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Abstract. In this paper we prove the existence of mild solutions for a first-order impulsive semilinear
stochastic differential inclusion with an infinite-dimensional fractional Brownian motion and a standard
cylindrical Wiener process. We focus on convex-valued case. The results are obtained by using two different
fixed point theorems for multivalued mappings, more precisely, the technique is based on multivalued
version of a nonlinear alternative of Leray-Schauder’s fixed point theorem in generalized Banach spaces.

1. Introduction

The theory of stochastic differential and partial differential inclusions has become an active area of
investigation due to their applications in several fields in the applied sciences such as mechanics, electrical
engineering, medical biology, ecology amongst others.

Recently, stochastic differential and partial differential inclusions have been extensively studied. For
instance, in [22, 24] the authors investigated the existence of solutions of nonlinear stochastic differential
inclusions by means of a Banach fixed point theorem and a semigroup approach. Balasubramaniam [23]
obtained existence of solutions of functional stochastic differential inclusions by Kakutani’s fixed point
theorem,[24] initiated the study of existence of solutions of semilinear stochastic evolution inclusions in
a Hilbert space by using the nonlinear alternative of Leray-Schauder type [18], some existence results for
impulsive neutral stochastic evolution inclusions in Hilbert Space, where a class of second-order evolution
inclusions with a convex case are considered. In [12] the authors study the existence results for impul-
sive neutral stochastic evolution inclusions in Hilbert spaces where they considered a class of first-order
evolution inclusions with convex by using Leray-Schauder’s Alternative fixed point theorem.

That is why in recent years they have been the objectives of many investigations. We refer to the
monographs by Benchohra et al. [21], amongst others, to see several studies on the properties of their
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solutions. The reader can also find a detailed and extensive bibliography in the previously mentioned
books (see also Da Prato and Zabczyk [10], Gard [28], Gikhman and Skorokhod [14], Sobzyk [13]). As a
motivating example, let us refer to a stochastic model for drug distribution in a biological system which
was described by Tsokos and Padgett [6] as a closed system with a simplified heart, one organ or capillary
bed, and re-circulation of a blood with a constant rate of flow, where the heart is considered as a mixing
chamber of constant volume. For the basic theory concerning stochastic differential inclusions see the
monographs of Bharucha-Reid [3], Mao[31], ®Pksendal, [5], Tsokos and Padgett [6], Sobczyk [13] and Da
Prato and Zabczyk [10]. In many realistic cases, it is advantageous to treat the first order differential (see
Bao [15]). Motivated by [32, 33] we will generalize the existence of the solution to impulsive stochastic
partial functional differential equations.

Recently, inspired by the works of Boudaoui et al. [2], Blouhi et al.

Motivated by the previous works, in the present paper, it is interesting to show more general existence
result to that in [32, 33]. To the best of our acknowledge, there is no result concerning coupled System of
Impulsive Neutral Functional Differential Inclusions Driven by a Fractional Brownian Motion and Wiener
Process,

in this paper we are interested in proving the existence of solutions for a system of stochastic impulsive
differential inclusions of the following

dx(t) 6(mm+P@mmW+kaMﬁw
+ gl AW, te =0, b]lzi # ty,
dy(t) € (Ay(®H)+FA(tx, ydt + ) oXOdBL (D)

+ g*(dW(@), te ] =0, b]l:g # t, .
Ax®) = Lx(t)), t=t k=1,2,...,m @

Ay(t) = I(y(t),
x(t) = @), teJo=(-,0]
y(t) = (i)(t)/ te ]0 = (_Oor O]/

where X is a real separable Hilbert space with inner product (-, -) induced by norm || - ||, A : D(A) c X — X
is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators (5(f))i0
in X .Here, ,Bf is an infinite sequence of independent fractional Brownian motions, | = 1,2,..., with
Hurst parameter X, I, I € C(X, X) (k = 1,2,...,m), gy 2 ] X Dy X Dy — L?gi(Y, X).Here, Dy, is a linear
space of family of Fy-measurable functions from (—c0,0] into X,which will be also defined in the next
section and L%f(Y, X) denotes the space of all Q;-Hilbert-Schmidt operators from Y into X for eachi = 1,2,
g ] X Dy, X Dy — LYY, X) Here, L(Y, X) = L,(QY?Y, X) be a separable Hilbert space with respect to the
Hilbert- Schmidt norm ||.||;o and Q-Wiener process on (Q, ¥, IP) with a linear bounded covariance operator Q
such thattrQ < co. Let {WW(¢), t € R} be a standard cylindrical Wiener process with values in Y and defined on
(Q, 7, IP) be a complete probability space, which will be also defined in the next section. Moreover, the fixed
times fy satisfies 0 < f; <ty <... <ty <D, x(t;) and x(t]) denotes the left and right limits of x() at t = #;.As
for x; we mean the segment solution which is defined in the usual way, that is, if y(-,-) : (-0, 0] X Q — X,
then for any t > 0, y(-, ) : (—00,0] X Q — X is given by:

x(0,w) = x(t + 6, w), for O € (—0,0], w € Q,

a(t) = (01(t), 02(t), - .),
lo®IF = L2 IIGz(t)IIi% <o, ()
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where o(-) € I? and ? is given as
P={¢=(¢)1: [0,T] - L%(Y,X) NI = Z ||q51(t)||i22 < oo}
I=1

It is obvious that system (1) can be seen as a fixed point problem:
dz(t) = (A.z(t) + F(t, z;))dt
+ Z a(DdB () + g(t)dW (), t € [0,b], # 1,

I=1
Az(t) =1[L(z(t), t=t k=12,....m
Z(t) =zy, ftE€ ]0 = (_OO/ 0]/

where
| x A 0 | Pt x ) R AHG)
m‘[yi}A‘[o A]J“*”‘[Puémb]”“”‘[%m]
and

_| o) _| 9®

“‘[wo}gm‘[fm]
Some results on the existence of solutions for differential equations with infinite Brownian motion were
obtained in [7, 26]. Some existence and uniqueness of mild solutions to neutral stochastic delay functional
integro-differential equations perturbed by a fractional Brownian motion can be found in [2].
Very recently in the case without delay and B} is a fractional Brownian motion, the problem (1) was studied
by Blouhi et. al. [8] and Boudaoui et al. [2] proved the existence of mild solutions to stochastic impulsive
evolution equations with time delays, driven by fractional Brownian motion and Krasnoselski-Schaefer
type fixed point theorem. Recently Precup [25] proved the role of matrix convergence and vector metric in
the study of semilinear operator systems.
Before describing the properties fulfilled by the operators f,hi,¢' and I, Iy, we need to introduce some
notation and describe some spaces.

In this work, we will use an axiomatic definition of the phase space Dy, introduced by Hale and Kato
[16].

Definition 1.1. D, is a linear space of family of Fo-measurable functions from (—oco, 0] into X endowed with a norm
[l - ||@,F0, which satisfies the following axioms:

@ Ifx : (—o0,b] — X, b > 0 is such that zo = (xo0,Yo0) € Dy, X Dy, then for every t € [0,b) the following
conditions hold
@ x € Dy,
(b) [Ix(®)I < Lilxillpy,,
(@ [lxllp < K(t) suplllx(s)ll : 0 < s < t} + N(B)llxolloy, ,

where L > 0 is a constant; K,N : [0, 00) — [0, o0), K is continuous, N is locally bounded and K, N are
independent of x(-).

