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The optimal problems for the compatible functional F

Xiang Li?, Jin Yang®*

#Sichuan University

Abstract. Inspired by the definition and properties of geometric measures for convex bodies in Orlicz
Brunn-Minkowski theory, such as Orlicz mixed volume, Orlicz mixed p-capacities (1 < p < n) and Orlicz
mixed torsional rigidity, we will introduce a more general geometric invariant, called the Orlicz L, mixed
compatible functional F,,. Motivated by the optimal problems for the above three geometric measures, we
discuss the optimization problem with respect to Orlicz L, mixed compatible functional F, and prove the
existence of the solution of the problem. Moreover, we consider Orlicz and L, (-1 # q € R) geominimal

compatible functional which based on the Orlicz L, mixed compatible functional, and we also establish the
isoperimetric type inequality about the L, (- # g € R) geominimal compatible functional.

1. Introduction

For two convex bodies (compact convex set with nonempty interior) K and L, the L, (p > 1) mixed
volume V,(K, L) is defined by (see [12])
1 -
V(K D)=~ fs @ @dS(K v), (1)
the special case of p = 1, is the (first) mixed volume V;(K, L) of K and L (see [8]),
kD=1 [ e, @
gn-1

where i1, is the support function of L and S(K; -) is the surface area measure of K: for each Borel set . € §"1,

S(K,X) = f dH"™, ®3)
v (D)

where v! : §"71 — 9K is the inverse Gauss map and H"~! is the (1 — 1)-dimensional Hausdorff measure
on the boundary JdK of K. Denote by Ky be the class of convex bodies which contain the origin in their
interiors. For K,L € Ky and A > 0, the Minkowski sum of Kand Lis K+ L = {x + y : x € K,y € L} and the
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scalar product of A and K is AK = {Ax : x € K}. For K € Kj, denote by |K| be the volume of K. Denote by w,
and "' = {x e R" : x - x = 1} be the volume and the boundary of B} = {x € R" : x - x < 1}, respectively. For

K € Ky, then vrad(K) = (|K|/ a)n)% is referred to the volume radius of K.
In [6], Petty introduced the geominimal surface area G(K) of a convex body K € K, is defined by

G(K) = inf{ f h(@)dS(K,v) : L € K, |L°] = a),,}, (4)
gn-1

where L° is the polar body of L (see (14) for the definition). Combining with (2), the optimal problem (4)
can be written as

G(K) = inf(nVi(K, L) : L € Ko, IL°| = wnl- (5)

Petty [6] proved the existence of the solution of the optimal problem (5), so the geominimal surface area
G(K) could be defined based on the mixed volume.

In [12], Lutwak extended the geominimal surface area to L, form associated with (1) for p > 1, namely,
the p-geominimal surface area G,(K) of a convex body K € K, is defined by

Gy(K) = inf {nV,(K,L) : L € Ko.IL°| = @y}, 6)

and Lutwak proved that the optimal problem (6) has a unique solution in [12]. Later, Ye extended p > 1 to
p € Rin [25]. Some other excellent works can be found, see e.g., [7, 11, 19, 20, 22, 23, 27, 31, 33, 34] and the
reference therein.

Along the development of the Orlicz Brunn-Minkowski theory, the Orlicz mixed volume was introduced
in [9]: Let ¢ : (0, 00) — (0, ) be a convex function such that ¢(0) = 0 and (1) = 1. For K, L € Ky, the Orlicz
mixed volume V,, (K, L) is defined by

1 hi(v)
V@(K, L) = ; f;,,l [ (m) hK(U)dS(K, U), (7)

and if ¢ : (0, 00) — (0, o) is a continuous strictly increasing function with lim;_,o+ @(f) = 0, lim;, @(t) = 00
and ¢(1) = 1, the Orlicz mixed volume V,(K,L) of K, L € Kj is

_ Klh
Vo(K,L) = inf {/\ >0: fs (p(%)hk(v)%(l@ v) < nIKl}.

Obviously, when ¢(t) = t# (p > 1), the Orlicz mixed volume (7) is the L, (p > 1) mixed volume (1).
In [26], Ye introduced the Orlicz geominimal surface area (see also [24] and [30]) of K € K, which is the
extension of the p-geominimal surface area, is defined by

GgliCZ(K) = inf {nV(P(K/ L) :Le 7(0/ |LO| = Cl)n} / (8)

Gorli=(K) = inf {Vy(K, L) : L € Ko, IL°] = wn} 9)

In particular, the optimal problems (8) and (9) were proved to have a unique solution in [30]. With the
expansion and popularization of the Orlicz-Brunn-Minkowski theory (see e.g., [2, 9, 13, 14, 16, 24, 35]), the
Orlicz geominimal surface area was widely considered, see e.g., [28, 29, 36] and the reference therein.

Similarly, there are similar relationships between Orlicz geominimal surface area and the Orlicz mixed
volume for other functionals. For example, the Orlicz geominimal p-capacity (1 < p < n) was studied by,
e.g., [10, 15, 32] and the reference therein. The Orlicz geominimal torsional rigidity was considered by, e.g.,
[3, 18, 21] and the reference therein.

Inspired by Orlicz geominimal surface area, Orlicz geominimal p-capacity and Orlicz geominimal
torsional rigidity, we would like to study a more general functional. As defined in [17], let F be a compatible
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functional defined for every compact convex set K € R" with positively homogeneous of some degree
a # 0. Suppose that for every K there exists a non-negative Borel measure pg(K, -) on S*~! such that:

FK) = 3 [ heoMe(K,o)

d
S F(K + L)

- [ (o)
e=0* gn-1
where L is also a compact convex set. Denote by F;(K, L) the mixed compatible functional, i.e.,
1
Fi(KL) =~ f hy (0)dug(K, v). (10)
Sn—l

In Section 3, we will introduce the nonhomogeneous and the homogeneous Orlicz L, mixed compatible
functionals for ¢ € 7 U D and K, L € K as follows:

_1 hy(0)
Rk =1 [ o omn(i o, ay
FRm© ), .
———ldup(K,v) =1, 12
f;’zl ¢ [F({,(K, L)hK(U)] (o) (12

where up (K, -) is a probability measure defined in (22) and 7, D are the classes of the nonnegative increasing
continuous function and nonnegative decreasing continuous function, respectively (see (18) for the defini-
tion). Obviously, when ¢(t) = t, the Orlicz L, mixed compatible functional (11) is the mixed compatible
functional (10). And we establish the optimal problems associated with the Orlicz L, mixed compatible
functionals and prove the solution of this problems in Section 3 as follows:

inf / sup{F,(K,L) : L € Ko, |IL°| = w,},

inf / sup{F,(K,L) : L € Ko, |L°| = wy}.

