=-15(n)
=0 fo It = " T (@)
1
= 5 (§D% + (-1"CD}) 3(w),

where gD% and EDIC are the Caputo derivative of left and right, respectively defined by
[ ez,

f (@ — DT ().

Remark 2.2. ([16, 17]) When T(t) € €(J) and 0 < C < 1, we have

§DS(1) =

1
I(n-0)
( 1)"

Dr(r) =

2 (6Dt - Df)3(n),

8eDia(r) = 5

and when (1) € C*(J) and 1 < C < 2, then we have
Rept(r) = ! (CDC Df) ().

Definition 2.3. ([17]) Let T : J x R xR — R. The notions of Riemann-Liouville fractional integrals of order C are
defined as

iy = L [ or )@

20 = 5 [ (=),
/

510 = 15 [ 0= 00,

1 /
o[“T(1) = T fo lp — 7V (p)deg.

Lemma 2.4. ([27],[8]) Let T(t) € € (). Then

H

n—

T((0)
j!

o¢ SDEX(1) = T(1) - (t -0y

—.
Il
o

and

n-1 i~
I EDER() = -1y |3 - Y ENED

= 7

The aforementioned definitions lead us to the following,

o[*RCDE(1) = —OIC (5D + (-1)"$DY) x(r)
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_1 n
QN

CDEI(7) + DFI(1)

=500
1 (- )

=§(01§§D§+1155Dc)z< 1)+ = (s55DF + I°CDF) 3()
1
~2

In particular, if 2 < C < 3 and I(1) € C€3(), then

(155D + (—1)M17SDf) T (1),

T T

ol° B°D (1) = T(v) — %(z(O) + () - %(1’(0) +T D)+ éz'@

- }I(z"(O) ) 311"(1)[12 - 2I1]. (2.1)

3. Main Outcomes

Here we derive a few interesting findings concerning a certain kind of Riesz-Caputo fractional differential
equations. We make way into this section by proving the succeeding result.

Lemma 3.1. Consider i € €(J,R) and @ € €(J). A function @ is a solution of the Riesz-Caputo fractional
differential equation

8Dla(t) + (1) = 0,7 €[0,1],2< L <3,

3.1
a10(0) + byo(l) = 0,40’ (0) + br@'(l) = 0,a30"(0) + b3”' (1) = 0, G.1)
if and only if @ is a solution of the following fractional integral equation:
X1 + xalt + xst? (€-3) XaT + xsl f €-2)
(1) = TC-2) f(l s)“"h(s)ds + =—"— TC=1) (I =5)“"“h(s)ds
1

- = 7 —5)Vn(s)ds — fS—T(C Dti(s)ds, 3.2
rg [ =9 - s [ 6= 0 62)

where
2b3b26¥1 - 2b3a2a2 + 26136120(1 + H36¥1ﬁ1

201171
2b3ﬂ20¢1 - 2b3b20[1 + Zag,alﬁl

201171

7

X1 =

X2 =

7

_ Y20i1p

T 2a1B11”

_p2

_20(1ﬁ1 !

—byay — my
2&1‘81

X5 =

(a1 + b1) =ay,
(a1 = b1) =ay,
(a2 + bo) =B,
(a2 — b2) =P,
(a3 + b3) =y1,
(a3 — b3) =Y.
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Proof. Suppose that @ satisfies (3.1). By virtue of Lemma 2.4, the equation (2.1) converts to

wm=%m@+mm+ﬁd@+dmllmm+ [@”(0) +@"()]

1 " _— (€1 (-1
+ 70 (l)( ZZT + @ f (1 = s)Vnh(s)ds + — @ f(s N Dri(s)ds. (3.3)
Then,

