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The optimal problems for the compatible functional F

Xiang Lia, Jin Yanga,∗

aSichuan University

Abstract. Inspired by the definition and properties of geometric measures for convex bodies in Orlicz
Brunn-Minkowski theory, such as Orlicz mixed volume, Orlicz mixed p-capacities (1 < p < n) and Orlicz
mixed torsional rigidity, we will introduce a more general geometric invariant, called the Orlicz Lφ mixed
compatible functional Fφ. Motivated by the optimal problems for the above three geometric measures, we
discuss the optimization problem with respect to Orlicz Lφ mixed compatible functional Fφ and prove the
existence of the solution of the problem. Moreover, we consider Orlicz and Lq (−n , q ∈ R) geominimal
compatible functional which based on the Orlicz Lφ mixed compatible functional, and we also establish the
isoperimetric type inequality about the Lq (−n , q ∈ R) geominimal compatible functional.

1. Introduction

For two convex bodies (compact convex set with nonempty interior) K and L, the Lp (p ≥ 1) mixed
volume Vp(K,L) is defined by (see [12])

Vp(K,L) =
1
n

∫
Sn−1

hp
L(v)h1−p

K (v)dS(K, v), (1)

the special case of p = 1, is the (first) mixed volume V1(K,L) of K and L (see [8]),

V1(K,L) =
1
n

∫
Sn−1

hL(v)dS(K, v), (2)

where hL is the support function of L and S(K, ·) is the surface area measure of K: for each Borel set Σ ⊆ Sn−1,

S(K,Σ) =
∫
ν−1

K (Σ)
dHn−1, (3)

where ν−1
K : Sn−1

→ ∂K is the inverse Gauss map and Hn−1 is the (n − 1)-dimensional Hausdorff measure
on the boundary ∂K of K. Denote by K0 be the class of convex bodies which contain the origin in their
interiors. For K,L ∈ K0 and λ > 0, the Minkowski sum of K and L is K + L = {x + y : x ∈ K, y ∈ L} and the
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scalar product of λ and K is λK = {λx : x ∈ K}. For K ∈ K0, denote by |K| be the volume of K. Denote by ωn
and Sn−1 = {x ∈ Rn : x · x = 1} be the volume and the boundary of Bn

2 = {x ∈ R
n : x · x ≤ 1}, respectively. For

K ∈ K0, then vrad(K) = (|K|/ωn)
1
n is referred to the volume radius of K.

In [6], Petty introduced the geominimal surface area G(K) of a convex body K ∈ K0, is defined by

G(K) = inf
{∫

Sn−1
hL(v)dS(K, v) : L ∈ K0, |L◦| = ωn

}
, (4)

where L◦ is the polar body of L (see (14) for the definition). Combining with (2), the optimal problem (4)
can be written as

G(K) = inf{nV1(K,L) : L ∈ K0, |L◦| = ωn}. (5)

Petty [6] proved the existence of the solution of the optimal problem (5), so the geominimal surface area
G(K) could be defined based on the mixed volume.

In [12], Lutwak extended the geominimal surface area to Lp form associated with (1) for p > 1, namely,
the p-geominimal surface area Gp(K) of a convex body K ∈ K0, is defined by

Gp(K) = inf
{
nVp(K,L) : L ∈ K0.|L◦| = ωn

}
, (6)

and Lutwak proved that the optimal problem (6) has a unique solution in [12]. Later, Ye extended p > 1 to
p ∈ R in [25]. Some other excellent works can be found, see e.g., [7, 11, 19, 20, 22, 23, 27, 31, 33, 34] and the
reference therein.

Along the development of the Orlicz Brunn-Minkowski theory, the Orlicz mixed volume was introduced
in [9]: Let φ : (0,∞)→ (0,∞) be a convex function such that φ(0) = 0 and φ(1) = 1. For K,L ∈ K0, the Orlicz
mixed volume Vφ(K,L) is defined by

Vφ(K,L) =
1
n

∫
Sn−1
φ

(
hL(v)
hK(v)

)
hK(v)dS(K, v), (7)

and if φ : (0,∞)→ (0,∞) is a continuous strictly increasing function with limt→0+ φ(t) = 0, limt→∞ φ(t) = ∞
and φ(1) = 1, the Orlicz mixed volume Ṽφ(K,L) of K,L ∈ K0 is

Ṽφ(K,L) = inf
{
λ > 0 :

∫
Sn−1
φ

(
n|K|hL(v)
λhK(v)

)
hK(v)dS(K, v) ≤ n|K|

}
.

Obviously, when φ(t) = tp (p ≥ 1), the Orlicz mixed volume (7) is the Lp (p ≥ 1) mixed volume (1).
In [26], Ye introduced the Orlicz geominimal surface area (see also [24] and [30]) of K ∈ K0, which is the

extension of the p-geominimal surface area, is defined by

Gorlicz
φ (K) = inf

{
nVφ(K,L) : L ∈ K0, |L◦| = ωn

}
, (8)

G̃orlicz
φ (K) = inf

{
Ṽφ(K,L) : L ∈ K0, |L◦| = ωn

}
. (9)

In particular, the optimal problems (8) and (9) were proved to have a unique solution in [30]. With the
expansion and popularization of the Orlicz-Brunn-Minkowski theory (see e.g., [2, 9, 13, 14, 16, 24, 35]), the
Orlicz geominimal surface area was widely considered, see e.g., [28, 29, 36] and the reference therein.

Similarly, there are similar relationships between Orlicz geominimal surface area and the Orlicz mixed
volume for other functionals. For example, the Orlicz geominimal p-capacity (1 < p < n) was studied by,
e.g., [10, 15, 32] and the reference therein. The Orlicz geominimal torsional rigidity was considered by, e.g.,
[3, 18, 21] and the reference therein.

Inspired by Orlicz geominimal surface area, Orlicz geominimal p-capacity and Orlicz geominimal
torsional rigidity, we would like to study a more general functional. As defined in [17], let F be a compatible
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functional defined for every compact convex set K ⊆ Rn with positively homogeneous of some degree
α , 0. Suppose that for every K there exists a non-negative Borel measure µF(K, ·) on Sn−1 such that:

F(K) =
1
α

∫
Sn−1

hK(v)dµF(K, v),

d
dε

F(K + εL)
∣∣∣∣
ε=0+
=

∫
Sn−1

hL(v)dµF(K, v),

where L is also a compact convex set. Denote by F1(K,L) the mixed compatible functional, i.e.,

F1(K,L) =
1
α

∫
Sn−1

hL(v)dµF(K, v). (10)

In Section 3, we will introduce the nonhomogeneous and the homogeneous Orlicz Lφ mixed compatible
functionals for φ ∈ I ∪D and K,L ∈ K0 as follows:

Fφ(K,L) =
1
α

∫
Sn−1
φ

(
hL(v)
hK(v)

)
hK(v)dµF(K, v), (11)

∫
Sn−1
φ

 F(K)hL(v)

F̃φ(K,L)hK(v)

 dµ∗F(K, v) = 1, (12)

where µ∗F(K, ·) is a probability measure defined in (22) and I,D are the classes of the nonnegative increasing
continuous function and nonnegative decreasing continuous function, respectively (see (18) for the defini-
tion). Obviously, when φ(t) = t, the Orlicz Lφ mixed compatible functional (11) is the mixed compatible
functional (10). And we establish the optimal problems associated with the Orlicz Lφ mixed compatible
functionals and prove the solution of this problems in Section 3 as follows:

inf / sup{Fφ(K,L) : L ∈ K0, |L◦| = ωn},

inf / sup{̃Fφ(K,L) : L ∈ K0, |L◦| = ωn}.

Let S0 be the class of star bodies. In Section 4, we define the Orlicz and Lq geominimal compatible
functionals with respect to S0 ⊂ S0. For K ∈ K0, the nonhomogeneous and the homogeneous Orlicz
geominimal compatible functionals are given by the following optimal problems:

Gφ(K,S0) = inf / sup{Fφ(K,vrad(L)L◦) : L ∈ S0},

G̃φ(K,S0) = inf / sup{̃Fφ(K,vrad(L)L◦) : L ∈ S0}.