Let Sp be the class of star bodies. In Section 4, we define the Orlicz and L; geominimal compatible
functionals with respect to Sy € Syp. For K € Kj, the nonhomogeneous and the homogeneous Orlicz
geominimal compatible functionals are given by the following optimal problems:

Gy (K, So) = inf / sup{F, (K, vrad(L)L®) : L € So},
5(,,(1<, Sp) = inf/ sup{i%(K, vrad(L)L°) : L € Sp}.

Based on the Orlicz geominimal compatible functionals, we consider the L, geominimal compatible func-
tional when @(t) =t for -n #g € R.

In this paper, we introduce and establish the optimization problem for Orlicz L, mixed compatible
functional, and prove the existence of solution of the problem in Section 3. In Section 4, we discuss the
Orlicz and L, geominimal compatible functionals and study the isopermetric type inequalities about them.
For example:

Theorem 1.1. Let K € Ky and ¢ € I, Fy(-,-) and Ep(-, ) be the Orlicz L, mixed compatible functionals given in
(11) and (12). Then
(1) there is M € Ky satisfying IM°| = w, and

F,(K,M) = inf{F,(K,L) : L € Ko, IL°| = w,}.
(2) There is M € Ko satisfying |M°| = w, and
Fy(K, M) = inf{F,(K, L) : L € Ko, IL°| = w,).

(3) If ¢ € T is a convex function, M and M existing in (1) and (2) are unique.
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2. Background and Preliminaries

A subset K C IR" is called convex if for any x, y € K satisfying [x, y] C K. A convex set K € IR” is a convex
body if K is also compact with nonempty interior. Denote by K be the class of convex bodies which contain
the origin in their interiors. The usual Euclidean norm is written by x - y for x, y € R" and the origin of R" is
denoted by o. Let {e;, ..., e,} be the standard orthonormal basis of R". Let C(S" 1) and C* (5" 1) be the class
of all continuous functions on S"~! and all continuous positives functions on 5"}, respectively.

Let K be a convex set of R”, the support function i(K, -) : R* — R of K is

hx(x) = max{x-y:y € K}.

For two convex sets K,L and A > 0, it is checked that hg,;(v) = (K, v) + h(L,v) and h)g(v) = Ahg(v) for
ve Sl

A set L C R" is called star-shaped set with respect to o if it is not empty and if [0, x] C L for all x € L. Let
L be a star-shaped set with respect to the origin o, the radial function p(L,) : $"~! — [0, ) is

pr(v) = max{A > 0: Av € L)

for v € S"1. A star-shaped set is called a star body with respect to the origin if the radial function with
respect to the origin is continuous and positive. Denote by Sy be the class of star bodies. Let L be a star
body and o(-) be the spherical measure on 5”71, the volume of L is

1
IL| = = f p(L,v)"do(v).
n gn-1

Let K € Kj satisfying the surface area measure S(K, ) is absolutely continuous about o(-), then K has a
curvature function g(-) : $""! - R, is defined by
_dS(K,v)
g (v) - dU(U) .

The subset Ay of Kj, is defined by Ay = {K € Ky : g(v) € CHsh).
For K € Kj, the polar body K° of K is

K={xeR":x-y<1l,yeK}. (14)

Thus it gets that K* = K, hg-(v) = pi'(v) and pk-(v) = h'(v) for v € 5" (see e.g., [8]). Let intK be the
interior of K € Kp and x € intK, the polar body K* of K with respect to x is K* = (K — x)° + x. Moreover, the
Santal6 point #(K) € intK is unique, which satisfies IK{®)| = inf{|K*| : x € intK} (see e.g., [5]). For K € Ky, the
Blaschke-Santal6 inequality is

K] - K| < 2. (15)

(13)

Equality holds if and only if K is an ellipsoid. The inverse Santal6 inequality (see e.g., [1, 4]): there is a
constant A > 0 satisfying

K| (K] > A" (16)

for K € Kp.
The following lemmas will be needed.

Lemma 2.1. (see [15, Lemma 2.1]) If a sequence of measures {11;}°, on S"~! converges weakly to a finite measure i
on S"! and a sequence of functions {f;}>, € C(S"~') converges uniformly to a function f € C(S"™), then

lim fidui = f fdu.
Sn-1

i—o00 gn-1
Lemma 2.2. (see [15, Lemma 2.2]) Let {Ki}:2, € Ko be a uniformly bounded sequence such that the sequence
{IK?1};2, is bounded. Then, there exists a subsequence {Ki].}ji'il of {Ki}2, and a convex body K € ‘Ko such that K - K.
Moreover, if |K?| = w, foralli =1,2,..., then |K°| = wj,.
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2.1. Orlicz addition of convex bodies
Let m € N be an integer number and ®,, be the class of convex functions ¢ : [0, 20)" — [0, o) increasing

in each variable, and satisfy ¢(0) = 0 and ¢(e;) = 1 for i € [1,m]. Let Ky,...,K;, € Ko, the Orlicz Ly sum
+¢(K1, ..., Ky) € Ko, is defined by (see [9])

h h
by gk, k) (©) = 1nf{/\ >0: q[)( K;\(U) L K,;\(U)) < 1}

for any v € S""1. Thus, the above equation can be described as

¢( h, () hx, (0) ) 1
Bk (©) 7 (ks ) (©)

for any v € S§"1 Then K; +¢(K1,...,Ky) fori € [1,m] by ¢ € @, Let K, L € Ko and ¢y, Py € Py, if t > 0,
consider the convex body K + L € Ky, is defined by,