'@ =3[0 + o0+ 5 m%m+w<m+1wax>

- (-9 f @)
+F(C—1)L(l S) h(S)dS-i- T(S l) h(S)dS

F(C -1

Using boundary conditions on (3.3), we get

2lzb3b2 le3 N
(a2 +b2) (a3 +b3)T(C=2) (a3 +b3) T(C— 2)] f (I=9)“"nh(s)ds

b, _ ¢)(C-2)
(a2 + b)) I'(C —1)]f(l )= 7h(s)ds,

21b3b2 12b3 ) 3
l:(ﬂz + by) (a3 + b3) F(C 2) (ng + b3) F(C — 2)] L (l ) h(S)ds

b _¢)(C-2)
[(az b T(C— 1)] f (1 —8)“(s)ds
2aq

= _ )€1
+ @) T(C)f (I-s) fi(s)ds,

L 2lbybs NS
Q@‘W+M%+wrcmfh STh(EMs

- s _ q)(C-2)
(a2+b2 F(C 1)f(l $) 2 n(s)ds,

, _ —21(12173 _ (@3)
o= ['(C—2)(az + by) (a3 + b3) f(l SRS

(D(O) B (ﬂl + bl)

—by

+
ay +b1

a

+
611+b1

(
o) = (a1 T bl)
7 57)

e _ o)(C-2)
(ﬂz + bz F(C —-1) f(l §)*-"“h(s)ds

ey — —2bs _ )@

@"(0) = @G ) TC=2) (l s)“"Ii(s)ds and
oy 283 _ @3

o) = (a3 +b3) T(C-2) f(l ) mGs)ds

Substituting all the previous values into (3.3), we get the required (3.2). O

Now we note down the following notations:

xl° X5 lc 2I¢ o - X3l 2I¢ 2J€-n-1)

6 = TC-1) "T©Q "TCr1 >~ G- - 1)’N1 - r(c+1)’N2 “TC-7)
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3.1. First existence result

Let €([0, /], R) be a Banach space of all continuous functions defined on J = [0, I] that are mapped into
R. Then A be a Banach space defined as,

A={o: o e (0,1]),* Do € &([0,1)},

equipped with the norm
l@lls = lloll + |

where
llol| =

cDH = sup |RCD6(D(T)|.
eJ
Theorem 3.2. Let A be a Banach space. Assume that T :A — A is completely continuous operator and the set

V=={loeAlo=uTw),0<u<1}
is bounded. Then T has a fixed point in A.

Theorem 3.3. Consider T: J X R X R — R be a continuous function. Suppose that
(H1) there is a positive @ such that

Tp, 0, <p for o,neR, 1€Y.
Then the problem (1.2) possesses at least one solution in .

Proof. Define an operator 7 : A — A by

Xll + )(zl’[ + )(3’[

(Tae) KL [ )93 (p,0(0), “Dote))dp

+—";(f:+ ol f (- )% (p, alp), “Dlalp)) dp

0 (1— 9)“ VI (¢, @(p), ““Dad(p)) dep

l
_ % (9 =0T (p,0(p), “Dla(p)) dp.

The fact that the operator 7~ is uniformly continuous and also, (7 ®)(7) belongs to A for every 7 € J, one
can easily verify that 7 is well-defined. Now, we utilize Schafer fixed point theorem to illustrate that 7
owns a fixed point in A. The proof is split into four parts:

Step 1: 7 is a continuous mapping on A. We conclude that 7 is continuous keeping in mind the continuity
of T.

Step 2: 7 maps bounded sets into bounded sets in A. Forevery ® € 8, = {0 € A : ||o|lx < r}and T € J, we
obtain

2 2 !
(o)) <A [ ) 2 p, o), “Drotp)| do

Jat + x5l ’(l .
e

vl f (r = ) [T (g, @), *D(g) | dp

)22 (¢, (@), D)) dp
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Hofw))“ﬂzwmwmb%@m

< xilcp N xslC9 N 2o
“TIC-1) I TEC+1

implies that
(7" @)(7)ll < O (3.4)

and

Do) < s [ -0 [ (.0t D0t de

1”(C—n—1)f — )¢ |31 (o, (@), RCD”CD(@))'