Based on the Orlicz geominimal compatible functionals, we consider the Lq geominimal compatible func-
tional when φ(t) = tq for −n , q ∈ R.

In this paper, we introduce and establish the optimization problem for Orlicz Lφ mixed compatible
functional, and prove the existence of solution of the problem in Section 3. In Section 4, we discuss the
Orlicz and Lq geominimal compatible functionals and study the isopermetric type inequalities about them.
For example:

Theorem 1.1. Let K ∈ K0 and φ ∈ I, Fφ(·, ·) and F̃φ(·, ·) be the Orlicz Lφ mixed compatible functionals given in
(11) and (12). Then
(1) there is M ∈ K0 satisfying |M◦

| = ωn and

Fφ(K,M) = inf{Fφ(K,L) : L ∈ K0, |L◦| = ωn}.

(2) There is M̃ ∈ K0 satisfying |M̃◦
| = ωn and

F̃φ(K, M̃) = inf{̃Fφ(K,L) : L ∈ K0, |L◦| = ωn}.

(3) If φ ∈ I is a convex function, M and M̃ existing in (1) and (2) are unique.
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2. Background and Preliminaries

A subset K ⊆ Rn is called convex if for any x, y ∈ K satisfying [x, y] ⊂ K. A convex set K ⊆ Rn is a convex
body if K is also compact with nonempty interior. Denote byK0 be the class of convex bodies which contain
the origin in their interiors. The usual Euclidean norm is written by x · y for x, y ∈ Rn and the origin ofRn is
denoted by o. Let {e1, . . . , en} be the standard orthonormal basis of Rn. Let C(Sn−1) and C+(Sn−1) be the class
of all continuous functions on Sn−1 and all continuous positives functions on Sn−1, respectively.

Let K be a convex set of Rn, the support function h(K, ·) : Rn
→ R of K is

hK(x) = max{x · y : y ∈ K}.

For two convex sets K,L and λ > 0, it is checked that hK+L(v) = h(K, v) + h(L, v) and hλK(v) = λhK(v) for
v ∈ Sn−1.

A set L ⊂ Rn is called star-shaped set with respect to o if it is not empty and if [o, x] ⊂ L for all x ∈ L. Let
L be a star-shaped set with respect to the origin o, the radial function ρ(L, ·) : Sn−1

→ [0,∞) is

ρL(v) = max{λ ≥ 0 : λv ∈ L}

for v ∈ Sn−1. A star-shaped set is called a star body with respect to the origin if the radial function with
respect to the origin is continuous and positive. Denote by S0 be the class of star bodies. Let L be a star
body and σ(·) be the spherical measure on Sn−1, the volume of L is

|L| =
1
n

∫
Sn−1
ρ(L, v)ndσ(v).

Let K ∈ K0 satisfying the surface area measure S(K, ·) is absolutely continuous about σ(·), then K has a
curvature function 1(·) : Sn−1

→ R, is defined by

1(v) =
dS(K, v)

dσ(v)
. (13)

The subsetA0 ofK0, is defined byA0 = {K ∈ K0 : 1(v) ∈ C+(Sn−1)}.
For K ∈ K0, the polar body K◦ of K is

K◦ = {x ∈ Rn : x · y ≤ 1, y ∈ K}. (14)

Thus it gets that K◦◦ = K, hK◦ (v) = ρ−1
K (v) and ρK◦ (v) = h−1

K (v) for v ∈ Sn−1 (see e.g., [8]). Let intK be the
interior of K ∈ K0 and x ∈ intK, the polar body Kx of K with respect to x is Kx = (K − x)◦ + x. Moreover, the
Santaló point t(K) ∈ intK is unique, which satisfies |Kt(K)

| = inf{|Kx
| : x ∈ intK} (see e.g., [5]). For K ∈ K0, the

Blaschke-Santaló inequality is

|K| · |Kt(K)
| ≤ ω2

n. (15)

Equality holds if and only if K is an ellipsoid. The inverse Santaló inequality (see e.g., [1, 4]): there is a
constant λ > 0 satisfying

|K| · |Ks(K)
| ≥ λnω2

n (16)

for K ∈ K0.
The following lemmas will be needed.

Lemma 2.1. (see [15, Lemma 2.1]) If a sequence of measures {µi}
∞

i=1 on Sn−1 converges weakly to a finite measure µ
on Sn−1 and a sequence of functions { fi}∞i=1 ⊆ C(Sn−1) converges uniformly to a function f ∈ C(Sn−1), then

lim
i→∞

∫
Sn−1

fidµi =

∫
Sn−1

f dµ.

Lemma 2.2. (see [15, Lemma 2.2]) Let {Ki}
∞

i=1 ⊆ K0 be a uniformly bounded sequence such that the sequence
{|K◦i |}

∞

i=1 is bounded. Then, there exists a subsequence {Ki j }
∞

j=1 of {Ki}
∞

i=1 and a convex body K ∈ K0 such that Ki j → K.
Moreover, if |K◦i | = ωn for all i = 1, 2, . . ., then |K◦| = ωn.
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2.1. Orlicz addition of convex bodies

Let m ∈N be an integer number and Φm be the class of convex functions ϕ : [0,∞)m
→ [0,∞) increasing

in each variable, and satisfy ϕ(o) = 0 and ϕ(ei) = 1 for i ∈ [1,m]. Let K1, . . . ,Km ∈ K0, the Orlicz Lϕ sum
+ϕ(K1, . . . ,Km) ∈ K0, is defined by (see [9])

h+ϕ(K1,...,Km)(v) = inf
{
λ > 0 : ϕ

(
hK1 (v)
λ
, . . . ,

hKm (v)
λ

)
≤ 1

}
for any v ∈ Sn−1. Thus, the above equation can be described as

ϕ

(
hK1 (v)

h+ϕ(K1,...,Km)(v)
, . . . ,

hKm (v)
h+ϕ(K1,...,Km)(v)

)
= 1

for any v ∈ Sn−1. Then Ki ⊂ +ϕ(K1, . . . ,Km) for i ∈ [1,m] by ϕ ∈ Φm. Let K,L ∈ K0 and ϕ1, ϕ2 ∈ Φ1, if t > 0,
consider the convex body K +ϕ,t L ∈ K0, is defined by,

ϕ1

(
hK(v)

hK+ϕ,tL(v)

)
+ tϕ2

(
hL(v)

hK+ϕ,tL(v)

)
= 1

for v ∈ Sn−1. Let (ϕ1)′l (1) and (ϕ1)′r(1) be the left and right derivative ofϕ1 at s = 1, respectively. For K,L ∈ K0,
the Lϕ2 mixed volume Vϕ2 (K,L) is defined by (see [9])

Vϕ2 (K,L) =
(ϕ1)′l (1)

n
d
dt
|K +ϕ,t L|

∣∣∣∣∣
t=0+
=

1
n

∫
Sn−1
ϕ2

(
hL(v)
hK(v)

)
hK(v)dS(K, v) (17)

if (ϕ1)′l (1) exists and is positive. In fact, the assumptions ϕ1, ϕ2 ∈ Φ1 in (17) can be extended to more
general increasing or decreasing functions in [30]. Thus, we work on the following classes of nonnegative
continuous functions:I = {φ : φ is strictly increasing with lim

s→0
φ(s) = 0, φ(1) = 1, lim

s→∞
φ(s) = ∞},

D = {φ : φ is strictly decreasing with lim
s→0
φ(s) = ∞, φ(1) = 1, lim

s→∞
φ(s) = 0}.