¢1( hk(v) ) t¢2( h(v) )_1

hi,,L.(0) h+,,(0)

forv e S"1. Let (¢1);(1) and (¢1);(1) be the left and right derivative of ¢ ats = 1, respectively. For K, L € K,
the Ly, mixed volume V,(K, L) is defined by (see [9])

=1f @Umﬂmwwmw (17)
Snf]

t=0+ 1 hx(v)

VoK L) = (<P1)1( ) d

|K ¢tL|

if (qbl); (1) exists and is positive. In fact, the assumptions ¢1,¢, € @ in (17) can be extended to more
general increasing or decreasing functions in [30]. Thus, we work on the following classes of nonnegative
continuous functions:

(18)

I ={p: ¢ is strictly increasing with lirr01 @(s) =0,¢(1) =1, lim @(s) = oo},
= {¢ : @ is strictly decreasing with lin(} @(s) = 00,(1) = 1, lim ¢(s) =
5— 5—00

Let (v, t) be continuous positive function defined on S"1X[0, 6) for some 6 > 0 and K; be the Aleksandrov
body associated to h(v, t) for K € Ko, i.e, Ky = {x e R" : x-v < h(v,t) forallv € S$*1}. For K, L € Kp, the linear
Orlicz sum of hg and hy is defined by, for v € S"1,

l’l[((?)) I’lL(U)
‘pl(h( t)) qu(h( t)) ! 19)

where ¢1,¢2 € I or ¢1,¢2 € D. Obviously, hx < h(-,t) when ¢1,¢p2 € I; hx = h(-,t) when ¢1,¢p2 € D;
hK‘hp/iL = h(-,t) when ¢1, ¢, € P1. For ¢1, P2 € 1 or ¢1,¢2 € D, one gets the following result in [30], which
extends (17) to nonconvex functions,

(P1);(1) d _1 (
n t0+_nf5,,1¢2

ZIK|
if (cpl);(l) exists and is positive for K, L € Ky and ¢, ¢, € 1. For ¢1, o € D, (20) holds with ((pl);(l) replaced
by (¢1);(1) if (¢1);(1) exists and is nonzero.

Ve, (K, L) =

)hK( 0)dS(K, v), (20)
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3. The Orlicz mixed L, compatible functionals

In this section, we first recall the definition and some properties of the compatible function F in [17],
and introduce the Orlicz L, mixed compatible functional F,, under the assumption ¢ € 7 U D.

Denote by C the class of compact convex sets. Let F : C — (0, o) be a real-valued functional with
positively homogeneous of some degree a # 0 and satisfying, for« > 0and K,L € C,

R = 1 [ oo

and

. F(K+¢L) —F(K)
im ———~2  — 7 =

-0 &

| mentic

where ug(K, ) is called the compatible functional measure on S"~!, given by
pr(0) = [ uGod 1)
(%)

for any Borel set w C §"~! and some continuous function u : K — (0, co) which is integrable on the boundary
of KeC.
Combining (3) and (21), it has

dup(K,v) = u(vlzl(v))dS(K, v) forve §"L.

Thus the compatible functional measure pg(K,-) is not concentrated on a closed subsphere. For K € C,
define the probability measure pi(K,-) of K, by

hx(@)ue(K, v)

n—-1
F(K) forve S, (22)

) 1
(uF(K/ U) = E :

Definition 3.1. (see [17, Definition 3.1]) Let K, L € K. A functional F : i — [0, o0) is said to be compatible if F
satisfies the following conditions:
(i) For a constant a > 0 and any s > 0,
F(sK) = s*F(K).
(ii) For any x € R",
F(K + x) = F(K).
(iii) If K C L, then
F(K) < F(L).
(iv) For any t € [0,1],
F(tK + (1 — HK)« > tF(K)« + (1 — H)F(L)* (23)
equality holds if and only if K and L are homothetic to each other.

(v) If V(K) = 0, then F(K) = 0.
(vi) The compatible functional measure pg(K, -) is weakly convergent.
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For K, L € C, denote F;(K, L) of the mixed functional of K and L,

1
RED = [ e o)
Sn—l
From (23), it is easy to checked that
F1(K, L) > F(K) F(L)« (24)

equality holds if and only if K and L are homothetic to each other. For any f € C*(S"™!) and K € C, denote
Fi(K, f) of the mixed compatible function of K and f,

Fi(K f) = % f)dur(K, v).

Sn-1

It implies that F1(K, k1) = F1(K, L) and F1(K, hx) = F(K) for all K, L € C.
The following three lemmas will be needed:

Lemma 3.2. (see [30, Lemma 5.1]) Let K, L € Ky and @1, @2 € I be such that (¢1),(1) exists and is positive, and
h(v, t) be defined in (19). Then

h(v, t) — hk(v)
t

= (K, v)p2 (:II;((Z;) uniformly on §"'. (25)

For @1, 2 € D, (25) holds with (p1);(1) replaced by (¢1);(1).

Lemma 3.3. (see [17, Lemma 3.1]) Let K € C be a compact convex set, the compatible functional measure ug(K, -)
is absolutely continuous with respect to the surface area measure S(K, -).

Lemma 3.4. (see [17, Lemma 3.2]) If f € C*(S"!) and F is the compatible functional. Let K € C and Ky be the
Aleksandrov body associated with f, then

F(Kf) = F1(Ky, f).

Let h(v,t) be a positive continuous function defined on S"~! X [0, ) for some 6 > 0. The Aleksandrov
body K; associated with h(v, t) is given by

Ki={xeR":x-v<h(v,t), veS )

(P01 lim

By the continuity of h(v, t), K; converges to Ky as t — 0*. Let K = Ko.

Theorem 3.5. Let K, L € Ko and @1, @2 € I satisfying (p1);(1) exists and is nonzero, F be the compatible functional
given in Definition 3.1. Then

_ 1 (hL(U)
o @0/ Jso P\ (o)

With (¢1);(1) replaced by (¢1);(1) if (p1);(1) exists and is nonzero, one gets the analogue result for 1,2 € D.

d
EF(KO

) hx(v)dur(K, v).