P [7(2 N4 (1 - 7)@ n)]
(C-3) RCyr
I e f (1 ) [ (p,0(), *Do()) dp
13l Mo 211D
AG-mIC-1)  TC-1)

implies that
5D (T @)(7)|| < 9©s. (3.5)
Combining (3.4) and (3.5), we get
(T @)(Dll) <9 (©1+02) <o,

which leads to the fact that 7 maps bounded sets to bounded sets on A.
Step 3: 7 maps bounded sets into equi-continuous sets in A. Let B, be a bounded set of A as defined in
Step 2, and let @ € B,. For each 71,72 € J, 71 < T2, we get

(T @)(72) = (T@)(T1)| <

Xol(ta = 1) + xa(t3 = 17) (7
fC-2) Jo

Xa(T2 — T1)

/
L2 [0 [z o0, Do) d

)22 (9, @), D)) dy

1 @1 @1

i r(@)fo (@ = 9) " = (2= )2 (0 2(0), Do) g
—1 " - €1

YT f (€= 1) = (12 = )V [T, @), "D )| dp

/
TG f €= = €= ) V][ (g at), “ D)) dg

Kl o)l 4 IO Dl — )

TC-1) v IO
€9~ ) + (5, ~ 2
TC+1)

(((l — )0 — (1 = 1)) + (1, — 7;1)(6)‘
T(C+1) v
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which leads us to

ICD () — 7 )ED 4 g # [CD|(72 — £2)|(C-2)
(T @)(w2) - Ty <2l P — o)l

rec-1
Xl €V |(rp = 7)Y N )(T(f) — 1)) + (12— 71)©)
@ v TC+1)
(= ) = (1 = 1)) + (12 — 7))
+ TC+ 1) 9, (3.6)

and

I5D}(T @) (x2) = {D}(T @) (w1

(| -1
[ -] ) = = ) ) + (1 - )Y

ac-n ° @)
WG —);3)?(3 —) [(r2 = )+ (= )P = (1= 1) ). (3.7)

Hence adding (3.6) and (3.7),
(T ®) (t2) = (T @) (1)l
Xl = e KRN - D
- T(C-1)
Xl =)D | -7 + (2 - )]
T(0) T(C+1)
=29 -0 ¢ @ -] [0 - ) ;
T(C+1) 2I'(C—-n)
(=) = (=) ) + (22 = 1))
* @) vV
|(r2 = 1) E + (1= ) = (1 = 1))

X39
2MC- )G -1)
which implies that ||(7 @) (12) — (T ®@) (1)l — 0 as 72 — 71. We infer from Arzela-Ascoli theorem that 7~ is
a completely continuous operator.
Step 4: We demonstrate that the set A defined by

A={oeAN:0o=0Tw),0<p<1)

is bounded. Consider @ € A, for some g € (0,1). Then for every T € J

P+ xolt + x3t® [ _ ;
LTI [ -9 (g, 000, "Dt do

%Iw(T)I <

! [

A [ -0 Elpaw) Do)
1 T

v fo (r - @)D ’Z(cp,ca((P), RCD"@(@)’ do
1 !

T f (p-1)&D ’Z((p,ca(@), RCD”@(@)’ do

aly  xslty 2l

TTEC-1) T TC+1)’
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Therefore,
loll < 0©1p (3.8)

and
1 1 T ,
b°Dlowl i |, -0 T (vt <D0t ag

e A R

X3 [7(2 D+ (1-1)% ’)] ,
— )3 RC
G- IC-2) fo -9 (o otp), *Datp) dg
- X3l Mg . 21(C—n—1)80'
SAG-IC-1)  TC-n)

Therefore,
||§CD7@(7:)|| < 009. (3.9)
From inequalities (3.8) and (3.9), we get
lolla < 0(©1 + ) .

Hence, |@|[y < o0. This leads to the fact that A is bounded and employing Schafer fixed point theorem we
conclude that the equation (1.2) has at least one solution in /. [

3.2. Second existence result
Theorem 3.4. Let T: J X R X R — R be a continuous function satisfying the following:

(Hp) There is a non-negative function ® € € (J,R*) satisfying
IZ(r, @, M| < O(7) forall (1,@,1m) € I X RXR,
(H3) (M1 + M) (N1 +Np) <1.

Then A contains at least one solution to the problem (1.2).