(18)

Let h(v, t) be continuous positive function defined on Sn−1
×[0, δ) for some δ > 0 and Kt be the Aleksandrov

body associated to h(v, t) for K ∈ K0, i.e, Kt = {x ∈ Rn : x · v ≤ h(v, t) for all v ∈ Sn−1
}. For K,L ∈ K0, the linear

Orlicz sum of hK and hL is defined by, for v ∈ Sn−1,

ϕ1

(
hK(v)
h(v, t)

)
+ tϕ2

(
hL(v)
h(v, t)

)
= 1 (19)

where ϕ1, ϕ2 ∈ I or ϕ1, ϕ2 ∈ D. Obviously, hK ≤ h(·, t) when ϕ1, ϕ2 ∈ I; hK ≥ h(·, t) when ϕ1, ϕ2 ∈ D;
hK+ϕ,tL = h(·, t) when ϕ1, ϕ2 ∈ Φ1. For ϕ1, ϕ2 ∈ I or ϕ1, ϕ2 ∈ D, one gets the following result in [30], which
extends (17) to nonconvex functions,

Vϕ2 (K,L) =
(ϕ1)′l (1)

n
d
dt
|Kt|

∣∣∣∣∣
t=0+
=

1
n

∫
Sn−1
ϕ2

(
hL(v)
hK(v)

)
hK(v)dS(K, v), (20)

if (ϕ1)′l (1) exists and is positive for K,L ∈ K0 and ϕ1, ϕ2 ∈ I. For ϕ1, ϕ2 ∈ D, (20) holds with (ϕ1)′l (1) replaced
by (ϕ1)′r(1) if (ϕ1)′r(1) exists and is nonzero.
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3. The Orlicz mixed Lφ compatible functionals

In this section, we first recall the definition and some properties of the compatible function F in [17],
and introduce the Orlicz Lφ mixed compatible functional Fφ under the assumption φ ∈ I ∪D.

Denote by C the class of compact convex sets. Let F : C → (0,∞) be a real-valued functional with
positively homogeneous of some degree α , 0 and satisfying, for α > 0 and K,L ∈ C,

F(K) =
1
α

∫
Sn−1

hK(v)dµF(K, v)

and

lim
ε→0+

F(K + εL) − F(K)
ε

=

∫
Sn−1

hL(v)dµF(K, v),

where µF(K, ·) is called the compatible functional measure on Sn−1, given by

µF(K, ω) =
∫
ν−1

K (ω)
u(x)dHn−1(x) (21)

for any Borel setω ⊆ Sn−1 and some continuous function u : K→ (0,∞) which is integrable on the boundary
of K ∈ C.

Combining (3) and (21), it has

dµF(K, v) = u(ν−1
K (v))dS(K, v) for v ∈ Sn−1.

Thus the compatible functional measure µF(K, ·) is not concentrated on a closed subsphere. For K ∈ C,
define the probability measure µ∗F(K, ·) of K, by

µ∗F(K, v) =
1
α
·

hK(v)µF(K, v)
F(K)

for v ∈ Sn−1. (22)

Definition 3.1. (see [17, Definition 3.1]) Let K,L ∈ K . A functional F : K → [0,∞) is said to be compatible if F
satisfies the following conditions:
(i) For a constant α > 0 and any s > 0,

F(sK) = sαF(K).

(ii) For any x ∈ Rn,

F(K + x) = F(K).

(iii) If K ⊆ L, then

F(K) ≤ F(L).

(iv) For any t ∈ [0, 1],

F(tK + (1 − t)K)
1
α ≥ tF(K)

1
α + (1 − t)F(L)

1
α (23)

equality holds if and only if K and L are homothetic to each other.
(v) If V(K) = 0, then F(K) = 0.
(vi) The compatible functional measure µF(K, ·) is weakly convergent.
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For K,L ∈ C, denote F1(K,L) of the mixed functional of K and L,

F1(K,L) =
1
α

∫
Sn−1

hL(v)dµF(K, v).

From (23), it is easy to checked that

F1(K,L) ≥ F(K)
α−1
α F(L)

1
α (24)

equality holds if and only if K and L are homothetic to each other. For any f ∈ C+(Sn−1) and K ∈ C, denote
F1(K, f ) of the mixed compatible function of K and f ,

F1(K, f ) =
1
α

∫
Sn−1

f (v)dµF(K, v).

It implies that F1(K, hL) = F1(K,L) and F1(K, hK) = F(K) for all K,L ∈ C.
The following three lemmas will be needed:

Lemma 3.2. (see [30, Lemma 5.1]) Let K,L ∈ K0 and φ1, φ2 ∈ I be such that (φ1)′l (1) exists and is positive, and
h(v, t) be defined in (19). Then

(φ1)′l (1) lim
t→0+

h(v, t) − hK(v)
t

= h(K, v)φ2

(
hL(v)
hK(v)

)
uniformly on Sn−1. (25)

For φ1, φ2 ∈ D, (25) holds with (φ1)′l (1) replaced by (φ1)′r(1).

Lemma 3.3. (see [17, Lemma 3.1]) Let K ∈ C be a compact convex set, the compatible functional measure µF(K, ·)
is absolutely continuous with respect to the surface area measure S(K, ·).

Lemma 3.4. (see [17, Lemma 3.2]) If f ∈ C+(Sn−1) and F is the compatible functional. Let K ∈ C and K f be the
Aleksandrov body associated with f , then

F(K f ) = F1(K f , f ).

Let h(v, t) be a positive continuous function defined on Sn−1
× [0, δ) for some δ > 0. The Aleksandrov

body Kt associated with h(v, t) is given by

Kt = {x ∈ Rn : x · v ≤ h(v, t), v ∈ Sn−1
}.

By the continuity of h(v, t), Kt converges to K0 as t→ 0+. Let K = K0.

Theorem 3.5. Let K,L ∈ K0 and φ1, φ2 ∈ I satisfying (φ1)′l (1) exists and is nonzero, F be the compatible functional
given in Definition 3.1. Then

d
dt

F(Kt)
∣∣∣∣∣
t=0+
=

1
(φ1)′l (1)

∫
Sn−1
φ2

(
hL(v)
hK(v)

)
hK(v)dµF(K, v).

With (φ1)′l (1) replaced by (φ1)′r(1) if (φ1)′r(1) exists and is nonzero, one gets the analogue result for φ1, φ2 ∈ D.

Proof. Denote l = 1
α

∫
Sn−1 φ2

(
hK(v)
hL(v)

)
hK(v)dµF(K, v). Since µF(Kt, ·) → µF(K, ·) weakly whenever Kt → K in the

Hausdorff distance as t→ 0+, from Lemma 2.1, (24), Lemma 3.3, Lemma 3.4, the fact that hK(·) ≤ h(·, 0) and
Lemma 3.2,

lim inf
t→0+

F(Kt)1− 1
α ·

F(Kt)
1
α − F(K)

1
α

t
= lim inf

t→0+

F(Kt) − F1(Kt,K)
t

=
1
α

lim inf
t→0+

∫
Sn−1

h(v, t) − hK(v)
t

dµF(Kt, v)

≥
1
α

lim inf
t→0+

∫
Sn−1

h(v, t) − h(v, 0)
t

dµF(Kt, v)

=
1

(φ1)′l (1)
.
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Since hKt (·) ≤ h(·, t), then

F(K)1− 1
α lim inf

t→0+

F(Kt)
1
α − F(K)

1
α

t
≤ lim sup

t→0+

F1(K,Kt) − F(K)
t

=
1
α

lim sup
t→0+

∫
Sn−1

hKt (v) − hK(v)
t

dµF(K, v)

≤
1
α

lim sup
t→0+

∫
Sn−1

h(v, t) − h(v, 0)
t

dµF(K, v)

=
1

(φ1)′l (1)
.

Then

F(K)1− 1
α · lim

t→0+

F(Kt)
1
α − F(K)

1
α

t
=

l
(φ1)′l (1)

.

Thus

l =
1
α

(φ1)′l (1) lim
t→0+

F(Kt) − F(K)
t

The result for φ1, φ2 ∈ D follows along the same lines.