Proof. Denote | = % fsn-l ©2 (’Zl’z((z;)hK(v)dyF(K, v). Since up(Ky, ) — up(K, -) weakly whenever K; — K in the

Hausdorff distance as t — 0%, from Lemma 2.1, (24), Lemma 3.3, Lemma 3.4, the fact that hix(-) < h(-,0) and
Lemma 3.2,

F(K)7 —F(K)e _

! F(Ky) — F1(K;, K
lim inf F(K;)' " im inf T ~ Fi(K, K)
t—0t t 50+ t
1. . h(v,t) — hg(v
= E llg(}pf Lﬂl wd‘uF(Kt’ 'U)
ho £) —
> l hminff MdﬂF(Kﬁ ZJ)
a  t—-0* gn-1 t
1

" ()
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Since kg, (-) < h(:, f), then

1 1
F(K)'" liminf FKy« — KK~ < limsup Fi(K Ky) - E(K)
= t =0+ t
Tk, (0) —
= llimsqu MdyF(K,U)
a t—0+ gn-1 t
< 1 lim sup wdwm v)
a0t gn-1 t
_ 1
(1), (1)
Then
R} - lim FEOTZFEOT L
t—0* t ((Pl)l(l)
Thus

1., . FEK)-FK
=~ () lim DO

The result for @1, p, € D follows along the same lines. [

3.1. The nonhomogeneous and homogeneous Orlicz L, mixed compatible functionals

5958

In this section, let ¢ € 7 U D, we will introduce Orlicz L, mixed compatible functional F, and study

some properties of F,.

Definition 3.6. Let K,L € K. Forp e T U D,

i) the nonhomogeneous Orlicz L, mixed compatible functional F,(K, L) of K and L, is defined by

1 . (0)
FD-7 [ (p( hK(v))th)duF(K, o)

And if L € Sy, (26) is written by

oy _ 1 1
F,(K,L°) = " f;ﬂ (p(—hK(U)pL(U))hK(v)dyF(K, ).

i) the homogeneous Orlicz L, mixed compatible functional F@(K, L) of K and L, is defined by

F(K)h(v) .
Y (K o) = 1.
fsn_l(’) F(P(K,L)hK(v)] o)

And if L € Sy, (28) is written by

F(K) *
_ dii (K v) = 1.
Lnl 4 F, (K, Lhg(v)prL (’0)} e

(26)

(27)

(28)

(29)

By Definition 3.6 and ¢(1) = 1, it implies that F, (K, K) = F(K) = F¢(K, K)forp e 7UDand K € K. And

forci,co >0,K, L1 € Koy, Lo, € Sy, it has
F,(c1B},B}) = c‘f(p(cl_l)F(Bg), F, (B}, c2By) = p(c2)F(By),
F@(ClK, coly) = CT_lcziw(K, Ly), qu(clK, (c2L2)°) = Ci“lcglip(K, Ly).

Next we will prove the continuity of F,(-,-) and E,(-, ).
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Theorem 3.7. Let K, L € Ky. Assume that K;, L; € Ky are two sequences of convex bodies for i = 1,2, ... satisfying
Ki > Kand L; — Lasi— oo. Then for p € T U D and i — oo,

F,(K;, L;) — F,(K,L) and F,,(K;, L;) — F,(K, L).
Proof. Since K; converge to K € K and L; converge to L € Kj, then
hy,(v) = hg(v), hr,(v) = h(v) uniformly,

ur(Ki, v) = up(K,v), pp(Li, v) = up(L, v) weakly,
for v € §" 1. Therefore lim;_,« F,(K;, L) = F,(K,L). Indeed, since K, L; € K, then there are two constants
c3 > ¢4 > 0, define c5 = E—z and cg = E—i, satisfying

hy,
cB) €Ki, L Cc3B) = #EZ)) € [ce, c5] (30)

forv e §" 1 and i > 1. Since ¢ is a continuous function, combining with Lemma 2.1, it has

1 Iy, (v) 1 hy (v)
lim ~ fs <p( ™ (v))hKi(U)d[’lF(Kir v) =7 fs <p( hK(v))hK(”)d”F(K’ 0).

i—oo (X

As for lim;_, F(p(Ki, L) = E,(K, L), when ¢ € I and ¢ € D, since the proof methods are the same, we
only prove the result when ¢ € D. By the monotonicity of F, it has F(c4B}) < F(K;) < F(c3B}). By (30) and
@ € D, it implies that

F(c3BY)c F(K)h F(c4B?)c
(p[~—( 3By)cs ]S f (p(~—( D, (©) ]dy*F(Ki,U) =1< (p[~—( 1By)cs ]
Fy,(Ki, Li)cy s1 -\ Fo(Ki, Lihg, (v) Fy,(Ki, Li)cs
Then Fl?(p(Ki,Li) is bounded, i.e., there exist two constant 41,4, > 0 such that a; = lim inffw(Ki, L;) and

a, = limsup F,(K;, L;). Indeed, since (1) = 1, fori > 1, it has Fy,(K;, L;) € [F(caB})ca/cs, F(c3BL)c3/ca] < (0, o0).
i—oo

Then for m,n > 1, there exist two subsequences of F,(K, L;), called F,(K;,, L

F({J (Kim’ L

= i,) and F@(Ki”/ L;,), satisfying
) = a1, Fp(K;,, Li,) = az as m,n — oo and

Im

— n+1 =
F,(Ki,, Li,) < a1, Fo(K;,, L

a.

Im

)>l
m+1

By ¢ € D and Lemma 2.1, it has

. F(Ki, )y, (0) .
1= lim pl= dup(K;,, v)
m—eo Jou-1 F(p(Kim , Li,,, )hKim (U)

(m + DF(K;, hr, () | |
-1 ( mazhy, (v) )d” #(Ki,, 0)

= fs P (w)du;(lé v) 31)

axhg(v)

> lim

m—0o0

and

1= lim

n—oo

F(K;,)hy,, (v)
g1 f(p (Ki,, Li, )hKin ()

HF (K, ()
ol o

(RO
= f;ﬂ (p( () )dyF(K, ). (32)

]dﬂ;(Kinr 0)

< lim

n—oo
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Combing (31) with (32), it implies that

limsup F,,(K;, L;) < Fy(K, L) < liminfF,(K;, L) = lim F,(K;, L;) = F,(K, L).
. 1—00 1—00

1—00

Theorem 3.8. Let K € Ky and ¢ € 1. Assume that K; € Ky are the sequences of the convex body fori =1,2,...
satisfying K; — Kas i — oco. If {Mj}i»1 € Ko such that {E,(K;, M;)}i»1 or {E,(Ki, M;)}i»1 is bounded, then {M;}>1 is
uniformly bounded.