(ii) For the function x(-) in (i), x; is a Dg,-valued function [0, ).

(iii) The space D, is complete.
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Denote
K= sup{K(t) : t € J} and N= sup{N(t) : t € J}.
Now, for a given b > 0, we define

Dy, = {x: (=00,b] X Q = X, xp € C(Jy, X) fork =1,...m, xg € Dg, and there exist

x(t;) and x(t/) with x(t) = x(t;), k=1,---,m, and sup E(lx(H)]*) < oo},
te[0,b]

endowed with the norm

Ixllpy, = lldlloy, + sup (VEIx(s)IP),

0<s<b
where x; denotes the restriction of x to Jy = (ty_1, ], k=1,2,--- ,m,and Jy = (-0,0],i = 1,2.
The paper is organized as follows. In Section 2 we recall some definitions and facts which will be

needed in our analysis. Section 3 we prove some existence results based on a nonlinear alternative of
Leray-Schauder type theorem in generalized Banach spaces in the convex case.

2. Preliminaries

In this section, we introduce some notations, recall some definitions, and preliminary facts which are
used throughout this paper. Actually we will borrow it from [29]. Although we could simply refer to
this paper whenever we need it, we prefer to include this summary in order to make our paper as much
self-contained as possible.

2.1. Some results on stochastic integrals with respect to fractional Brownian motions

Let (Q3, ¥, IP) be a complete probability space with a filtration (¥ = 7)o satisfying the usual conditions
(i.e. right continuous and ¥, containing all IP-null sets).

For a stochastic process x(-,-) : [0,T] X Q — X we will write x(t) (or simply x when no confusion is
possible) instead of x(t, w).

Definition 2.1. Given H € (0,1), a continuous centered Gaussian process BY is said to be a two-sided one-
dimensional fractional Brownian motion (fBm) with Hurst parameter H, if its covariance function Ry(t,s) =
E[BH(#))BH(s)] satisfies

1
RH(t/ S) = §(|t|2H + |S|2H - |t - S|2H) t,s € [0/ T]

It is known that B"(f) with H > 1 admits the following Volterra representation

t
50 = [ Kut, 56 @
0
where B is a standard Brownian motion given by

B(t) = BY((K;) " &po),

and the Volterra kernel the kernel K(¢, s) is given by

1

t H-1
Ky(t,s) = cHsl/z_Hf (u— s)H_% (E) ’ du, t>s,

s S
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where cy = / ﬁ@lﬁ% and f(-, ) denotes the Beta function, K(t,s) = 0 if t < s, and it holds
A3

BKH _ t H_% H-2
T(fls) =cy (g) (t—s)""2,

and the kernel K3, is defined as follows. Denote by & the set of step functions on [0, T]. Let H be the Hilbert
space defined as the closure of & with respect to the scalar product

(X104, X010+ = Ru(t,s),

and consider the linear operator K}, from & to L*([0, T]) defined by,

T
d
(Kyy0)(h) = f o0 211,
Notice that,

(K x1o,0)(s) = Ku(t, 5)x10,4(5)-

The operator K;, is an isometry between & and L?([0, T]) which can be extended to the Hilbert space H. In
fact, for any s, t € [0, T] we have

(Kyxmo., Kgxomezgomy = X, Xosp# = Ru(t, s).

In addition, for any ¢ € H,

T T
f (B (s) = f (K:y)()B(S),
0 0

if and only if K}, € L2([0, T]).
Next we are interested in considering an fBm with values in a Hilbert space and giving the definition of
the corresponding stochastic integral.

Definition 2.2. An F;-adapted process ¢ on [0,T] X Q — X is an elementary or simple process if for a partition

Y =1{th=0<Ht <...<t, =T} and (F3)-measurable X-valued random variables (¢pz,)1<i<n, ¢ satisfies

Pil@) = ) i@ ), for 0<t<T, weQ.
i=1

The It integral of the simple process ¢ is defined as
T n
1) = [ GBI = ) ENBIE) - B, ®
i=1

whenever ¢y, € L2(Q, 7P, X) for all i < n.

Let (X, (-,),1-1x), (Y,{:,-),| - ly) be separable Hilbert spaces. Let L(Y, X) denote the space of all linear
bounded operators from Y into X. Lete,, n = 1,2,... be a complete orthonormal basis in Y and Q € L(Y, X)
be an operator defined by Qe, = A,e, with finite trace trQ = Y,;; A, < co where A,, n = 1,2,..., are
non-negative real numbers. Let (ﬁff Jnen be a sequence of two-sided one-dimensional standard fractional
Brownian motions mutually independent on (Q2, 7, IP). If we define the infinite dimensional fBm on Y with
covariance Q as

Bt = ) VA (e, (6)
n=1
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then it is well defined as an Y-valued Q-cylindrical fractional Brownian motion (see [10]) and we have

EB (1), 0B (5), y) = Ry (£,5)(Q(), ), x,y €Y ands,t€[0,T],

such that
1
Ry, =51t PP+ 1s PP+ 1t —s PMor t,s€0,T],
where
_l1 =l
o ‘{ 0, j#l
In order to define Wiener integrals with respect to a Q — fBm, we introduce the space L% = L%(Y, X) of

all Q—Hilbert-Schmidt operators ¢ : Y — X. We recall that ¢ € L(Y, X) is called a Q—Hilbert-Schmidt
operator, if

Iy = lpQ 21 = ripQp") < .

Definition 2.3. Let ¢(s),s € [0, T], be a function with values in L%(Y, X). The Wiener integral of ¢ with respect to
fBm given by (6) is defined by

T ; © ;
[ oo 0= [ Ve

o AT
=Y [ VA Ga)es. )
n=1v0
Notice that if
Y 10 Q eulluvnqo ) < o, (8)
n=1
the next result ensures the convergence of the series in the previous definition.

Lemma 2.4. [29] Forany ¢ : [0,T] — L%(Y, X) such that (8) holds, and for any «, p € [0, T] with a > B,

f 2 x P
E f cf>(s)dBH(s)XScHH<2H—1>(a—ﬁ>2H‘1HZ:’f f [66)Q e ds. ©)

If in addition

Z lpQ' e, |x is uniformly convergent for t € [0, T],

n=1

then,

B 2 8
E f qb(s)dBH(s)XScHH(ZH—l)(a— o) f ||gb(s)Hi0st. (10)
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2.2. Some results on fixed point theorems and set-valued analysis

Forx,y e R", x = (x1,...,%:), ¥y = (J1,...,Yn), by x < y we mean x; < y; foralli = 1,...,n. Also
Ix| = (Ix1l, ..., |xx]) and max(x, y) = max(max(x1, y1),..., max(x,, ¥)). If ¢ € R, then x < ¢ means x; < c for
eachi=1,...,n.

Definition 2.5. A square matrix of real numbers M is said to be convergent to zero if its spectral radius p(M) is
strictly less than 1. In other words, this means that all the eigenvalues of M are in the open unit disc. (i.e. |A| <1,
for every A € C with det(M — Al) = 0, where I denote the unit matrix of Myx,(R)).