3.1. The nonhomogeneous and homogeneous Orlicz Lφ mixed compatible functionals
In this section, let φ ∈ I ∪ D, we will introduce Orlicz Lφ mixed compatible functional Fφ and study

some properties of Fφ.

Definition 3.6. Let K,L ∈ K0. For φ ∈ I ∪D,
i) the nonhomogeneous Orlicz Lφ mixed compatible functional Fφ(K,L) of K and L, is defined by

Fφ(K,L) =
1
α

∫
Sn−1
φ

(
hL(v)
hK(v)

)
hK(v)dµF(K, v). (26)

And if L ∈ S0, (26) is written by

Fφ(K,L◦) =
1
α

∫
Sn−1
φ

(
1

hK(v)ρL(v)

)
hK(v)dµF(K, v). (27)

ii) the homogeneous Orlicz Lφ mixed compatible functional F̃φ(K,L) of K and L, is defined by∫
Sn−1
φ

 F(K)hL(v)

F̃φ(K,L)hK(v)

 dµ∗F(K, v) = 1. (28)

And if L ∈ S0, (28) is written by∫
Sn−1
φ

 F(K)

F̃φ(K,L)hK(v)ρL(v)

 dµ∗F(K, v) = 1. (29)

By Definition 3.6 and φ(1) = 1, it implies that Fφ(K,K) = F(K) = F̃φ(K,K) for φ ∈ I ∪D and K ∈ K0. And
for c1, c2 > 0, K,L1 ∈ K0, L2 ∈ S0, it has

Fφ(c1Bn
2 ,B

n
2) = cα1φ(c−1

1 )F(Bn
2), Fφ(Bn

2 , c2Bn
2) = φ(c2)F(Bn

2),

F̃φ(c1K, c2L1) = cα−1
1 c2F̃φ(K,L1), F̃φ(c1K, (c2L2)◦) = cα−1

1 c−1
2 F̃φ(K,L2).

Next we will prove the continuity of Fφ(·, ·) and F̃φ(·, ·).
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Theorem 3.7. Let K,L ∈ K0. Assume that Ki,Li ∈ K0 are two sequences of convex bodies for i = 1, 2, . . . satisfying
Ki → K and Li → L as i→∞. Then for φ ∈ I ∪D and i→∞,

Fφ(Ki,Li)→ Fφ(K,L) and F̃φ(Ki,Li)→ F̃φ(K,L).

Proof. Since Ki converge to K ∈ K0 and Li converge to L ∈ K0, then

hKi (v)→ hK(v), hLi (v)→ hL(v) uniformly,

µF(Ki, v)→ µF(K, v), µF(Li, v)→ µF(L, v) weakly,

for v ∈ Sn−1. Therefore limi→∞ Fφ(Ki,Li) = Fφ(K,L). Indeed, since Ki,Li ∈ K0, then there are two constants
c3 > c4 > 0, define c5 =

c3
c4

and c6 =
c4
c3

, satisfying

c4Bn
2 ⊆ Ki,Li ⊆ c3Bn

2 ⇒
hLi (v)
hKi (v)

∈ [c6, c5] (30)

for v ∈ Sn−1 and i ≥ 1. Since φ is a continuous function, combining with Lemma 2.1, it has

lim
i→∞

1
α

∫
Sn−1
φ

(
hLi (v)
hKi (v)

)
hKi (v)dµF(Ki, v) =

1
α

∫
Sn−1
φ

(
hL(v)
hK(v)

)
hK(v)dµF(K, v).

As for limi→∞ F̃φ(Ki,Li) = F̃φ(K,L), when φ ∈ I and φ ∈ D, since the proof methods are the same, we
only prove the result when φ ∈ D. By the monotonicity of F, it has F(c4Bn

2) ≤ F(Ki) ≤ F(c3Bn
2). By (30) and

φ ∈ D, it implies that

φ

 F(c3Bn
2)c3

F̃φ(Ki,Li)c4

 ≤ ∫
Sn−1
φ

 F(Ki)hLi (v)

F̃φ(Ki,Li)hKi (v)

 dµ∗F(Ki, v) = 1 ≤ φ

 F(c4Bn
2)c4

F̃φ(Ki,Li)c3

 .
Then F̃φ(Ki,Li) is bounded, i.e., there exist two constant a1, a2 > 0 such that a1 = lim inf

i→∞
F̃φ(Ki,Li) and

a2 = lim sup
i→∞

F̃φ(Ki,Li). Indeed, sinceφ(1) = 1, for i ≥ 1, it has F̃φ(Ki,Li) ∈ [F(c4Bn
2)c4/c3,F(c3Bn

2)c3/c4] ⊂ (0,∞).

Then for m,n ≥ 1, there exist two subsequences of F̃φ(Ki,Li), called F̃φ(Kim ,Lim ) and F̃φ(Kin ,Lin ), satisfying
F̃φ(Kim ,Lim )→ a1, F̃φ(Kin ,Lin )→ a2 as m,n→∞ and

F̃φ(Kin ,Lin ) <
n + 1

n
a1, F̃φ(Kim ,Lim ) >

m
m + 1

a2.

By φ ∈ D and Lemma 2.1, it has

1 = lim
m→∞

∫
Sn−1
φ

 F(Kim )hLim
(v)

F̃φ(Kim ,Lim )hKim
(v)

 dµ∗F(Kim , v)

≥ lim
m→∞

∫
Sn−1
φ

(
(m + 1)F(Kim )hLim

(v)
ma2hKim

(v)

)
dµ∗F(Kim , v)

=

∫
Sn−1
φ

(
F(K)hL(v)
a2hK(v)

)
dµ∗F(K, v) (31)

and

1 = lim
n→∞

∫
Sn−1
φ

 F(Kin )hLin
(v)

F̃φ(Kin ,Lin )hKin
(v)

 dµ∗F(Kin , v)

≤ lim
n→∞

∫
Sn−1
φ

(
nF(Kin )hLin

(v)
(n + 1)a1hKin

(v)

)
dµ∗F(Kin , v)

=

∫
Sn−1
φ

(
F(K)hL(v)
a1hK(v)

)
dµ∗F(K, v). (32)
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Combing (31) with (32), it implies that

lim sup
i→∞

F̃φ(Ki,Li) ≤ F̃φ(K,L) ≤ lim inf
i→∞

F̃φ(Ki,Li) ⇒ lim
i→∞

F̃φ(Ki,Li) = F̃φ(K,L).

Theorem 3.8. Let K ∈ K0 and φ ∈ I. Assume that Ki ∈ K0 are the sequences of the convex body for i = 1, 2, . . .
satisfying Ki → K as i→∞. If {Mi}i≥1 ⊆ K0 such that {Fφ(Ki,Mi)}i≥1 or {̃Fφ(Ki,Mi)}i≥1 is bounded, then {Mi}i≥1 is
uniformly bounded.

Proof. Since Ki,K ∈ K0 and Ki converges to K as i→∞, then for v ∈ Sn−1, it has

hKi (v)→ hK(v) uniformly, µF(Ki, v)→ µF(K, v) weakly ⇒ lim
i→∞

F(Ki) = F(K).

And there exist two positive constant c7 < c8 satisfying

c7Bn
2 ⊆ Ki ⊆ c8Bn

2 ⇒ hKi (v), hK(v) ∈ [c7, c8],

for v ∈ Sn−1. Since µF(K, ·) is not contained in any closed hemisphere, then there is a constant c9 > 0 such
that ∫

Sn−1
(v · w)+dµF(K, v) ≥ c9,

where (v · w)+ = max{0, v · w}. Let vi ∈ Sn−1 be a unit vector such that ρMi (vi) = maxv∈Sn−1 ρ(Mi, v). Then
[0, ρMi (vi)vi] ⊆ Mi and hence ρMi (vi)(vi · v)+ ≤ hMi (v) for all v ∈ Sn−1. Next we will prove that {Mi}i≥1
is bounded by the argument of contradiction. Suppose that {Mi}i≥1 is not uniformly bounded and vi
converges to v ∈ Sn−1 as i→∞, then ρMi (vi) = ∞, furthermore, ρMi (vi)(vi ·v)+ > c10 for some constant c10 > 0.
Since {Fφ(Ki,Mi)}i≥1 or {̃Fφ(Ki,Mi)}i≥1 is bounded, then there exist constants c11, c12 > 0 such that

Fφ(Ki,Mi) ≤ c11, F̃φ(Ki,Mi) ≤ c12.