Proof. Since K;, K € K and K; converges to K as i — oo, then for v € S"1 jthas

hx,(v) = hg(v) uniformly, ug(K;,v) = ur(K,v) weakly = lim F(K;) = F(K).
i—00

And there exist two positive constant c; < cg satisfying
c7By CKi CesBy = i (0), h(v) € [¢7, s,

for v € §"1. Since ur(K, -) is not contained in any closed hemisphere, then there is a constant cg > 0 such
that

(v w)+dup(K,0) = c9,
Sn—l

where (v - w), = max{0,v-w}. Let v; € S"! be a unit vector such that py,(v;) = max,esi1 p(M;,v). Then
[0, pa,(v:)vi] € M; and hence pa,(0:)(v; - ©)+ < hp,(v) for all v € S™!. Next we will prove that {M;};»1
is bounded by the argument of contradiction. Suppose that {M;};>1 is not uniformly bounded and v;
converges to v € S"lasi — oo, then pum; (v;) = oo, furthermore, ppy, (v;)(v; - )+ > c19 for some constant c1o > 0.

Since {F,(K;, M;)}i»1 or {f@(Ki,M,-)}izl is bounded, then there exist constants cq1, ¢12 > 0 such that
F,(Ki, M) < c11, Fy(Ki, M) < c1o.

By (26), (28), Lemma 2.1 and the monotonicity of ¢, it has

| hy, (v
c11 = hggonfa js‘”_l go(%((v)))hKi(v)dyF(Ki, 0)

> lim inf 1 f @ (Clo ) hx, (0)dus(K;, v)
Sn—]

imoco (X g
1 Cﬂ)
3 e () et

(20 fs (o 0)udpr(K )

a Cg

C7Co (Clo)
—pl—]—>
(24 Cg

\%

\%

\%



X. Li, J. Yang / Filomat 38:17 (2024), 5951-5970 5961

and

1 =1lim

i—0o0

F(Ki)hay, (v)
UV | du(K;,
g1 (Fcp(Ki,Mi)hK,-(U)] e

. c10F(K;) ) .
>1 dup(Ki, v
e Jgn ® (clth‘.(v) Hr(Ki,0)

3 c1oF(K) )
B Lm ¢ (Clth(v) ) At (K.0)

CacloF(B") .
(—7 : ) (v; - 0)+dp3(K, 0)
C12C8 gn-1

c5c10F(BY)
209 ——| > >,
C12C8

as cjp — oo. This proves the theorem. [J

3.2. The Orlicz-Petty body for F

In this section, we establish the following optimization problems associated with F, and ED and give
the solutions to this problems, called Orlicz-Petty bodies for the compatible functional F:

I(K)(S(K)) = inf(sup){F,(K,L) : L € Ko, IL°| = w,), (33)
I(K)(S(K)) = inf(sup){F,(K, L) : L € Ko, IL°| = w,). (34)

Theorem 3.9. Let K € Ky and ¢ € 1. Then
(1) there is M € Ky satisfying |M°| = w, and

F,(K,M) = I(K) = inf{F,(K,L) : L € Ko, IL°| = w,}.
(2) there is M € Ko satisfying |M°| = wy, and

F,(K, M) = I(K) = inf{F,(K, L) : L € Ky, IL°] = @,).
(3) if @ € 1 is a convex function, M and M existing in (1) and (2) are unique.
Proof. By the definition of I(K) and T(K), it has

I(K) < F,(K,B}) < 00, I(K) < F,,(K, B) < 0.

Then we can choose two sequences {M;}i>1, {]\7Ij} j=1 € Kosuch thatlim; ., Fy,(K, M;) = I(K), limj_,oof(p(K, M )=
I(K) and |M?| = IM}?I = wy. By Theorem 3.8, it implies that {M;};>1 and {M;};>1 are uniformly bounded. By
Lemma 2.2, there exist two sequences of {M;};>1 and {Mj} j>1, called {M;};>; and {M;‘m}mzlz respectively,

satisfying M;, - M € Ky, ]\7% S Me Ko and |M°| = [IM°| = w, as |, m — oo.
By Theorem 3.7, it has

I(K) = lim B, (K, M;) = lim F,(K, M;) = F,,(K, M),
1—00 1—00

1(K) = im F,(K, M) = lim F,(K,M;,) = F,(K, M).
]—)OO m—00

Thus the solutions of (33) and (34) are M and M, respectively.
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As for uniqueness of the solutions, we prove them by the argument of contradiction. Suppose that there
exist two convex bodies My, M, € Kj satisfying I(K) = F,(K, M;) = F,(K, M>) and [M7| = |[M3| = w,. Then
M; = M,. Indeed, let M3 = 2-1(M; + M,), then vrad(M3) < 1 and inequalities hold if and only if My = M,.
It implies that hvrad(M;)M3 (v) < ha,(0) for v € S™7L. Since ¢ € I is a convex function, it has

I(K) < Fy(K, vrad(M3)M3)

1 hvrad(M; M3 (U)
Ta Lnl ¢ (T(U)) hi (v)dux(K, v)

1 th (?))
=2 fS“ ¢ (W) hi(0)duxr(K, v)

1 1 B, (0) i, (0)
< = _
= fs 2 [‘P( @) ) T o) || @uE®0)
1
=5 (Fy (K, My) + Fp (K, Mp)) = I(K).
Then Iy, (v) = hp, (0) for any v € S"-1. Thus M; = M,.
Suppose that there exist two convex bodies M, M, € Kj satisfying I(K) = F,(K,M;) = F,(K, M) and

|A7I‘1’| = |Z\7I§| = wy. Then 1\711 = ]\712. Indeed, since ¢ € 7 is a convex function and (28), it has

F(K)hy; (v) F(K)hﬁl(v)]
1= = = dusz K, = —_ dus, K, ,
L’l(p[F@(Ker)hK(v)] Helker) fsnl(p( I(K)hg(v) (. 0)

F(K)hy, (0) F(K)hg, (v)]
1= — |du (K v) = — |dup(K, ).
Lnl L4 [F(P(K, Mz)hK(U) ] HF( U) Lxl 4 ( I(K)hK(U) yF( U)

Then hth (v) = hﬁz(v) for any v € S"71, it means that My =M,. [

The solutions M and M of problems (33) and (34) are called the Orlicz-Petty bodies for F, I(K) = F,(K, M)

andT(K) = Ep (K, M) are called the geominimal surface area for F. Thus, one can define sets of all Orlicz-Petty
bodies for F: let K € Kpand ¢ € 7,

Q(K) = {M € Ky : Fy(K, M) = I[(K), IM°| = w,},
Q(K) = (M € Ko : Fp (K, M) = I(K), IM°| = w,).