Some examples of matrices convergent to zero can be seen in [29].
Pa(X) ={Y € P(X) : y closed },
Pp(X) = {Y € P(X) : y bounded },
Pc(X) =1{Y € P(X) : y convex },
Pep(X) ={Y € P(X) : y compact }.
Consider H; : P(X) X P(X) — R’} U {oo} defined by

Ha, (A, B)
Hy(A,B) =

Hd,, (Ar B)

Let (X, d) be a generalized metric space with

dl (x/ ]/)
dix,y) := U
dn(x, y)
Notice that d is a generalized metric space on X if and only if d;, i = 1,...,n are metrics on X, Hy(A, B) =

max {sup d(a, B), sup d(A, b)} ,
aeA beB

where d(A, b) = infsea d(a, b), d(a, B) = infyep d(a, b). Then, (Py(X), Hy) is a metric space and (Py(X), Hy) is a
generalized metric space.

A multivalued map F : X — P(X) is convex (closed) valued if F(y) is convex (closed) for all y € X,
F is bounded on bounded sets if F(B) = UyeB F(y) is bounded in X for all B € Py(X). F is called upper
semi-continuous (u.s.c. for short) on X if for each yy € X the set F(y,) is a nonempty, subset of X, and for
each open set U of X containing F(yo), there exists an open neighborhood V of y, such that F(V) € U. Fis
said to be completely continuous if F(B) is relatively compact for every B € $,(X). F is quasicompact if, for
each subset A C X ,F(A) is relatively compact.

If the multivalued map F is completely continuous with nonempty compact valued, then F is u.s.c. if
and only if F has a closed graph, i.e., X, — X., Yu — Vs, Yn € F(x,) imply y. € F(x.).

A multi-valued map F : | — P¢,(X) is said to be measurable if for each y € X, the mean-square
distance between y and F(f) is measurable.

Definition 2.6. The set-valued map F : | X X X X — P(X X X) is said to be L>-Carathéodory if
(i) t F(t,v) is measurable for eachv € X X X;
(ii) v F(t,v) is u.s.c. for almost all t € J;

(iii) for each q > 0, there exists h,; € LY(J,R*) such that

IE(t, )7 = sup ||f||2 < hy(t), forall loll> < qand forae. t €.
feE(tv)
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Remark 2.7. (a) For each x € C(J, X), the set St is closed whenever F has closed values. It is convex if and only if
F(t, x(t)) is convex for a.e. t € |.

Lemma 2.8. [4] Let I be a compact interval and X be a Hilbert space. Let F be an L?>-Carathéodory multi-valued map
with Sgy # 0 . and let T be a linear continuous mapping from L*(I, X) to C(I, X). Then, the operator

T 0Sr:C(IX) — Pepe(L*([0,T1, X)), y+— (Lo Se)(y) =T (S, ),

is a closed graph operator in C(I, X) X C(I, X), where Sgy is known as the selectors set from F and given by
f €Sk, ={f €L*([0,T],X): f(t) € F(t,y) fora.e.te[0,T]}.

We denote the graph of G to be the set gr(G) = {(x, y) e XX Y, vy e G(x)}.

Lemma 2.9. [19] If G : X — Pu(Y) is u.s.c., then gr(G) is a closed subset of X x Y. Conversely, if G is locally
compact and has nonempty compact values and a closed graph, then it is u.s.c.

Lemma 2.10. [27]If G : X — Pp(Y) is quasicompact and has a closed graph, then G is u.s.c.
The following two results are easily deduced from the limit properties
Lemma 2.11. (Seee.g. [17], Theorem 1.4.13) If G : X — Py(X) is u.s.c., then for any xo € X,
lim sup G(x) = G(xy).

X—Xo

Lemma 2.12. (See e.g. [17], Lemma 1.1.9) If Let (K,)uen € K C X be a sequence of subsets where K is compact in
the separable Banach space X. Then

co(lim sup Ky,) = Ny»0c0(Up=nKy)

n—oo
where coA refers to the closure of the convex hull of A.
The second one is due to Mazur, 1933:

Lemma 2.13. (Mazur’s Lemma, ([20] [Theorem 21.4])) Let X be a normed space and {xi}ren C X be a sequence
m

weakly converging to a limit x € X. Then there exists a sequence of convex combinations y,, = Z kX With g > 0
k=1

m
fork=1,2,...,mand Z ami = 1, which converges strongly to x.
k=1

Recall that a set-valued operator G possesses a fixed point if there exists y € X such that y € G(y).

By above lemma we can easily prove the following so-called nonlinear alternatives of Leray and Schauder
will be needed in the proof of our result (see [18]).

Lemma 2.14. Let (X, ||-|) be a generalized Banach and G : X — P (X) be an upper semicontinuous and compact
map. Then either,

(a) G has at least one fixed point, or
(b) theset M ={xe Xand A € (0,1),with x € AG(u)} is unbounded.

Our next result describes a basic theorem of reflexive spaces with A : E — E be a linear operator:
Theorem 2.15. [11] E is reflexive if and only if B = {x € E;||x|| < 1} is compact in the weak topology.

Now, let us state the following well-known lemma [10], which will be used in the sequel in the proofs
of the main results.

Lemma 2.16. For any r > 1 and for arbitrary Lj-valued predictable process g(.),

s t ’
sup Hfo g(u)dW(u)H;r < (rQ2r - 1))’(](; Hg(s)”igds) . (1)

s€[0,t]
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3. Mild Solutions

In this section we prove the existence of mild solution of the problem (1). Our approach is based on
multivalued versions of Schaefer’s fixed point theorem .

3.1. The convex case
First, we define what we mean by a mild solution.

Definition 3.1. A stochastic process x, y : (—o0,b] X QQ — X is called a mild solution of the system (1) if
o u(t) = (x(t), y(t)) is measurable and F-adapted, for each t > 0;

o (x(t),y(t)) € X x X has cadlag paths on t € [0,b] a.s., for every 0 < s < t < b, there exist f' € Srix,y for each
i = 1,2 such that the following integral equation holds

x(t) = S(t¢(0) + f S(t — 5)f(s)ds + f S(t — s)o, (s)dBy(s)
¢ 0 0
b [ st-9g @ + Y S - ), v6)
0 , O<te<t ,
v = SO + f S(t =) f(s)ds + f S(t =)0 (9B (s)
‘ 0 0
b [ St-9dWE + Y S0 - ke, 1), te
0 O<ty<t

e (x0(), ¥o(")) = (¢, P) € D, X D, on Jy := (—00, 0] satisfies ||q§||D,F0 < oo and ||q_§||g)¢0 < 0.

We are now in a position to state and prove our existence result for the problem (1). First we will list the
following hypotheses which will be imposed in our main theorem.
Consider the following assumptions: In all this part, we assume that S(t) is compact for t > 0 and that there
exists M > 0 such that

ISHI <M, forevery tel0,b].

(H1) The function g : ] — L%(Y,X) and ¢’ : ] — L%(Y, X) satisfies

b
f lg'(s)|20ds = C1 < o0, te],
0
nd

a
b .
f llo'(s)IPPds = Cy < 0, te].
0

(Hz) F':[0,b] X Dgx —> Peoep(X) is an integrably bounded multi-valued map,i.e.,there exists p; € L2(], X)
and ¢; : R* — (0, 00) is continuous and increasing such that

EIF'¢tx, )iy = sup EIf (1)} < Pi(t)l,bi(”x”%ﬁ] + IIyII%,FU), te], xy€Dg,
fieFi(t,xy)

(H3) There exist constants dj, Ek >0 foreachk=1,...,msuch that

|Ik(x)|§( < dy, |fk(]/)|2 < Ek forallx,y € X.
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Lemma 3.2. Assume that F' : | X Dg, X Dy, —> Peo,ep(X) is a Caratheodory map satisfying (H1)-(Hz) hold. Then
the operator is completely continuous and u.s.c.