By (26), (28), Lemma 2.1 and the monotonicity of φ, it has

c11 ≥ lim inf
i→∞

1
α

∫
Sn−1
φ

(
hMi (v)
hKi (v)

)
hKi (v)dµF(Ki, v)

≥ lim inf
i→∞

1
α

∫
Sn−1
φ

(c10

c8

)
hKi (v)dµF(Ki, v)

≥
1
α

∫
Sn−1
φ

(c10

c8

)
hK(v)dµF(K, v)

≥
c7

α
φ

(c10

c8

) ∫
Sn−1

(vi · v)+dµF(K, v)

≥
c7c9

α
φ

(c10

c8

)
→∞
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and

1 = lim
i→∞

∫
Sn−1
φ

 F(Ki)hMi (v)

F̃φ(Ki,Mi)hKi (v)

 dµ∗F(Ki, v)

≥ lim
i→∞

∫
Sn−1
φ

(
c10F(Ki)
c12hKi (v)

)
dµ∗F(Ki, v)

=

∫
Sn−1
φ

(
c10F(K)
c12hK(v)

)
dµ∗F(K, v)

≥ φ

(
cα7 c10F(Bn

2)
c12c8

) ∫
Sn−1

(vi · v)+dµ∗F(K, v)

≥ c9 · φ

(
cα7 c10F(Bn

2)
c12c8

)
→∞,

as c10 →∞. This proves the theorem.

3.2. The Orlicz-Petty body for F

In this section, we establish the following optimization problems associated with Fφ and F̃φ and give
the solutions to this problems, called Orlicz-Petty bodies for the compatible functional F:

I(K)(S(K)) = inf(sup){Fφ(K,L) : L ∈ K0, |L◦| = ωn}, (33)

Ĩ(K)(S̃(K)) = inf(sup){̃Fφ(K,L) : L ∈ K0, |L◦| = ωn}. (34)

Theorem 3.9. Let K ∈ K0 and φ ∈ I. Then
(1) there is M ∈ K0 satisfying |M◦

| = ωn and

Fφ(K,M) = I(K) = inf{Fφ(K,L) : L ∈ K0, |L◦| = ωn}.

(2) there is M̃ ∈ K0 satisfying |M̃◦
| = ωn and

F̃φ(K, M̃) = Ĩ(K) = inf{̃Fφ(K,L) : L ∈ K0, |L◦| = ωn}.

(3) if φ ∈ I is a convex function, M and M̃ existing in (1) and (2) are unique.

Proof. By the definition of I(K) and Ĩ(K), it has

I(K) ≤ Fφ(K,Bn
2) < ∞, Ĩ(K) ≤ F̃φ(K,Bn

2) < ∞.

Then we can choose two sequences {Mi}i≥1, {M̃ j} j≥1 ⊆ K0 such that limi→∞ Fφ(K,Mi) = I(K), lim j→∞ F̃φ(K, M̃ j) =
Ĩ(K) and |M◦

i | = |M̃
◦

j | = ωn. By Theorem 3.8, it implies that {Mi}i≥1 and {M̃ j} j≥1 are uniformly bounded. By

Lemma 2.2, there exist two sequences of {Mi}i≥1 and {M̃ j} j≥1, called {Mil }l≥1 and {M̃ jm }m≥1, respectively,
satisfying Mil →M ∈ K0, M̃ jm → M̃ ∈ K0 and |M◦

| = |M̃◦
| = ωn as l,m→∞.

By Theorem 3.7, it has

I(K) = lim
i→∞

Fφ(K,Mi) = lim
i→∞

Fφ(K,Mil ) = Fφ(K,M),

Ĩ(K) = lim
j→∞

F̃φ(K, M̃ j) = lim
m→∞

F̃φ(K, M̃ jm ) = F̃φ(K, M̃).

Thus the solutions of (33) and (34) are M and M̃, respectively.
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As for uniqueness of the solutions, we prove them by the argument of contradiction. Suppose that there
exist two convex bodies M1,M2 ∈ K0 satisfying I(K) = Fφ(K,M1) = Fφ(K,M2) and |M◦

1 | = |M
◦

2 | = ωn. Then
M1 = M2. Indeed, let M3 = 2−1(M1 +M2), then vrad(M◦

3) ≤ 1 and inequalities hold if and only if M1 = M2.
It implies that hvrad(M◦3)M3 (v) ≤ hM3 (v) for v ∈ Sn−1. Since φ ∈ I is a convex function, it has

I(K) ≤ Fφ(K,vrad(M◦

3)M3)

=
1
α

∫
Sn−1
φ

(hvrad(M◦3)M3 (v)

hK(v)

)
hK(v)dµF(K, v)

≤
1
α

∫
Sn−1
φ

(
hM3 (v)
hK(v)

)
hK(v)dµF(K, v)

≤
1
α

∫
Sn−1

1
2

[
φ

(
hM1 (v)
hK(v)

)
+ φ

(
hM2 (v)
hK(v)

)]
hK(v)dµF(K, v)

=
1
2

(
Fφ(K,M1) + Fφ(K,M2)

)
= I(K).

Then hM1 (v) = hM2 (v) for any v ∈ Sn−1. Thus M1 =M2.
Suppose that there exist two convex bodies M̃1, M̃2 ∈ K0 satisfying Ĩ(K) = F̃φ(K, M̃1) = F̃φ(K, M̃2) and

|M̃◦

1 | = |M̃
◦

2 | = ωn. Then M̃1 = M̃2. Indeed, since φ ∈ I is a convex function and (28), it has

1 =
∫

Sn−1
φ

 F(K)hM̃1
(v)

F̃φ(K, M̃1)hK(v)

 dµ∗F(K, v) =
∫

Sn−1
φ

F(K)hM̃1
(v)

Ĩ(K)hK(v)

 dµ∗F(K, v),

1 =
∫

Sn−1
φ

 F(K)hM̃2
(v)

F̃φ(K, M̃2)hK(v)

 dµ∗F(K, v) =
∫

Sn−1
φ

F(K)hM̃2
(v)

Ĩ(K)hK(v)

 dµ∗F(K, v).

Then hM̃1
(v) = hM̃2

(v) for any v ∈ Sn−1, it means that M̃1 = M̃2.

The solutions M and M̃ of problems (33) and (34) are called the Orlicz-Petty bodies for F, I(K) = Fφ(K,M)
and Ĩ(K) = F̃φ(K,M) are called the geominimal surface area for F. Thus, one can define sets of all Orlicz-Petty
bodies for F: let K ∈ K0 and φ ∈ I,

Q(K) = {M ∈ K0 : Fφ(K,M) = I(K), |M◦
| = ωn},

Q̃(K) = {M̃ ∈ K0 : F̃φ(K, M̃) = Ĩ(K), |M̃◦
| = ωn}.

Theorem 3.10. Suppose that K ∈ K0 and {Ki}i≥1 ⊆ K0 are convex bodies sequences satisfying Ki → K as i → ∞.
For φ ∈ I, then
(1) I(Ki)→ I(K) and Ĩ(Ki)→ Ĩ(K) as i→∞.
(2) Q(Ki)→ Q(K) and Q̃(Ki)→ Q̃(K) as i→∞ if φ ∈ I is a convex function.