Theorem 3.10. Suppose that K € Koy and {K;}i»1 € Ko are convex bodies sequences satisfying Ki — K as i — oo.
Forp € 1, then

(1) I(K;) = I(K) and I(K;) = I(K) as i — co.

(2) Q(K;) = Q(K) and é(K,-) — é(K) as i — oo if @ € I is a convex function.

Proof. (1) Let M € Q(K) and M; € Q(K;), then {M;};»1 is uniformly bounded. Indeed, by Theorem 3.7 and
(33) , it has

I(K) = F,,(K, M) = lim Fy,(K;, M) = lim sup Fy,(K;, M) > lim sup I(K;), (35)
1—00 i—00 i—co

it means that {I(K;)}i>1 = {F,(K;, M;)}i>1 is bounded, namely, {M;}>1 is uniformly bounded by Theorem 3.8.

Let {Mi/,} j>1 be a subsequence of {M;};>1 satisfying lim; . I (Ki;) = lim infi_, I(K;). By Lemma 2.2, there exists

a sequence of {Mi,-}jzlf called {M,-].k }k=1 and a convex body My € Ky satisfying Mifk — My as k — oo and

IMg| = w,. By Theorem 3.7, it has

lim inf I(K;) = lim I(K;,) = lim Fy(K;, , M, ) = F, (K, Mo) = I(K). (36)

ljk
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By (35) and (36), it has I(K;) — I(K) as i — oo. Along the same line, it can prove T(Ki) — T(K) asi— oo.
(2) By Theorem 3.9, it implies that there exist M € Q(K) and M; € Q(K)) if ¢ € I is convex. Let {M; };>1
be a sequence of {M;};>1. Then

I(K) = lim I(K;) = lim F,,(K;,, M;). (37)
]—)OO ]—)DO
It means that {F, (K, M; j)} j>1is bounded. By Theorem 3.8, it implies that {M; : }i>1 is uniformly bounded. By

Lemma 2.2, there exists a subsequence {Ml-].k bee1 of {M }j>1 and a convex body M, € K satisfying M;, — Mo
and |[Mj| = w,. By Theorem 3.7 and (37), it has

I(K) = 111_{?0 I(Ki/‘k) = ]}1_{2) F(p(Kijk/Mi/k) = F(p(K/MO)'
Then M = My. Thus M; = M as i — co. Along the same line, it can prove M; > Masi— co. [

Proposition 3.11. Let K € Ky be a polytope and ¢ € 1. Suppose that M € Q(K) and M € Q(K), then M and M are
polytopes with faces parallel to those of K.

Proof. Letm € Nand {v;}!”, C §"~ “Lsuch that K = N <icpix € R : x-v; < hg(v;)}. Then pg(K, -) is concentrated
on {v;}!, by Lemma 3.3. Deflne a polytope P with faces parallel to those of K by

P= ﬂ [x e R" : x - v; < hp(v3)},

1<i<m

where M € Q(K). It implies that hp(v;) = hp(v;) for 1 <i < m. Thus,

Fn)=1 [ “(p(hpﬁ ;)hK<v>duF<K )

=§Z(P(h ;)hK(vl)yF(K (o)

1
Yol

Lol

_mmM

h
hat

) Uz)[vlF(K v;})

)th)duF(K v)

Thus Fy,(K, P) = F,(K,M) = I(K) < F,(K,vrad(P°)P). It implies that M = P, so M is a polytope with faces
parallel to those of K. Indeed, since P° € M°, then vrad(P°) < vrad(M°) = 1. And ¢ € 7, then vrad(P°) > 1.
SolP°|=IM°. _

Suppose that M € Q(K), define a polytope P with faces parallel to those of K by

P= ﬂ {x e R" : x - v; < h(vy)}.

1<i<m

Then hy(v;) = hiz(v;) for 1 < i < m. By (28), it has

FRI0) |, oo (R0 )
1= RO K (o),
fs,,ff’[ F,(K, P)hk(v)] pr[ F,(K, P)h«v») Al (o)

1=

F(K)h () . - F(K)hy;(0:) .
1= - K, {v;}).
fsn-l(P[ F,(K, M)hK(U)] Z(P[ Fy(K, M)hK<v)] At

1=
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Thus f(p(K, 1~’) = E,(K,]VI) = T(K) < EP(K, Vrad(ﬁ’)l;). It implies that M = 17, soM € é(K) is a polytope
with faces parallel to those of K. Indeed, since P° C M°, then vrad(P°) < vrad(M°) = 1. And ¢ € 7, then
vrad(P°) > 1. So |P°| = |M°|. O

Let {v1, 0y, ...,0,) be a finite set of $"~! for m € N, it is proved by some counterexamples that problems
(33) and (34) are not always solvable in the following.

Proposition 3.12. Suppose that K € Ky is a polytope with {v1,va, ..., Uy} as the unit normal vectors of its faces.
(1) If € D and the nth coordinates of v1,vy, ..., vy are nonzero, then

I(K)=0, S(K)=
(2)If o € 1, then
S(K) = S(K) =
Proof. (1) For positive numbers a,b > 0, let
K, =a 'T,B} with T, = diag(@",1,...,1),

K, = b*" T,B} with T, = diag(6™",...,b7",1).