Proof. Define the operators (71®)(7) and (72@)(7) as

I
(T10) (7) = xil? + xalt + xat? f(l—@)(c_s)z((P/fD((P)/RCDuCD((P))d(P

I(C-2)
+ )?(F[C—wf(l )(C 2)1(@, (g )RCD"(D((p))d(p, and
(T2@) (t T(C)f YT (g, 0(p), D(p)) dop

r(@ ( - 0T (g, @), "Dl p)) do.

Now we choose d > (01 + ©,) (M1 + M) ||©]|, and define B; = {@ € A : ||@||s < d}.
Step 1: We attest that 770(7) + 72@(7) € B;. For any @, € B; and for each 7 € J, we derive

2 I 2 !
(T30)(x) + (Tan)(o)| <& +1~(X§_T2+)X3T fo (- ) [T, (), Dar(g)| o
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xat+ x5l (7 _ ’
+ T fo (1= ) [T (p, (), ““Dra(y)) dop

+ % jO‘T(T - (p)(C—l) ‘:Z ((p, @(p), RCD'](D((p))‘ de

1 [ :
. _ 7)(C-1) | RCyn
0 fT((p D2 (p, @), D)) de
Xl (My + M) IO | xsl® (My + M) ||©]] | 21° (M; + My) ||©)|

S (A @ I
Then,

[(T1@)(0) + (Tan)(@)|| < ©1 (M1 + M) 6.
Again,
KD T10)(7) + XD (Tan)(0)||

Sr((;;nl) f (- (P)(C—’]—Z) |3: (qol (), RCchD((P))| d(P

)&n-2) RC
TC-n-1) f "2 (p o), Do) de
Y [T(z N (1 - 1)@ n)] I s o
2TG - NIC-2) fo (=[x 000), *D'alg)| dg
I (M + M) 8] 2197170 (M + M) O]
G- -1) I'C-mn

Hence,
8D (T10)(7) + §D](Tan)(@)|| < @2 (My + M) |©Il.
It follows from (3.10) and (3.11) that
[(T1@)(7) + (Tan)(@)||, < (@1 +©2) (M + M) O]l < d,
implying that (770)(7) + (T2@)(7) € Bs.

6186

(3.10)

(3.11)

Step 2: The continuity of T implies the continuity of 77. Next, we prove that 77 is a self-mapping on the

bounded set of A. For @ € B;, and for every 7 € J, we get

2 i 2 !
(T10)(@)] <2 }("gf;)"” fo (- ) |2, 0(p), Do ()| o

yat+ sl [ -2) RC
et ), (-9 [F (0.0t "Dl dg

xilt (My + My) [|1©]| N Xsl° (M + Mp) 19|
a rc-1 ')

Hence,

xlt Xsl
I(T1@)()Il < (F(C ) r(Q)(Ml +M,) IO

and

@) 4 (1 — 1)@
X3£I’(3 q)r(cT 2) | f (=) ’z (¢, )RCDU‘D((P))’

XD} (T10)(7)| <

(3.12)
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<X31(C_'7) [(M; + My)|1B]]
AAG-nrc-1

Hence,

x31C [(My + M) |1O]]
I3 -nr(C-1)

By Combining (3.12) and (3.13), we get

[seDjerono)] <

xilt )(51C N x3lE
rc-1 1“(C) 2@ -nl(C-1)
= |[T10(7)l|5 < 0.

I(T1@)(D)llA < (M + M) O]

6187

(3.13)

As a result of the previous inequality, 77 is uniformly bounded. Now we prove that 77 maps bounded set

into equi-continuous set of A. Consider 71,7, € J, 71 < 72, ® € B;. Therefore,

[(T1@) (72) = (T1@) (11)]

Xol(ta = 11) + x3(3 = 73) (7 - ;
2 1£U—@@”h@ﬂmanb@MW

- I(C-2)
xa(ta—1) (" -
m | (- @)(C 2) lz ((p,@(@),RCDn(D((p))' do

w2 )0 x K - P
- (-1
Xl (1o — )P
I()

[(M; + M) ||@ll]

[(M; + M) ||@ll] .