Proof. (1) Let M ∈ Q(K) and Mi ∈ Q(Ki), then {Mi}i≥1 is uniformly bounded. Indeed, by Theorem 3.7 and
(33) , it has

I(K) = Fφ(K,M) = lim
i→∞

Fφ(Ki,M) = lim sup
i→∞

Fφ(Ki,M) ≥ lim sup
i→∞

I(Ki), (35)

it means that {I(Ki)}i≥1 = {Fφ(Ki,Mi)}i≥1 is bounded, namely, {Mi}i≥1 is uniformly bounded by Theorem 3.8.
Let {Mi j } j≥1 be a subsequence of {Mi}i≥1 satisfying lim j→∞ I(Ki j ) = lim infi→∞ I(Ki). By Lemma 2.2, there exists
a sequence of {Mi j } j≥1, called {Mi jk

}k≥1 and a convex body M0 ∈ K0 satisfying Mi jk
→ M0 as k → ∞ and

|M◦

0 | = ωn. By Theorem 3.7, it has

lim inf
i→∞

I(Ki) = lim
k→∞

I(Ki jk
) = lim

k→∞
Fφ(Ki jk

,Mi jk
) = Fφ(K,M0) ≥ I(K). (36)
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By (35) and (36), it has I(Ki)→ I(K) as i→∞. Along the same line, it can prove Ĩ(Ki)→ Ĩ(K) as i→∞.
(2) By Theorem 3.9, it implies that there exist M ∈ Q(K) and Mi ∈ Q(Ki) if φ ∈ I is convex. Let {Mi j } j≥1

be a sequence of {Mi}i≥1. Then

I(K) = lim
j→∞

I(Ki j ) = lim
j→∞

Fφ(Ki j ,Mi j ). (37)

It means that {Fφ(Kik ,Mi j )} j≥1 is bounded. By Theorem 3.8, it implies that {Mi j } j≥1 is uniformly bounded. By
Lemma 2.2, there exists a subsequence {Mi jk

}k≥1 of {Mi j } j≥1 and a convex body M0 ∈ K0 satisfying Mi jk
→M0

and |M◦

0 | = ωn. By Theorem 3.7 and (37), it has

I(K) = lim
k→∞

I(Ki jk
) = lim

k→∞
Fφ(Ki jk

,Mi jk
) = Fφ(K,M0).

Then M =M0. Thus Mi →M as i→∞. Along the same line, it can prove M̃i → M̃ as i→∞.

Proposition 3.11. Let K ∈ K0 be a polytope and φ ∈ I. Suppose that M ∈ Q(K) and M̃ ∈ Q̃(K), then M and M̃ are
polytopes with faces parallel to those of K.

Proof. Let m ∈N and {vi}
m
i=1 ⊆ Sn−1 such that K =

⋂
1≤i≤m{x ∈ Rn : x ·vi ≤ hK(vi)}. Then µF(K, ·) is concentrated

on {vi}
m
i=1 by Lemma 3.3. Define a polytope P with faces parallel to those of K by

P =
⋂

1≤i≤m

{x ∈ Rn : x · vi ≤ hM(vi)},

where M ∈ Q(K). It implies that hP(vi) = hM(vi) for 1 ≤ i ≤ m. Thus,

Fφ(K,P) =
1
α

∫
Sn−1
φ

(
hP(v)
hK(v)

)
hK(v)dµF(K, v)

=
1
α

m∑
i=1

φ

(
hP(vi)
hK(vi)

)
hK(vi)µF(K, {vi})

=
1
α

m∑
i=1

φ

(
hM(vi)
hK(vi)

)
hK(vi)µF(K, {vi})

=
1
α

∫
Sn−1
φ

(
hM(v)
hK(v)

)
hK(v)dµF(K, v)

= Fφ(K,M).

Thus Fφ(K,P) = Fφ(K,M) = I(K) ≤ Fφ(K,vrad(P◦)P). It implies that M = P, so M is a polytope with faces
parallel to those of K. Indeed, since P◦ ⊆M◦, then vrad(P◦) ≤ vrad(M◦) = 1. And φ ∈ I, then vrad(P◦) ≥ 1.
So |P◦| = |M◦

|.
Suppose that M̃ ∈ Q̃(K), define a polytope P̃ with faces parallel to those of K by

P̃ =
⋂

1≤i≤m

{x ∈ Rn : x · vi ≤ hM̃(vi)}.

Then hP̃(vi) = hM̃(vi) for 1 ≤ i ≤ m. By (28), it has

1 =
∫

Sn−1
φ

 F(K)hP̃(v)

F̃φ(K, P̃)hK(v)

 dµ∗F(K, v) =
m∑

i=1

φ

 F(K)hP̃(vi)

F̃φ(K, P̃)hK(vi)

 dµ∗F(K, {vi}),

1 =
∫

Sn−1
φ

 F(K)hM̃(v)

F̃φ(K, M̃)hK(v)

 dµ∗F(K, v) =
m∑

i=1

φ

 F(K)hM̃(vi)

F̃φ(K, M̃)hK(vi)

 dµ∗F(K, {vi}).
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Thus F̃φ(K, P̃) = F̃φ(K, M̃) = Ĩ(K) ≤ F̃φ(K,vrad(P̃◦)P̃). It implies that M̃ = P̃, so M̃ ∈ Q̃(K) is a polytope
with faces parallel to those of K. Indeed, since P̃◦ ⊆ M̃◦, then vrad(P̃◦) ≤ vrad(M̃◦) = 1. And φ ∈ I, then
vrad(P̃◦) ≥ 1. So |P̃◦| = |M̃◦

|.

Let {v1, v2, . . . , vm} be a finite set of Sn−1 for m ∈N, it is proved by some counterexamples that problems
(33) and (34) are not always solvable in the following.

Proposition 3.12. Suppose that K ∈ K0 is a polytope with {v1, v2, . . . , vm} as the unit normal vectors of its faces.
(1) If φ ∈ D and the nth coordinates of v1, v2, . . . , vm are nonzero, then

I(K) = 0, S̃(K) = ∞.

(2) If φ ∈ I, then

S(K) = S̃(K) = ∞.

Proof. (1) For positive numbers a, b > 0, let

Ka = a−1TaBn
2 with Ta = diag(an, 1, . . . , 1),

K̃b = b
n−1

n TbBn
2 with Tb = diag(b−1, . . . , b−1, 1).

It has K◦a = a(Tt
a)−1Bn

2 and |K◦a | = ωn, K◦b = b
1−n

n (Tt
b)−1Bn

2 and |K◦b | = ωn. Since the nth coordinates of v1, v2, . . . , vm
are nonzero, for 1 ≤ i ≤ m, there exist two constants c13, c14 > 0 satisfying

hKa (vi) = max
w1∈Ka

w1vi = max
w2∈Bn

2

Taw2a−1vi = a−1 max
w2∈Bn

2

w2Tavi = a−1
|Tavi|

= a−1
(
a2n(vi)2

1 + (vi)2
2 + · · · + (vi)2

n

) 1
2
≥ a−1

|(vi)n| ≥ a−1c13

and

hK̃b
(vi) = max

w3∈K̃b

w3vi = max
w4∈Bn

2

Tbw4b
n−1

n vi = b
n−1

n max
w4∈Bn

2

w4Tbvi = b
n−1

n |Tbvi|

= b
n−1

n

(
b−2(vi)2

1 + · · · + b−2(vi)2
n−1 + (vi)2

n

) 1
2
≥ b

n−1
n |(vi)n| ≥ b

n−1
n c14.