1-n

Ithas K = a(T})™'B) and |K{| = w,, K} = b+ (TZ)‘lB; and |K?| = w,. Since the nth coordinates of v1, vy, ..., Un
are nonzero, for 1 < i < m, there ex1st two constants cy3, c14 > 0 satisfying

hg,(v;) = max w;v; = max Towoa v = a™! max w,T,v; = a” YT,
w1 €K, wzeBg wzeB

=0 (0] + @03 + -+ @)

[SIE

1 -1
>a |(vi)al 2 a " c13
and

hz (vl) = max wzv; = max TbZU4b " U, = b"" max wiTyo; = b'" ITbvl
ZU3EK1, w4€B)

= b (42008 e+ bR, + @) 2 b7 @0l 2 b e

Since K € Kj is a polytope, there is a constant 0 < ¢5 < ¢16 such that ¢15 < (K, v;) < ¢3¢ for 1 <i < m. By
@ € D, ithas

hx
1K) < f <p( ”)hK<v>dyF<K )

hk(v)
v
< i ,ml (C13 )C16[JF(K foih)
_ %(p(c%z)w(m $1) 50

asa — 0and
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F(K)h (0)
1= ,+ dug K,

Lnl (P[ (P(K Kb)h[((v)] IUF( !
m F(K)hg, (0:) ]

= r(K {oi})
;‘@[ F (K Ko@) T
L F(B" C14b n

< (K, {ui})
; [ S(K C16 ] e

<

F(B;)C14C15 b
¢

R §(K)]dyF(K' {ui}),

thus §(K) — ocoash— 0.
(2) Assume that ug(K, {v,}) > 0. For positive numbers o, ¢ > 0, let

Ks = 6TsB! with Ty = Tdiag(1,...,1,6™T',
K. = T.B! with T, = Tdiag(1,...,1,¢,¢)T,

where T is an orthogonal matrix with v, as its nth column vector. It has K = 6‘1(Tg)‘1B§, IZ‘;
IK3| = |KZ| = w,. Then

_ 1
hi, (vy) = max wyv, = max 0Tswov, = max wydTsv, = O max w0 "v, = —

w1€K;s w€B) w€B} wpeB! o
and

hz (v”) = max w0, = max I.wyv, = max wy 1,0, = maxwyev, = €.
wleK wzeB” wzeB wzeB

By ¢ € 7, it has

S(K) > X fs i 1qo(,ff )))th)duF(K, o)

@)
=2 Z (hK (v]) )hK(Uj e o)

1 (hk, (v,

> — (hl;((:)]n)))hK(vn)HF(Kr {va})
c 1
ﬂ(p(c 5n1)HF<K (o) — oo

as 6 — oo and

F(K)h. (0)
1= — |duz(K,
fs,,l‘f’( L<K1<>hz<<v)] Heker)

i(P[ F(K)hz (0)) ] . & o]
P E K Kooy )

1
RO ),
> n
B T AT R
F(BJ)cs
Z(P[ g'_)d:uF(K {ou}),

5965

= (Tt)'Bj and
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thus §(K) —oase—0. O

4. The Orlicz and L, geominimal compatible functionals
In this section, we will introduce the Orlicz and L, geominimal compatible functionals based on the

Orlicz Ly mixed compatible functionals in Definition 3.6. And some properties of them, such as the
isoperimetric type inequalities associated with the L; geominimal compatible functional will be studied.

4.1. The Orlicz geominimal compatible functional

Let Sy C Sp be a nonempty subset, S; = {¢ : (0,00) — (0, 0)|p(t"/") is strictly convex} and S, = {¢p :
(0,00) — (0, 00)|gp(t~1/") is strictly concave}. Define

ITo=INS, Dy=DNS,, D1=DNS;. (38)

Definition 4.1. Let K € ‘Kj.
i) The nonhomogeneous Orlicz geominimal functional G, (K, So) of K with respect to S, is defined by

Gy (K, So) = inf(F,(K,vrad(L)L°) : L € So} if p € T U Dy, (39)
Gy(K, So) = sup{F,(K,vrad(L)L°) : L € So} if ¢ € Dy.
ii) The homogeneous Orlicz geominimal functional Eq,(K, So) of K with respect to S, is defined by
Gy(K, So) = inf{Fy(K, vrad(L)L°) : L € So} if o € T U Dy, (40)
Gy (K, So) = sup{F,(K,vrad(L)L®) : L € Sp} if € Dy.
For simplicity, let
Gy(K) = Go(K, Ko), Go(K) = Go(K, Ko) if Sp = Ko
Hy(K) = Gy(K, Sp), Hy(K) = Gy(K,Sp) if So = Sp.

Then Ew(ch) = C“’la(p(K) and ﬁ(p(CUK) = c“’lf:Iq,(K) for some constant c;7 > 0. Since Kp C Sy, it implies

17 17
that
Gp(K) = Hy(K) if ¢ € TUDy; Gu(K) < Hy(K) if ¢ € Dy. (41)
Gy(K) = Hy(K) if o € TUDy; Gy(K) < Hy(K) if ¢ € Dy. (42)

4.2. The L; geominimal compatible functional

In this section, we will introduce the L; geominimal compatible functional and discuss some properties
of them. Based on the Orlicz L, mixed compatible functional, let ¢(t) = t7 in Definition 3.6, we get the
following L; mixed compatible functionals:

1 h(@) '
F,(K,L) = " ‘fsnl (h;%) hx(v)dup(K, v) for L € Ko,

o 1 IR
Fq(K,L ) = a L,l (W‘DL(’U)) hK(U)d[.lF(K, '0) forL e S().
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Definition 4.2. Let K€ Kyand —n # g € R.
i) The L,y geominimal compatible functional G4(K) with respect to Ko, is defined by

Gy(K) = inf {F, (K, L)F7|L°|7 : L € Ko} if 4 >0,

Gy(K) = sup {Fy(K, L)P9|L*|™0 : L e Ky} if —n#q<0.
it) The Ly geominimal compatible functional H,(K) with respect to Sy, is defined by

Hy(K) = inf {F,(K, L)@ |L[7 : L€ Sy} ifq >0,
Hy(K) = sup {F,(K, L) P |L|7 : L e So} if —n #q<0.