Hence,
(710 (z2) = (T30) (1)l
[l = r) T+ o PN - DDl i — )
= T(C-1) I'©)

On the other hand,

KD (T1@) (12) =5¢ D](T1@) (11)|

Ya [T(Z 04 (1 - 1)@ w)]
<
T 2ArG-nI(C-2) f
<X31(C " (M; + My) |19]]

T 2AE-IEC-1)

YD [2 (¢, 00p), D)) do

Hence,

x31C (M + M) (19|
2B —mI(C-1)

8D} (T1@) (12) =€ D}(T10) (11)]| <

It follows from (3.14) and (3.15) that

I(710) (z2) = (T30) (1)l
[l = )+ o EAN T - DIl — )
= T(C-1) I'©)

[(My + M) O]

}[(Ml + M) llol].

(3.14)

(3.15)
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[ X3l

TG - IC = 1)] [(M; + My) ][] .

As a result of these procedures, we deduce that 77 is continuous and compact.
Step 3: We demonstrate that 775 is a contraction mapping. Assume ®,n € A. Thus, for every v € J, we
derive

|(T20)(7) = (Tan)(0)|

< % fo (= )T, 0(0), *DMa(@)) - T (0, 1), " D)) | dep

!
+ % f ((P _ T)(C—l) ‘zz ((P/ (D((p), RCDﬂ@((P)) -3 ((p, ﬂ((P)/ RCDnn((p))‘ d(P

I
< m (M7 + My) (HCD - 1]” + ”RCDncD - RCD”?]”) .

Therefore, we obtain

[(T20)(2) = (Tan)(@)|| < Ny My + M) (Il = il + [[*°D = *°Dy]). (3.16)

and
D (T2@)(1) - §D](Tan) (1) |
=T —177 ) fo (= )2 [T, (), D) - T (s (), “D())| o
!
¥ m f (¢ - 02 [T (s @), “Dalp) - T (9,100, “Dn()| dp
21(C=n-1) 1

< e (M1 -+ Ma) (b0 = i + Dt "D

and

8D} (T2@)(7) =5 D](Tan)(@)|| < Na (My + Mp) (llo = 7l + [|*°D"@ — D1y (3.17)
Adding (3.16) and (3.17), we obtain
[(T20)(r) = (T2m)(@)]|, < N1 +Nao) My + M) (l@ = nll + D@ — KDrn]])
Using condition (H3), we conclude that 77 is a contraction mapping. Employing Krasnoselskii fixed point
theorem, 7~ owns a fixed point, which is the solution of (1.2). [
4. Distinctiveness result

Theorem 4.1. Consider T : J X R X R — R be a continuous function. Suppose

(Hy) there are non-negative real numbers My, M satisfying

|T(t, 0,0 - T(r,¢',0) + M [T -,

forall (p,0),(¢',CU) e R?and T € J if, (©1 + Op) (My + M) < 1.
Then there is a unique solution to the problem (1.2) on .

<M lp-¢’
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Proof. The operator 7 has already been defined in Theorem 3.3 and also it is well-defined. One can note that
the function @(7) is a solution of APBVP (1.2) if and only if @ is a fixed point of the operator 7. Therefore,
we demonstrate that 7 is a contraction. Consider @, 1 € A. Therefore, for every v € J

(7" @)(7) = (T )(0)

2+ xol 2
<M J;(XS_T;)“T fo (- ) [T, 0(p), D0(p)) - T, (), " DM(@))| dp

I !
+ %TCL T | =02 (p,060). " D1a) - (¢, 1(), " D)) dg

r(c) f (c = ) [T (g, 0(p), D) - T (g, 109, " D)

+ @ f ((P — T)(C*l) |1 ((Pl (D((P)/ RCDT](D(QD)) -3 ((P’ n(qo), RCD”U(@))| d(P

(Millo - nll + M, |[*“De - RCD’n”) Millo = nll + My |[*°Da — "Dy )

_T(C 1) F(C) (

C
+ e (Mo = nll+ e D70 D)

<[ xilt L sl X5l(’ 2
rCc-1 T1(0 T(C +1)

Therefore, we obtain

]<M1 + M) (lo = 1l + [|*“D"@ = *°D]).