Since K ∈ K0 is a polytope, there is a constant 0 < c15 < c16 such that c15 ≤ h(K, vi) ≤ c16 for 1 ≤ i ≤ m. By
φ ∈ D, it has

I(K) ≤
1
α

∫
Sn−1
φ

(
hKa (v)
hK(v)

)
hK(v)dµF(K, v)

=
1
α

m∑
i=1

φ

(
hKa (vi)
hK(vi)

)
hK(vi)µF(K, {vi})

≤
1
α

m∑
i=1

φ
( c13

ac16

)
c16µF(K, {vi})

=
c16

α
φ

( c13

ac16

)
µF(K,Sn−1)→ 0

as a→ 0 and
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1 =
∫

Sn−1
φ

 F(K)hK̃b
(v)

F̃φ(K, K̃b)hK(v)

 dµ∗F(K, v)

=

m∑
i=1

φ

 F(K)hK̃b
(vi)

F̃φ(K, K̃b)hK(vi)

 dµ∗F(K, {vi})

≤

m∑
i=1

φ

cα15F(Bn
2)c14b

n−1
n

S̃(K)c16

 dµ∗F(K, {ui})

≤ φ

F(Bn
2)c14cα15

c16
·

b
n−1

n

S̃(K)

 dµ∗F(K, {ui}),

thus S̃(K)→∞ as b→ 0.
(2) Assume that µF(K, {vn}) > 0. For positive numbers δ, ε > 0, let

Kδ = δTδBn
2 with Tδ = Tdiag(1, . . . , 1, δ−n)Tt,

K̃ε = TεBn
2 with Tε = Tdiag(1, . . . , 1, ε−1, ε)Tt,

where T is an orthogonal matrix with vn as its nth column vector. It has K◦δ = δ
−1(Tt

δ)
−1Bn

2 , K̃◦ε = (Tt
ε)−1Bn

2 and
|K◦δ | = |K̃

◦
ε | = ωn. Then

hKδ (vn) = max
w1∈Kδ

w1vn = max
w2∈Bn

2

δTδw2vn = max
w2∈Bn

2

w2δTδvn = δmax
w2∈Bn

2

w2δ
−nvn =

1
δn−1 .

and

hK̃ε
(vn) = max

w1∈K̃ε
w1vn = max

w2∈Bn
2

Tεw2vn = max
w2∈Bn

2

w2Tεvn = max
w2∈Bn

2

w2εvn = ε.

By φ ∈ I, it has

S(K) ≥
1
α

∫
Sn−1
φ

(
hKδ (v)
hK(v)

)
hK(v)dµF(K, v)

=
1
α

m∑
j=1

φ

(
hKδ (v j)
hK(v j)

)
hK(v j)µF(K, {v j})

≥
1
α
φ

(
hKδ (vn)
hK(vn)

)
hK(vn)µF(K, {vn})

≥
c15

α
φ

(
1

c16δn−1

)
µF(K, {vn})→∞

as δ→∞ and

1 =
∫

Sn−1
φ

 F(K)hK̃ε
(v)

F̃ε(K, K̃ε)hK(v)

 dµ∗F(K, v)

=

m∑
j=1

φ

 F(K)hK̃ε
(v j)

F̃φ(K, K̃ε)hK(v j)

 dµ∗F(K, {v j})

≥ φ

 F(K)hK̃ε
(vn)

F̃φ(K, K̃ε)hK(vn)

 dµ∗F(K, {vn})

≥ φ

F(Bn
2)cα15

c16
·
ε

S̃(K)

 dµ∗F(K, {vn}),
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thus S̃(K)→∞ as ε→ 0.

4. The Orlicz and Lq geominimal compatible functionals

In this section, we will introduce the Orlicz and Lq geominimal compatible functionals based on the
Orlicz Lφ mixed compatible functionals in Definition 3.6. And some properties of them, such as the
isoperimetric type inequalities associated with the Lq geominimal compatible functional will be studied.

4.1. The Orlicz geominimal compatible functional

Let S0 ⊂ S0 be a nonempty subset, S1 = {φ : (0,∞) → (0,∞)|φ(t−1/n) is strictly convex} and S2 = {φ :
(0,∞)→ (0,∞)|φ(t−1/n) is strictly concave}. Define

I0 = I ∩ S1, D0 = D∩ S2, D1 = D∩ S1. (38)

Definition 4.1. Let K ∈ K0.
i) The nonhomogeneous Orlicz geominimal functional Gφ(K,S0) of K with respect to S0, is defined by

Gφ(K,S0) = inf{Fφ(K,vrad(L)L◦) : L ∈ S0} if φ ∈ I ∪D1, (39)

Gφ(K,S0) = sup{Fφ(K,vrad(L)L◦) : L ∈ S0} if φ ∈ D0.

ii) The homogeneous Orlicz geominimal functional G̃φ(K,S0) of K with respect to S0, is defined by

G̃φ(K,S0) = inf{̃Fφ(K,vrad(L)L◦) : L ∈ S0} if φ ∈ I ∪D0, (40)

G̃φ(K,S0) = sup{̃Fφ(K,vrad(L)L◦) : L ∈ S0} if φ ∈ D1.

For simplicity, let

Gφ(K) = Gφ(K,K0), G̃φ(K) = G̃φ(K,K0) if S0 = K0;

Hφ(K) = Gφ(K,S0), H̃φ(K) = G̃φ(K,S0) if S0 = S0.

Then G̃φ(c17K) = cα−1
17 G̃φ(K) and H̃φ(c17K) = cα−1

17 H̃φ(K) for some constant c17 > 0. Since K0 ⊂ S0, it implies
that

Gφ(K) ≥ Hφ(K) if φ ∈ I ∪D1; Gφ(K) ≤ Hφ(K) if φ ∈ D0. (41)

G̃φ(K) ≥ H̃φ(K) if φ ∈ I ∪D0; G̃φ(K) ≤ H̃φ(K) if φ ∈ D1. (42)

4.2. The Lq geominimal compatible functional

In this section, we will introduce the Lq geominimal compatible functional and discuss some properties
of them. Based on the Orlicz Lφ mixed compatible functional, let φ(t) = tq in Definition 3.6, we get the
following Lq mixed compatible functionals:

Fq(K,L) =
1
α

∫
Sn−1

(
hL(v)
hK(v)

)q

hK(v)dµF(K, v) for L ∈ K0,

Fq(K,L◦) =
1
α

∫
Sn−1

(
1

hK(v)ρL(v)

)q

hK(v)dµF(K, v) for L ∈ S0.
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Definition 4.2. Let K ∈ K0 and −n , q ∈ R.
i) The Lq geominimal compatible functional Gq(K) with respect toK0, is defined by

Gq(K) = inf
{
Fq(K,L)

n
(n+q) |L◦|

q
(n+q) : L ∈ K0

}
if q ≥ 0,

Gq(K) = sup
{
Fq(K,L)

n
(n+q) |L◦|

q
(n+q) : L ∈ K0

}
if − n , q < 0.

ii) The Lq geominimal compatible functional Hq(K) with respect to S0, is defined by

Hq(K) = inf
{
Fq(K,L◦)

n
(n+q) |L|

q
(n+q) : L ∈ S0

}
if q ≥ 0,

Hq(K) = sup
{
Fq(K,L◦)

n
(n+q) |L|

q
(n+q) : L ∈ S0

}
if − n , q < 0.

Remark 4.3. (1) For s > 0, it has Gq(sK) = s
n(α−q)

n+q Gq(K) and Hq(sK) = s
n(α−q)

n+q Hq(K).

(2) If q , −n, then Gq(Bn
2) = Hq(Bn

2) = F(Bn
2)

n
(n+q) |Bn

2 |
q

(n+q) .
(3) If q , 0,−n, then

Gq(K) = F(K)
(q−1)nq
q(n+q) ω

q
n+q
n G̃φ(K)

nq
n+q , Hq(K) = F(K)

(q−1)nq
q(n+q) ω

q
n+q
n H̃φ(K)

nq
n+q . (43)

For K ∈ A0 and v ∈ Sn−1, define

1q(K, v) = hK(v)1−qu(ν−1
K (v))1(v)

and

ξq =
{
K ∈ A0 : exists L ∈ S0, s.t. 1q(K, v) = ρL(v)n+q

}
, q , −n,

where u is the function defined in (21) and 1 is the curvature function defined in (13).