Proof. The proof will be given in several steps.
Step 1. Consider the problem (1) on (—oo, #1].

dx(t)y € (Ax(t)+ F'(t,x;, ydt + X2 o/ (HdB/ (t)
+ gi®dW(), te ] :=1[0,4]
dy(t) € (Ay(t) + F(t,x;, y)dt + X2, o7 (t)dB (t)
+ (AW, te]=[0,t], (12)
x(t) = (P(t) € DTo/ ]0 = (_Oo/ 0]/
yt) = o) €Dg, Jo=(-,0],
Let
Co = {x € C([0,t1], X) : sup E(Ix(H)]?) < oo}.
te[0,t1]
Put

CB =.'D¢0 N Co.

Consider the multivalued operator N° : C; x C; — P(C;, x C;).We will prove that N° the operator is
completely continuous and u.s.c. with (N?(x, Y), Ng(x, y), (x,y) € Cy X C; defined by

NO(x, ) = {(ho i) ecC x C*}
7 7 O 0 7

given by

(), if t € (—o0,0],

SMHPO) + [y St~ 5)f\(s)ds

+ Y20 i S(t =)o} (s)dBl(s)

+ [ S(t = 5)g ()AW(s),if £ € [0, 1]

No(x,y) =4’ e Cy = KO(t) =

and

¢(t), if t € (—o0,0],

SHPO) + [ St —5)f2(s)ds

+ Y20 f S(t—5)0%(s)dBl(s)

+ [ S(t - )P ()AW(s), if te[0,h]

NYx,y) =R’ e Cy: HO(t) =

where
fleSp,=1f e *(J,X): fi(H) e Fi(t,x,y) forae te[0,t]).

From the assumption it is easy to see that NV is well defined.Let 0,0 : (—o0,t;] — X be the function
defined by

B t € (=00,0],
o(t) = { S(HP0), te[0,H].

and

N — d)(t)/ te (_Oo/ 0]/
o) ‘{ SMHBO), e [0,h].
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It is clear that (6, 0) is an element of Coyx Cp- Set (x(t), y(t)) = (z(t) +0(t), z(t) + O(t)), —oo < t < t1.0bviously,
if x, y satisfies (12) if and only if (z, Z) satisfies (zo, Z9) = (0, 0) if t € (—c0,0] and

2(t) = [y S(t—9)f'()ds + Ly f S(t — 5)0(s)dBL(s)
+ ['S(t-5)g' )dWs), i te[0 ],

2(t) = [ S(t—9)f2()ds + Ly f S(t — 5)0(s)dBl(s)
+ [1S(t - 9)Pe)dWEs), i te[0h],

where fi(t) € Fi(t,z; + 04,2 + 0;) for ace. t € [0, 1]
Put .
Co= {Z,Z €Cy, suchthat zp=0€Dg and Zy=0¢€ Dﬁ}

and for any z,Z € C; we have

lxllz = llzollo,, + sup VEIz(®)I*.
0 t€[0,41]
It is not difficult to check that (E" ,Illlz) is a Banach space. Consider the multivalued operator N 0. 65 X 65 -
0
P(C; x Cp) defined by
N’(z,2) = (N(z,2), N)(z,2)), (z,2) € Cy X C,

where .
N9 = {0,5) € G x G
given by
0,if te(—00,0],
t
— S(t—s)f(s)ds
0 =\ — 0 * . 1,0 _ j(;
M2 = b€ B =1 Ly 5 — ook s)aBls)
+ [ S(E-9)g (s)dW(s), i £ [0,]
and

0,if € (~oo,0],

I S(t = 5)fX(s)ds

+E2 [ S(t ~ 5)o(s)dBl(s)

+ [1S(t - )W), if t€[0,1]

NY(zz2) =i’ €Cy: B(t) =

Clearly, that the operator N? is equivalent to N° , and so we turn our attention to proving that N does in
fact have a fixed point. We shall show that N’ Then the operator is completely continuous and u.s.c. on
t € (—oo,t1].We divide the proof into several claims.

Claim 1. N° is convex for each z,Z € 65
In fact, if h),h) € NY and El),ﬁg € N), then there exist f, f} € Sp1,,9-.¢ and f2, f? € Sp 192+ such that

¢ © A t
h?(t) = fo‘ S(t - s)fil(s)ds + ; j(; S(t - s)all(s)dqu(s) + fo S(t — s)g" (s)dW(s).

and

t © At t
E?(t) = fo S(t —s)f(s)ds + 1221 [) S(t - s)alz(s)dBf(s) + [) S(t — 5)g?(s)dW(s).
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Let0 < a < 1. Then, for each t € [0, t1], we have
t t
(@h? + (1= O)I)(t) = f S(t—s)efl(s) + (1 — a)fi(s)lds + f S(t - 5)g(s)dB" (s)
0 0

+ f S(t - 5)g'(s)dW(s) € N(z, 2).
0

Similarly, we have

t

¢
(aﬁg +(1- 6)@2)(15) = f S(t—9)afi(s) + (1 — @) f5(s)lds + f S(t - 5)g(s)dB"(s) € N)(z, 2)
0 0

¢
+f St - s)gz(s)dW(s) € M;(z,z).
0
Since Sg,102+6 = (Sp 210246, Sk 2+0,2+0) 1S convex ( because F(t, z, Z) has convex values).

Claim 2. N” maps bounded sets into bounded sets in 66 X Eo
Indeed, it is enough to show that for any g > 0 there exists a positive constant [ = (I1, l;) such that for each

(z,2) € By ={(z,2) € C; x Cy : ||z||266 <q, ||Z||266 < g} one has
012 702
112 ”66 <h, |h ”66 <bh.

1f (1°,7°) e (N9, N9) there exists fi(t) € Fi(t,z + 0,z + 0) for each t € (—co, 1], we get

t 0 t
ER P = E' f S(t—s)fl(s)ds+z f S(t — s)0, (s)dBy'(s)
0 =1 YO0

+

t
f S(t - s)gl(s)dW(s)‘z.
0
and

EIR(t)P

t sl t
—_3g)f2 _ )2 H
E'j(; S(t=s9)f (s)ds+;f0 S(t — s)o;(s)dB,’(s)

+

t 2
f S(t - s)gz(s)dW(s)| .
0
This, together with (H;)-(H3) , Lemma 2.16 and 2.4 yields that,

ElR’ ()2

= E' St =5)f'()ds + X%y [ (¢t~ 5)ol(s)dBH (s) + fOtS(t—s)gl(s)dW(s)’Z
< 3E‘ [st-9) fl(S)dslz + 3E' T s - s)o}(s)dB;f(s)r

+3E| st - s)gl(s)azW(s)|2

t ooy 2 2H-1 (11 1/.y12
S3Mtt11 folEIfz(s)I ds + 3McyHRH — 1)BH [ |0 (5)|Pds
+3MC,, [, llg Ol ds