(T @)(7) = (Tn)(@)l| < ©1 (My + M) (Il = il + [[*“D" — XDy ). (4.1)
Again, we obtain
6D} (T @)(x) = ;DT 1))

<t _177 — fo (T — )& |z (¢, 0(p), D)) - T (¢, (), DM (P))| do

!
+ 7m0 9T [E (0 0l) Do) - T o), D) do

P [7(2—11) + (- T)(Z—n)]
2@ -nIl(C-2)
3 sl €
S A E-I(C-1
2](C=n-1)
+
I'(C—-n)
Thus,

/
fo (- ) |2, 0(p), D(p)) - T (. 1(), " Dn())| dp

S (Millo = 1l + My D0 — D

(Millo - nil + M ||[*“D@ — *Dry).

[5eD](T @)(x) = §DNT ) (x)|| < ©2 My + My) (llo - nll + |[*°D"@ - *D™y] ). 4.2)
From (4.1) and (4.2), we get
T @)(7) = (T)(D)lla < (@1 +©2) My + M) (Il = il + |[*“D"0 — KDy ).

This confirms that 7~ is a contraction, and according to the Banach fixed point theorem, 7~ owns a unique
fixed point which implies that the problem (1.2) has a unique solutionon J. O
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5. Illustrations

Example 5.1. Consider the fractional APBVP

RCHE (Vr+2lo()l 1 RCPHZ _
0 Dl () + V2 +121(1+@(7))) + (4+e7)? COS( D“D(T)) =0,7€[0,1], (5.1)
20(0) + %ca(l) =0, 20'(0)+320'(1)=0, 1@”(0)+30"(1)=0

1

HereC=2,n=20=2a=20a=1%b;=1,b,=1b3=3and,

(Vi +2)|@| .
Va2 + 12171 + |2)) Ty

NI=

(1, @(1), "°Da(1)) = os (*“Dia(1)).
We have,
< Vr+2 H‘D L

’it(ca, T?) - 11

azop ol

Then, the assumption (Hy) is satisfied with My = \/17?1+2,M2 = m. Using the MATLAB program, we obtain

©1=0.0309, ©,=0.0276. Therefore, (M1 + M>) (01 + ©) = 0.0201 < 1. Hence in view of Theorem 4.1, the problem
(5.1) owns a unique solution on [0, 1].

(4+

Example 5.2. Consider the fractional APBVP

’RCD§ (D(T)|

9
RCS . . @(1) 4+t
o D/ (1) + 1554 cos @(1) + sin =) Ve +121) S (’RCD%(T)|+1)

20(0) +20(1) =0, @'(0)+20'(1) =0, 1a”(0)+30"(1)=0

=0,7€[0,1], 52)

HereC % = f—;,al =2,a2=1,a3= %,bl =2,b2=2,b3=3,M1 1OO’M2 122,(17’ld
8
, 1 . (1) 4+ kD7 (1)
iL‘(T, CD(T)/RCDI(D(T)) = 100 (4cosco(7) + sin g ) =TT CoS (|R(|3D : )| | 1)
T 70(7)| +
Moreover,
[¥(@,m - sllo=nl+ 5 llo-
Therefore,
4
'z (v, D W‘D(T))| =700 " 122 = 0.

On calculation, we get N1 = 0.3553, N, = 1.9576. Then (N1 + N») (M; + M) = 0.1850 < 1, which implies that
(Hy) is satisfied. Therefore, by using the Theorem 3.4, the problem (5.2) possesses at least one solution in [0, 1].

6. Final remarks

Our study investigates the existence and uniqueness of solutions of fractional APBVP in the RCD. The
results are extended to non-linear 3"-order ODE with more general APBVP for a certain fractional order
value. Besides, two examples are provided to demonstrate the findings. Moreover, future applications of
this method of analysis to more general y-Riesz-Caputo fractional differential equations, coupled system
[23] and convex combined Caputo fractional differential equations [30] are possible.
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