Remark 4.3. (1) For s > 0, it has G,4(sK) = s(%? G4(K) and Hy(sK) = S%?Hq(K).
Gy(K) = F(K) 5 w1 G,(K)™, Hy(K) = F(K) T wi H,(K)™. (43)
For K € Ay and v € 5", define
94(K,0) = hg (@) u(vi! (0))g(0)
and
& = {K € Ay : exists L € Sy, s.t. g,(K,v) = pL(v)”+q}, q#-n,
where u is the function defined in (21) and g is the curvature function defined in (13).

Theorem 4.4. Let K € &, and q # —n, then

H,y(K) = a #in 7 f 7,(K, 0)ido(v). (44)
sr—l

1

Proof. For L € Sy.

(1) If g = 0, then Hy(K) = % fsn-l hx(v)dug(K, v) = F(K), the conclusion is true.

(2) Since the proof methods of (44) are the same when q > 0 and g < 0, we just prove the case g > 0. Let
K e & and v € S™7, thereis M € Sy satisfying p;'\;q(v) = g4(K,v). Then by Definition 4.2,

o Win f 7,(K, 0)1do(0) = F, (K, M°)7 - [M|7™ > H,(K). (45)
gn-1
On the other hand, by Holder inequality, it has
Rt K v)iid — o e K, 0)p(v)p, " ,L”qu
o 5719‘7( o) ido(v) = a " 94(K,0)p, (©)p, "(v))"" do(v)

< ( L[ &0 da(v)] B

& Jgn-1 ptZ(’U)

. %
.(Z fs g pf(v)do(v))

n 4
= Fq (K/ Lo) n+q . |L| n+q ,
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with equality if and only if pL+'7(v) 74(K,v) for v € S"1. It implies that

_n_ 4

Qi f 94K, )i do(v) < Hy(K). (46)
Sn—l
By (45) and (46), it has
H,(K) = a #in" N 7,(K, )77 do(0).

O

Motivated by Theorem 4.4, we can consider the compatible functional curvature image C,K € Sy of
K € &, such that

94(K,0) = IC TG Pex®@) (47)
and define

Ny = {K € Ap : exists L € Ky, s.t. g,(K,v) = pz+q(v)} C &y
forv e §" and g # —n. Then

H,(K) = F,(K, (C,K)°)77|C,K|77. (48)
Proposition 4.5. Let g # —n and K € 1, then G4(K) = H,y(K).

Proof. Since K € 1, there is L € K satisfying g,(K,v) = pzﬁq(v) for v € "1, By (47), it has

nC, K|\
n+q _ n+q _ q
7’1|C K|pC@K( ) =P (U) = CqK = ( o ) Le 7(0.

If g = 0, the conclusion is true. If g > 0, it has H;(K) > G,(K) by (48) and C,;K € Kj. And by Definition 4.2,
it implies that G,(K) > H,(K). Thus G,(K) = Hy(K). If —n # g < 0, by Definition 4.2 and (48), it implies that
G4(K) < Hy(K) < G4(K). So the conclusion is true. [J

Proposition 4.6. Let K € K.
(DIf-n<t<0<r<sor-n<s<0<r<t then

(n+t) (r—t)(n+s)

G (K) < Gt(K) (: s)(n+r) G (K) G=hren) |

2)If-n<t<r<s<0o0or-n<s<r<t<0,then

)(11+t) (r—t)(n+s)

G (K) < Gt(K) (: S (G (K) G=hren) |

B Ift<r<-n<s<00ors<r<-n<t<0,then

(r—t)(n+s)

G (K) > Gt(K) (z s)(n+r) G (K) G=t)r+r) |
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t —
Proof. For K,L € Ky, s,1,t € R such that 0 < i < 1, by Holder inequality, it has

F(K L) = % fs @i @)dps(K, 0)

r=t

St

< i ( L o hi(v)h}(‘s(v)dyF(K, v))

r=s
—s

'(L’l htL(U)h}(_t(U)dyF(K, v))'

= F(K, L) F(K, L) .

(el > 0and =)0 > 0. By Definition 4.2 and (49), it has

(DIf-n<t<0<r<s,then (=1 (n+7)

Gi(K) = inf {F.(K, L)#|L°|7 |
0
(r=s)(n+t)

< inf {(F«(K, L) |L° Lt =)
< jinf ((Fu(K 1) 1L

(r=H(n+s)

: (Fs (K, L) ] IL°| = ) =h0ren) |

n t | (=s)(nth)
< suplF(K, L) |L°[) 57
LG(]((]

(r—t)(n+s)

n s (
- inf {Fy(K, L)# |L°| 7= }cooen
LE'](O

(r—t)(n+s)

(r=s)(n+t)
= Gt (KI L) (t=s)(n+t) GS(K, L) (s=b)(n+r)

The case —n < s < 0 < r < t can be proved follow along the lines.

(r—s)(n+t)
(t=s)(n+r)

> 0and 009 5 0. By Definition 4.2 and (49), it has

2Q)If -n <t <r<s<0,then G

G/(K) = sup {F,(K, L)#|L°| 7 }
LeKy

< supl(Fi(K, L) S (K, L) )™ |L°| )
L€7(0
o (r=s)(n+t)
< sup{Fy(K, L) |L°|# } =)
LeKo
oS (r=t)(n+s)
. Sup{FS (K, L) n+s |L |n+s } (s—t)(n+r)
LE?(()

(r—s)(n+t) (r—t)(n+s)

= Gy(K) &m0 Gg(K) &=

By transposing s and t, the case —n < s < r <t < 0 can be proved.

5969

(49)
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®)Ift<r<-n<s<0,then % >0and g 32212 < 0. By Definition 4.2 and (49), it has

G/(K) = sup {Fr(K, L)#lLolﬁ}
Le%

> sup{(F.(K, L) S Fy(K, L))" |L°|57 )
LeKo
(r—s)(n+t)
> sup Ft(K L) = |L |n+t}(t (1)
L€7(0
—t)(11+s)
. Sup{ S(K L) n+c |L |n+s }(s H(n+r)
LeKo
(r=t)(n+s)

= Gt(K) [ s)(n+v) G (K) (s—t (n+r)

By transposing s and ¢, the case s < v < —n <t < 0 can be proved. [
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