< 3Mt Y1 (2Csa) [} pr(s)ds + 3McyH(2H — DEH1C, + 3MCy
=1,
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where

|z + 9t||2 - + ||z + ét”Z -
< 2(||Zt”z) + ||9t||2 )+ 2(||Zt||z) + ||6t||z) )

< 4(N2(||¢||2 + ||<¢>||2 + K2(2q + M (Elp(0)* + EIlp(0)%))
= Cstd

Similarly, we have

ER° (O
< 3Mt [} Elf2(s)Pds + 3McrHH — 1) [ [l0%(s)|Pds + 3MC,, " llg2(s)IPds
< 3MtY2(2Ca) [} p2(s)ds + 3McyH(2H — DEH1C, + 3MCy

=1,
EROF \ _( h
0 <
EWR" ()P 2
Claim 3. N° maps bounded sets into equicontinuous sets of EB X 66

Let B; be a bounded set in 66 X 66 as in Claim 2. Let 71,72 € 71 < 72 and (x,y) € By there exists
fi(t) € Fi(t,z+ 0,z + 0), i = 1,2, such that

Ell’(2) = 1(11)
< 6E| f S(ty —5) — S(t1 — ) f1(s)ds|* + 6E| f IS(t1 — 5) f(s)ds|*

+6E|Z f S(t2 — 5) = S(t1 — )0l (5) BH(s)|2+6E|Z f (11 — )0’ (s)dB" (s)ds

+ 6E|f S(t2 —s) — S(11 — 8)g* (s)dW(s)* + 6E|f IS(t1 — 8)g" (s)dW(s)?
0 1

From (H;)-(H3) , Lemma 2.16 and 2.4, we obtain
El’(r2) = h'(ry)P

< 61‘11,111(2Cstd)f IS(t2 — 8) — S(T1 — 8)PPp1(s)ds + 611 (2Cstd)E|f IS(T1 — s)[*p1(s)ds
0 1
T2
+6CocyH(2H — 1)13H1 f IS(T5 = 5) — S(1 —5)?
0

+6CocyH(2H — 1)2H-1 f IS(t1 — s)Pds + 6C; f IS(15 — s) — S(11 — 5)*ds
0

n
+6C, E| f " 1S(71 — s)[*ds
Similarly, we obtain that
E(12) - B (1)
36mmacm{£”wu2—a—sw1—ﬂ%x®%+6mmacmwhﬁmwal—m%awg

+6CocyH(2H — 1)13H1 f IS(12 —5) = S(11 — 5)?
0
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+6CocyH(2H — 1)1 f IS(71 — s)]*ds + 6C; f 1S(7, — s) — S(11 — 5)[*ds
0

T1
T2
+6C, E| f 1S(71 — s)[*ds

The right-hand term tends to zero as |12 — 71| — 0 since S(f) is strongly continuous operator and the
compactness of 5(t) for t > 0 implies the continuity in the uniform operator topology [1]. This proves the
equicontinuity.

Claim 4. (N°(B,)(#) is precompact in Ci X Cj. As a consequence of Steps Claim 2 and Claim 3, together

with the Arzela-Ascoli theorem, it suffices to show that N’ maps B, into a precompact set in Ea X 66 Let
0 <t < t; be fixed and let € be a real number satisfying 0 < € < t;. For (z,Z) € B; we define

t—e 0 t—€
Ilg(z, Z)(t) = S(e) f(; St—s— e)fl(s)ds + ; S(e) f(; S(t—s— e)oll(s)dBF(s)

t—e
+5(€) f S(t — s — €)g' (s)dW(s)
0
and

f—e > t—€
Eg(z, Z)(t) = S(e) ](; St—s— e)f2(s)ds + ;‘ S(e) fo St—s— e)alz(s)dBF(s)

t—€
+5(€) f St—s— e)g2(s)dW(s)
0
Since S(t) is a compact operator, the set

=0

He = {e(t) = (1%, B2) : e € N°(2,2) (2,2) € By)

Using (H1)-(H3),Lemma 2.16 and 2.4, we have
2
E[p°) - 20|
t © t
SBE' f S(t—s)fl(s)ds)|2+3E|Z f S(t—s)a}(s))dB{*(s)j2
t—e =1 Yi-€
t 2
+3E| f S(t—s)gl(s)ds)|
e t t
< 3M?11(2Cst) f p1(s)ds + 3M*(cyH(2H — 1)e*~! f llot(s))llds
t—e t-e

t
+3M? f llg" (s)Iods
t—e

Similarly,
-0 PN t
Ei°o -Ew[ < 3MPyaeca) f pa(s)ds
t—e
t
b SMPAHEH - D [ Iee)as
t—e
t
« A [ IR s
—€
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The right-hand side tends to 0, as € — 0. Therefore, there are precompact sets arbitrarily close to the set
H = {(t) = (ho,ﬁo) :hy € N%z,2) (z,2) € B,}. This set is then precompact in X X X.

Claim 5. N° = (N9, N)) has a closed graph. Let u, = (zy,24) — , = (Z*,Z*),(hg,ﬁg) € N°%u,) and (hg,ﬁg) —

(1, ") as 1 —> o0, we shall prove that 1’ € N?(u.) and i e NY(w.) . The fact that ES, € NV(u,) and ES, € N)(un)
means that there exists f; € Sp:, for each i = 1,2 such that

Kz, 2)(¢) = f tS(t—s)fl(s)ds+i f tS(t—s)al(s)dBH(s)
=n 0 n ~ J 1 1

t
ol
+j(; S5(t —s)g (s)dW(s)

and
t 0 t
ezt = | Sit-s)fis)d S(t — s)02(s)dBH
K 2)(t) fo (t—s)f (s)s+§ fo (t - 5)02(s)dBF (s)

+ fot S(t— s)gz(s)dW(s)

We must prove that there exists f! € S, .- ¢ such that

t sl t t
Ho(t) = f S(t—s)f}(s)ds+z f S(t — s)o; (s)dBl(s) + f S(t —8)g' (s)dW(s), t € [0,H].
0 =1 YO0 0
and
B t © t t
R = f s(t—s)ff(s)dHZ f S(t — s)o7(s)dB (s) + f S(t —s)g*(s)dW(s), te€[0,t].
0 =1 YO0 0
Now, consider the continuous linear operator I': L2([0,4],X) — Eo defined for eachi = 1,2, by

t
T(FYE) = fo S(t = 9)fi(s)ds.

From the definition of I' we know that
) t t
0= Y [ 86-9010aB0) - [ S -9 W € TSrz0s0)
I=1

and

=) t t
-, [ 6= 9700 - [ St - IPEINE € TSpsonio)
1=1 V0 0
Since (zy,, Z,) — (z.,Z.) and (hg,ﬁg) — (h?,ﬁ(j) , thereis f € S, - ;5 such that
t sl t t
Kot) = fo S(t —s)f1(s)ds + Z fo S(t — s)o, (s)dBl(s) + fo S(t —s)g'(s)dW(s), te[0,t].
=1

and

ho(t) = ft S(t— s)fz(s)ds + i ft S(t — s)o*(s)dB(s) + ft S(t— s)gz(s)dW(s) t € [0,t].
- 0 ' = Jo : : 0 ' '
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Hence (1, E?) € (N9(w.), N3(u.)), proving our claim. Lemma 2.10 yields that N° is upper semicontinuous on
t € [0, t1],denote this solution by (xo, yo) € Cjy X Cj
Step 2. Now consider the problem on (—oo, £5]

dx(t) = (Ax(t) + F'(t, x;, yr)dt
+ Y2 0} (DdB (1) + gL ()AW(), t € (t, 1],
dy(t) = (Ay(t) + F2(t, x;, yi)dt
+ Y2 or (DB (1) + g*(DAW(H), t € (b, ], 13)
x(t7) = xo(t)) + Li(xa(fr)
y(t7) = yo(t]) + Li(y1(t))
x(t) =xo(t)ift € (—oo,t]
y(t)  =yo(t)ift € (—oo, 1]

Let
Ci={y e C([t1, 2], X) : :x(t]) exists, sup E(Ix(t)]?) < oo}.

telty, b]
Put
C; =DﬁmCOOC1.