Theorem 4.4. Let K ∈ ξq and q , −n, then

Hq(K) = α−
n

n+q n−
q

n+q

∫
Sn−1
1q(K, v)

n
n+q dσ(v). (44)

Proof. For L ∈ S0.
(1) If q = 0, then H0(K) = 1

α

∫
Sn−1 hK(v)dµF(K, v) = F(K), the conclusion is true.

(2) Since the proof methods of (44) are the same when q > 0 and q < 0, we just prove the case q > 0. Let
K ∈ ξq and v ∈ Sn−1, there is M ∈ S0 satisfying ρn+q

M (v) = 1q(K, v). Then by Definition 4.2,

α−
n

n+q n−
q

n+q

∫
Sn−1
1q(K, v)

n
n+q dσ(v) = Fq (K,M◦)

n
n+q · |M|

q
n+q ≥ Hq(K). (45)

On the other hand, by Hölder inequality, it has

α−
n

n+q n−
q

n+q

∫
Sn−1
1q(K, v)

n
n+q dσ(v) = α−

n
n+q n−

q
n+q

∫
Sn−1

(
1q(K, v)ρq

L(v)ρ−q
L (v)

) n
n+q dσ(v)

≤

 1
α

∫
Sn−1

1q(K, v)

ρq
L(v)

dσ(v)


n

n+q

·

(
1
n

∫
Sn−1
ρn

L(v)dσ(v)
) q

n+q

= Fq (K,L◦)
n

n+q · |L|
q

n+q ,
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with equality if and only if ρn+q
L (v) = 1q(K, v) for v ∈ Sn−1. It implies that

α−
n

n+q n−
q

n+q

∫
Sn−1
1q(K, v)

n
n+q dσ(v) ≤ Hq(K). (46)

By (45) and (46), it has

Hq(K) = α−
n

n+q n−
q

n+q

∫
Sn−1
1q(K, v)

n
n+q dσ(v).

Motivated by Theorem 4.4, we can consider the compatible functional curvature image CqK ∈ S0 of
K ∈ ξq such that

1q(K, v) =
α

n|CqK|
ρn+q
CqK(v) (47)

and define

ηq =
{
K ∈ A0 : exists L ∈ K0, s.t. 1q(K, v) = ρn+q

L (v)
}
⊂ ξq

for v ∈ Sn−1 and q , −n. Then

Hq(K) = Fq(K, (CqK)◦)
n

n+q |CqK|
q

n+q . (48)

Proposition 4.5. Let q , −n and K ∈ ηq, then Gq(K) = Hq(K).

Proof. Since K ∈ ηq, there is L ∈ K0 satisfying 1q(K, v) = ρn+q
L (v) for v ∈ Sn−1. By (47), it has

α
n|CqK|

ρn+q
CqK(v) = ρn+q

L (v)⇒ CqK =
(

n|CqK|
α

) 1
n+q

L ∈ K0.

If q = 0, the conclusion is true. If q > 0, it has Hq(K) ≥ Gq(K) by (48) and CqK ∈ K0. And by Definition 4.2,
it implies that Gq(K) ≥ Hq(K). Thus Gq(K) = Hq(K). If −n , q < 0, by Definition 4.2 and (48), it implies that
Gq(K) ≤ Hq(K) ≤ Gq(K). So the conclusion is true.

Proposition 4.6. Let K ∈ K0.
(1) If −n < t < 0 < r < s, or −n < s < 0 < r < t, then

Gr(K) ≤ Gt(K)
(r−s)(n+t)
(t−s)(n+r) Gs(K)

(r−t)(n+s)
(s−t)(n+r) .

(2) If −n < t < r < s < 0, or −n < s < r < t < 0, then

Gr(K) ≤ Gt(K)
(r−s)(n+t)
(t−s)(n+r) Gs(K)

(r−t)(n+s)
(s−t)(n+r) .

(3) If t < r < −n < s < 0, or s < r < −n < t < 0, then

Gr(K) ≥ Gt(K)
(r−s)(n+t)
(t−s)(n+r) Gs(K)

(r−t)(n+s)
(s−t)(n+r) .
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Proof. For K,L ∈ K0, s, r, t ∈ R such that 0 <
t − r
t − s

< 1, by Hölder inequality, it has

Fr(K,L) =
1
α

∫
Sn−1

hr
L(v)h1−r

K (v)dµF(K, v)

≤
1
α

(∫
Sn−1

hs
L(v)h1−s

K (v)dµF(K, v)
) r−t

s−t

·

(∫
Sn−1

ht
L(v)h1−t

K (v)dµF(K, v)
) r−s

t−s

= Fs(K,L)
r−t
s−t Ft(K,L)

r−s
t−s . (49)

(1) If −n < t < 0 < r < s, then (r−s)(n+t)
(t−s)(n+t) > 0 and (r−t)(n+s)

(s−t)(n+r) > 0. By Definition 4.2 and (49), it has

Gr(K) = inf
L∈K0

{
Fr(K,L)

n
n+r |L◦|

r
n+r

}
≤ inf

L∈K0

{

(
Ft(K,L)

n
n+t |L◦|

t
/ n+t

) (r−s)(n+t)
(t−s)(n+r)

·

(
Fs(K,L)

n
n+s |L◦|

s
n+s

) (r−t)(n+s)
(s−t)(n+r)

}

≤ sup
L∈K0

{Ft(K,L)
n

n+t |L◦|
t

n+t }
(r−s)(n+t)
(t−s)(n+r)

· inf
L∈K0

{Fs(K,L)
n

n+s |L◦|
s

n+s }
(r−t)(n+s)
(s−t)(n+r)

= Gt(K,L)
(r−s)(n+t)
(t−s)(n+t) Gs(K,L)

(r−t)(n+s)
(s−t)(n+r) .

The case −n < s < 0 < r < t can be proved follow along the lines.

(2) If −n < t < r < s < 0, then (r−s)(n+t)
(t−s)(n+r) > 0 and (r−t)(n+s)

(s−t)(n+r) > 0. By Definition 4.2 and (49), it has

Gr(K) = sup
L∈K0

{
Fr(K,L)

n
n+r |L◦|

r
n+r

}
≤ sup

L∈K0

{

(
Ft(K,L)

r−s
t−s Fs(K,L)

r−t
s−t

) n
n+r
|L◦|

r
n+r }

≤ sup
L∈K0

{Ft(K,L)
n

n+t |L◦|
t

n+t }
(r−s)(n+t)
(t−s)(n+r)

· sup
L∈K0

{Fs(K,L)
n

n+s |L◦|
s

n+s }
(r−t)(n+s)
(s−t)(n+r)

= Gt(K)
(r−s)(n+t)
(t−s)(n+r) Gs(K)

(r−t)(n+s)
(s−t)(n+r) .

By transposing s and t, the case −n < s < r < t < 0 can be proved.
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(3) If t < r < −n < s < 0, then (r−s)(n+t)
(t−s)(n+r) > 0 and (r−t)(n+s)

(s−t)(n+r) < 0. By Definition 4.2 and (49), it has

Gr(K) = sup
L∈K0

{
Fr(K,L)

n
n+r |L◦|

r
n+r

}
≥ sup

L∈K0

{

(
Ft(K,L)

r−s
t−s Fs(K,L)

r−t
s−t

) n
n+r
|L◦|

r
n+r }

≥ sup
L∈K0

{Ft(K,L)
n

n+t |L◦|
t

n+t }
(r−s)(n+t)
(t−s)(n+r)

· sup
L∈K0

{Fs(K,L)
n

n+s |L◦|
s

n+s }
(r−t)(n+s)
(s−t)(n+r)

= Gt(K)
(r−s)(n+t)
(t−s)(n+r) Gs(K)

(r−t)(n+s)
(s−t)(n+r) .

By transposing s and t, the case s < r < −n < t < 0 can be proved.
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