Consider the multivalued operator N' : C; x C; — P(C; x C;) with N'(x, y) = (N1 (x, v), Ny(x,y)), (x,y) €
C; X C] defined by

N%LW=&WﬁBEQXC$,
given by

xo(t), ift € (—o0, 1],
xo(t‘) + S(t - tl)Il(]/O(tI))
Nixy) = i e G mi =] *J, SE=9f6)s
+ L2 J, S(t—5)a7(s)dBy(s)
+ ) S(t - 5)g2(6)AW(s), ift € (t, 1]

and

y()(t), _ ift € (—OO, i’l],
yo(t)) + S(t — t)1(yo(£)))

tec: =] * ), St-9f s
+z;ﬁﬁu—@ﬁ@ﬂﬁ@
+ [ S(t - 5)g2(6)dW(s), ift € (t,ta]

=

Ny (x,y) =

where
fleSp, =1{f €A ((t, 2], X): f(t) € Fi(t,x,y) forae te(t,b]}.
Let 6 : (—o0, £,] — X be the function defined by

o) = xo(t), t € (—oo,t1],
T\ xo(t)) + S(t—t)Li(xo(t))), ift € (t, 1]

and

é(t) — ]/O(t)/ _ te (—OO, tl]/
yo(t]) + S(t — t)l1(yo(t))), ift € (t, t2]
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Thus we have (0, 0) is an element of C] X C7. Let(x(t), y(t) = (z(t) + O(t), 2(t) + O(t)), —oo < t < t,.0bviously,
if (x, y) satisfies the integral equation

x(8) = xo(£7) + S(t — b)) (xo (1)) + ftf S(t—s)f1(s)ds + X, ftf S(t — s)o%(s)dBH(s)
+ [ S(t-5)g" AW i te(t,b]

y(t) = yo(t)) + S(t = )L (yo(t) + [ S(t = 5)f2(s)ds + iy ) (¢ = 5)o?(s)dlBL(s)
+ [ St-9)PEdWE)  if  te (t,h]

By replacing (z, z) in previous equation and satisfies (zo,Zo) = (0,0) if t € (=00, ;] we have

z(t) = S(t — b)) (zo(t]) + O(t)), Zo(t]) + O(1]))

+ fOtS(t—s) F1e)s + L%y [, S(t =)o (s)dBY!(s)
+ fth(t—s)gl(s)dW(S) it te(t, bl

Z(t) = S(t — t)li(zo(t]) + O(t)), Zo(t]) + O(£]))

+ fOtS(t—s) F2e)ds + L%y [, S(t = $)a7(s)dBY!(s)
+ fth(t—s)gz(s)dW(S) it te(h, bl

where f(t) € Fi(t,z; + 04,2 + 0;) for a.e. t € (t1,1]. Put

C = {z,Z € (], suchthat z, =0 and %, = 0}

and forany z,z € C] .

Consider the multivalued operator N 1. El><61 - P(Ef’i xE’;) with N Y(z,2) = (M% (z, Z),M%(z, 2)), (z,2) € Ele;
defined by

N'(z,2) = {(hl h)eC x E*}
A 7 == 1 1(7

given by
0, if te(—oo,t;] B
S(f = t)h(zo(t]) + O(t7), Zo(t7) + O(t)))
M;{(Z,Z) — hl c C; . hl(t) — ji:l S(t — St)fl(S)dS
+ 2112 J, S(t=5)a} (5)dBy(s)
+ ftf S(t—s)g' () dW(s), if te (t,t]
and

0, if te (—OO, i’z] _

S(t - b (zo(t]) + O(8]), Zo(t]) + O(E))
eCl: ') = + 1, S(tt—S)fz(S)ds

+ X2 J, St =)ot (s)dBy(s)

+ f[f S(t— )PE)AW(s), if t € (, ta]

[yl
-

Ni(z,2) =

As in Step 1, we can show that N lis upper semicontinuous on t € (¢, t],denote this solution by (x1, 1) €
Cr x C:.
1 1
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Step3. We continue this process taking into account that (z,, Zi) := (zl,, 51, Zlpt,.,51) is @ solution of the problem

dx(t) = (Ax(t) + FM(t, xq, yi)dt

+ Y21 0] ()dB(8) + ' ()dW(t), t € (tn, b],
dy(t) = (Ay(t) + F2(t, x;, yy)dt

+ Y0 alz(t)dBF () + g2(HdW(), t € (tm, b],
X(E) = Xnf) + Lo,
}/(f;,) = ym(t;) + Im(ym(tl))/
() = xpa()if  tE (=00, bn]
]/(t) = ym—l(t) if te (—oo, tm]

(14)

Let
C = {x € C([tw,b], X) : : x(t},) exists, sup E(jx(t)]*) < oo}.

te[ty,b]
Set .
Cy = Dr NNV (Cj.
Consider the multivalued operator N™ : C;, X C;, — P(C;, X C,)) with N™(x, y) = (N{"(x, y), NJ'(x, y)), (x,y) €
C,, X C;, defined by
N"(x,y) ={(h", ") € G, x ;)
given by
Xp(t), if te (—oo,ty],
xm(il‘) + S(t = t1)Ln (e (£7))
NG y) = 4 e C s ety =+, SE=9f2(e)ds
+ L% J S(t = 5)oX(s)dBH(s)
+ ff:, S(t— $)P(S)AW(s), if  t€ (ty,b]
and
ym(t), if te (=00, ty,],
ym(fi) +5(t - tl)Tl(ym(tl_))
NIGey) = Ui e Cy s npy =4+, SE=s)f6)ds
+ L2 J) S(t = 5)o3)dBL(s)
+ ft; S(t—S)PE)AW(), if  tE (ty, b
where
fleSp, =1{f €A ((t,t],X): f(t) € Fi(t,x,y) forae te (t,,b]}.
Let O : (—o0,b] — X be the function defined by

_ ) xm(®), t € (=00, ty],
0= { Xm(t7) + S(t =t (xw(£])),  if t € (t, b]

and
é(t) _ ym(t)r ~ t € (—oo,ty],
ym(t7) + S(E = t) 1 (ym(t7)), if t € (4, D]

Observe that (6, 0) is an element of C;, x C;,. Let (x(t), y(t)) = (z(t) + O(t), z(t) + O(t)), —co < t < b. Obvi-
ously, if (x, y) satisfies the integral equation

x(t) = () + S(t = )l (en(E) + [} S(E=5)f1(s)ds + %y ) (¢t — )02 (s)dBI(s)
+ ff S(t = 5)g'(s)AW(s)  t € (tw, D]

y(t) = ym(t,) + SE = )L (ym(£7)) + ftlt S(t —s)f2(s)ds + Y124 ftfn S(t - 5)0%(s)dBH (s)
+ 1S = 9POANE) € (b, b]
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Put (zy, Zm) == (2t,,2t,) = (0,0) for each t € (=0, t,,] we have

z(t) = S(t = tw)1 (zo(t7) + O(£7), Z0(£7) + O(17))

+ St-5)f\(s)ds + T ) S(t = 5)oX()dBI(s)
+ ft; S(t = 8)g' S)AW(S)  t € (tu, b]

2(t) = S(t = tw)ln(zn(ty) + O(t,), Zn(t]) + O(t5,))

+J S(t-5)f6)ds + T [ S(t - )02 ()dBL(s)
+ ft; S(t = $)PS)AW(S) € (t, b]

where f(t) € Fi(t,z; + 01,2 + 0;) for a.e. t € (ty,b).
Put

C,={zz€C, suchthat z,6=0 and z, =0}

and forany z,z € 6; .
Consider the multivalued operator M’”E:n X E*m - P(E’*m X E:n) with N"(z,2) = (N7'(z,2),N}'(z,2)), (z,2) €
E:n X 6;, defined by

N"(z,2) = {(t",1") € G, x G, }

given by
0, if te(~co, by
S(t = t)Lu(zu () + 6(t5,), Zu(ty,) + O(E,))
. t
NI 2 = {1 e Gy 1= h SE- 97O
+ Y ftm S(t - s)al(s)dBH(s)
+ [} S(t-9)g" AW (s), if  tE (t,b]
and

0, if te(—oo,ty,]

S(t — tu)ln(zm(ty,) + O(t), Zu(ty) + O(t)
NIz =i e C,: R =] *), S(t = 9)f (s
+ Y% [, S(t = s)o(s)dBi(s)
+ [ St = 9)PEAW(s), it € (b, b]

As in Step 1, we can show that N is upper semicontinuous on ¢ € (¢, b],denote this solution by (x,,, y) €
G, xCy,.
The desired result is then complete. [

Now, we present the fist our existence and compactness of solution set of the Problem (1).

Theorem 3.3. Assume that F' : [0,b] X Dy, X Dy, — Peo,ep(X) is a Caratheodory map satisfying (Hy)-(Hz) hold.
Then the (1) has at least one mild solution on |. If further X is a reflexive space, then the solution set is compact in
Dﬁ X Dﬁ

Proof. Part 1. Existence of solutions.

We transform the problem (1) into a fixed point problem. Consider the multi- valued operator N : Dy, X
Dy, = P(Dg, X Dy, ) defined in lemma 3.2. It is clear that all solutions of Problem (1) are fixed points of the
multi-valued operator defined by We shall show that N satisfies assumptions of Lemma 2.14. Since for each
(x, y) € Dy, X Dg,, the nonlinearity F’ takes convex values, the selection set S , is convex, and therefore N
has convex values. From lemma 3.2, N is completely continuous and u.s.c.

Claim 5. There exist a priori bounds on solutions.
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Consider the multivalued operator N : Dg, X Dy, — P(Dg, X Dy, ).We will prove that N the operator is
completely continuous and u.s.c. with (N, (x, ), N,(x, ¥)), (x,¥) € Dz, X Dy, defined by

N(x,y) = {(1,h) € D7, x Ds |
given by

o), ift € (—00,0],
SMHPO) + [ S(t —s)f (s)ds

Ny, y) = {h€Dg: h(t) =3 + L2 [ S(t - s)ol(s)dB(s)
+ [ St - )gM )W (s)
+ Doatat S — t)(x(ty)),  if t€[0,0]

and

o), ift € (—o0,0],
SMHPO) + [ S(t —s)f2(s)ds

Ny(x,y) = h € Dy h(t) =3 + L2, [ S(t —5)02(s)dBH(s)
+ [ St - )FA(S)AW(s)
+ Locrat SU = t(y(t)),  if t€[0,b]

where
fleSp,=1f €el?(J,X): fi(t) e Fi(t,x,y) forae te])
Let 0,0 : (—o0,b] — X be the function defined by

B t € (—00,0],
o(t) —{ S(HP(0), tel0,h].

and

S(H)p0), tel0,t]

Itis clear that (6, 0) is an element of Dy, X Dy, . Set (x(), y(£)) = (z(t) + O(t), z(t) + O(t)), —0 < t < b.Obviously,
if x, y satisfies (1) if and only if (z, z) satisfies (zo, Zg) = (0,0) if t € (—c0,0] and

2(t) = [} S(t—5)f'()ds + L2 [1 S(t — s)o2(s)dBl(s)

+ [ ' S(t — )9 ()AW(s) + Xgapyer St - t)Ik(z(t) + O(t))),if t € [0, b]
Z(t) = [) S(t—9)f2(s)ds + L2, fOtS(t—s)alz(s)dBfI(s)

+ f(f S(t = 8)g?(s)AW(s) + Loar<i S(t = t)k(z(t;) + O(t)), if t € [0, b]

where fi(t) € Fi(t, z; + 01,2 + 0;) for a.e. t € [0,b].
Put

g(t) — { q_b(t)/ te (_OO/ 0]/

@ﬁZ{Z,ZEDﬁ, such that zp=0€ Dg and ZQ=O€D¢U}

and for any z,z € Dg, we have

Ixllp, = llzolloy, + sup VEIZ@IP.

te[0,b]

It is not difficult to check that (Z)ﬂ, ||.|IZA)T) is a Banach space. Consider the multivalued operator N :
b
Dg, X Dg, = P(Dg, X Dg,) defined by

N(z2) = (N, 2),N,(z,2)), (z,2) € Dy, x Dy,
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where
N(z2) = (b, 1) € Dr, x Dy
given by
0, if te(-o0,0],
Jy St = 9)f s)ds
N,(z2) =€ Dy : h(t) =3 +X7% [ S(t— )l (s)dBH(s)
+ [ St-9)g ©dWE)
+ Doat<t S — t)I(Z(t) + O(t)),if t € [0, D]
and

0, if te(—oc0,0],
Jy S(t = 9)f(s)ds
N,(z2) =i’ € Dy, - h(t) ={ + X, [} S(t —5)o2(s)dBH(s)
+ [ St- )W)
+ Yo<t<t St — t)Ik(Z(t) + O(t)),if t € [0, D]

Clearly, that the operator N is equivalent to N.Let z be a possible solution of the equation (z,z) € AN(z, 2)
and (zo, Zo) = (¢, ¢), for some A € (0,1). Then,

f o t t

= St —s)fl(s)d S(t — s)ol(s)dBH S(t — 8)gl(s)dW
() fo (t-9)F'6) s+; fo (t - )0 ()BH(s) + fo (t — )" (HAW(S)

Y S(E = () + 0E)

O<ty<t
and

‘=tS—2do°tS—2dBH tS—de
() fo (t-9)72() s+; fo (t - )o3(S)AB(s) + fo (t ~ )P EAW(S)

+ Z S(t - tT(z(t) + O(t))

O<te<t
Thus, for ¢ € [0, D], namely:
Elz(t)?

54E' fo tS(t—S)fl(S)ds'2+4E’g fo t S(t—s)oll(s)dBH(s)|2+4E| fo tS(t—s)gl(S)dW(s)z

_ 2
+4E| N S(t - tl(a(t;) + 0(t), 2(8) + 9(t;))|

O<tr<t

which immediately yields:
Elz(t)?

¢ ¢
< 4be p1(s)1(llzs + Gslléf +[1Zs + ésllé)T )ds + 4McyH(2H — 1)217! f llot (s)IIds
0 0 0 0

¢ m 9
+4M fo lg* (s)ds + 6M(de)

k=1
which immediately yields

t
ER(P < Ay +4Mb f Pr&Y(lzs + 64l + 112 + Bl )ds
0 0 0
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and

t
EEOP < AxtaMb [ paalle + 0%, + 12+ O, )as
0

where t t
L 2
A1 = 4McyH(2H - 1)#2H1 f llo(s)|Pds + 4M f llg* (s)II7ods + 6M( Z dk) ,
0 0 k=1
t t m 2
Ay = 4AMcyHQH — 1)#2H1 f llo2(s)|Pds + 4M f lI5(s)I12ds + 6M<Z di) .
0 0 k=1
But
e+ OuE, +llze + 65, < 4%2 sup,.(o 4 (ElZ()P + E[E(s)P)
+ 4K*M(E|p(0)1 + EIG(0)P)
N2 2 712
+ AN(I0IE, +1IBI3, ).
Adding these we obtain
t
Elz(t)? + Ez(H)? < B. + 4Mb fo pa(8)P(llzs + es||§)ﬁ) + 1z + 95||§)¢0 )ds (15)
where

B.=A1+A; and p.(t) =sup{pi(®t),p2()} P =1+ Y2
If we set o(t) the right hand side of the above inequality we have that

2 = AR
llze + Otlip, + Izt + Ocllp, < o(t),

and therefore (15) becomes

t
Elz(t)? + E|z(t) < B. + 6Mb fo p.(s)(v(s))ds. (16)

Using (16) in the definition of v, we have that

o(t) < 4K2(B. + Mb [ p.(s)p(o(s)ds) + AKR2M(EIp(O)? + EIG(0)P)

+4N(I91, +1IBIE, ) a7
and therefore
o(t) < L1 + Lo fo t p«(s)P(0(s))ds, (18)
where
Ly = 4K°M(EIG(O)F + EIQO)F) + 4N*([9l5,, + 1915, ) +4K°B.
and

L, = 4K>Mb.
Let us denote the right-hand side of the inequality (18) by v(f). Then we have

w(0) =Ly, v(t) <w(t), te],
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and

w'(t) = Lop()p(o(t)), t €]

Using the increasing character of ¢ we obtain
w'(t) < Lop.(H)p(w(t)), for ae. te].

This implies, for each t € ], we have

w(t) b 0o
T(w(t)) = f ) l:l(s)st f meds < | %.

Consequently, there exists a constant K such that
o(t) <w(t) <Cq, te]

Thus
2 =12
lelf, <Ca and Al <Co
As a consequence of Lemma 2.14 we deduce that N has a fixed point, since (x(f), y(t)) = (z(t) + 6(t), z(t) +
O(t)) if t € (—oo, b]. Then (x, y) is a fixed point of the operator N which is a mild solution of the problem (1).
Part 2 Compactness of the solution set. Let

Sr={(z,2) € f)ﬁ X f)ﬁ : (z,2) isasolution of Problem(1)}

From Part 1, Sr # 0 and there exists M such that for every (z,2) € Sp,llzlli <M and ||Z||§ < M. Since N

h b
is completely continuous, then N(Sr) = (N,(Sp1), N,(Sp2)) is relatively compact in D¢ X Dgc Let (z,2) € S
then (z,z) € N(z,Z) and S C N (Sp) It remains to prove that Sr is a closed set in Z)g: X Z)g: Let (z,,Z,) € Sk

such that (z,, Z,) converge to (z,Z). For every n € N, there exists v/,(t) € Fi(t,z, + 0,2, + 0) a.e. t € ] for each
i € {1,2} such that

t o f f
NORE S(t —s)fl(s)d S(t - s)o} (s)dB" S(t — s)g*(s)dW
2u() fo (t=$)£6) s+; fo (t - $)oM(s)dBH(s) + fo (t - )9 (AW (s)

Y S = Bl(za(tD) + OE)),
O<te<t
and

t 0 f t
z,() = S(t —s)f2(s)d S(t — s)o?(s)dBH S(t — s)g*(s)d
2 fo (t - 9)£2(6) s+§ fo (t - )o(s)AB™(s) + fo (t — )PESAW(S)

+

Y St - tl(za(t) + 0(5)

O<tr<t

(H) implies that for a.e. t € | ,fi € pi(H)i(2Cy), i =1,2 hence (fi)nen is integrably bounded. Note that
this still remains true holds for Sr is a bounded set. Since X is reflexive, by Theorem 2.15, there exists a
subsequence, still denoted by ( f,’;),,eN, which converges weakly to some limit fi e L%(], X). Moreover, the
mapping I : L%(J, X) — X defined by

t
T(F)E) = fo S(t =) fi(s)ds
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is a continuous linear operator. Then it remains continuous if these spaces are endowed with their weak
topologies [11]. Therefore fora.e. t € ], the sequence (z,(t), Z,(t)) converges to (z(t), zZ(t)) and by the continuity
of (I, I) it follows that

t © t t
z() = fo S(t—s)fl(s)ds+; fo S(t — s)o; (s)dB" (s) + fo S(t — 8)g' (s)dW(s)

£ St tlz() + 0()
O<t<t
and
t sl t t
_ _ Y a2 H a2
z() = fOS(t s)f (s)ds+;£5(t s)o;(s)dB (s)+f05(t 5)g-(s)dW(s)
£ S(E- () + 0(5)).

O<ty<t
Now we need to prove that fi(f) € Fi(t,z(t) + O(t), z(t) + O(t)), for a.e. t € ]. Lemma 2.13 yields the existence of
constantsa > 0,j=1,2..., k(n)and i = 1,2 such that E’;(:nl) al =1 and the sequence of convex combinations
() = Zk(") a']? fj?(.) converges strongly to some limit f* € L2(], X). Since F takes convex values, using Lemma

j=1
2.12, we obtain that

JHOINC ﬂ{hf((t):an}, ae tej

n>1

c (@i, k=n)
n>1
c ﬂ E{U Fi(t, z(t) + O(t), z(t) + O)).
n>1 k>n
Thus
fi(t) € collim sup Fi(t, z () + O(t), 2(t) + O(H))}. (19)
k—o0

Since F' is u.s.c. and has compact values, then by Lemma 2.11, we have

lim sup Fi(t, zu() + O(1), Za(t) + B(t)) C Fi(t, z(t) + 6(t), 2(t) + O(t)) forae te].

n—o0

This and (19) imply that fi(f) € co(F(t, z(t) + O(t), 2(t) + O(t)). Since, for eachi = 1,2, Fi(.,.) has closed, convex
values, we deduce that fi(t) € Fi(t,z(t) + O(t),Z(t) + O(t)) for a.e. t € ], for each i = 1,2 as claimed. Hence
(z,2) € Sp which proves that Spi, for each i = 1, 2, is closed, hence compact in Z)q—“b X Z)ﬁ . O
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