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Study of generalized fractional drift-diffusion system in Besov-Morrey
spaces

Halima Srhiri?, Achraf Azanzal®**, Chakir Allalou?

?Laboratory LMACS, FST of Beni-Mellal, Sultan Moulay slimane University, Morocco.

Abstract. The main focus of this article is to investigate the generalized fractional drift-diffusion system
with small initial data in Besov-Morrey spaces. Our goal is to establish the global well-posedness and
asymptotic stability of mild solutions for this system. The results obtained in this study have broad
applicability in the modeling of various types of fractional parabolic systems. In other words, the techniques
developed here can be useful in studying similar types of systems in the future.

1. Introduction

Our article is based on the study of the global existence of mild solution of fractional drift-diffusion

problem with initial data. we also show the asymptotic stability and analyticity of solutions with respect
to spatial variables in Besov-Morrey spaces.

This is the fractional drift-diffusion system that we are interested in our study

20+ (=A)20 = —A@V(-A)"(w —v)) in R" x (0, ),
dw + (=A) 20 = AwV(=A)"(w —v))  in R" x (0, ), (1)
o(x,0) = vo(x), w(x,0) = wy(x) in R”,

where the variables v and w are used to represent the unknown densities of negatively and positively charged
particles, respectively. (—A)™ is the electric potential and is determined by the Poisson equation. They
parameters are very important because they control how charges move in the semiconductor material. They
determine the electrical and optical characteristics of the material, as well as the performance of electronic
devices made from it. Generaly they coefficients are important because they allow for accurate modeling
of charge behavior in the material, which can help with the design and optimization of electronic devices.

The system (1) describes the transport of charged particles in a semiconductor material. It is an extension
of the classical drift-diffusion model that takes into account the non-local and memory effects of the

charge transport, the transport of charge carriers is described by a set of partial differential equations that
incorporate fractional derivative terms.
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The fundamental solution of system (1) can be expressed in IR” for (—A)™ by

1 fmw(y)—v(y)dy 03,

n(n—2)w, ; |X _ y|n—2m

(=A)"(w - v)(x) =
5 e @) —v(y) log x — y|"dy n=2.

By applying Duhamel’s principle, we can transform the system (1) into a set of integral equations. This
reduction allows us to analyze the system’s behavior in a more manageable form and provides insights into
its long-term dynamics. By studying the solutions to these integral equations, we can better understand
how the system responds to different initial conditions and external stimuli. Overall, the use of Duhamel’s
principle represents a powerful tool for investigating the behavior of complex systems described by partial
differential equations:

(t) = Sp(t)vg + Blo, w — v),

w(t) = Sa(t)wg + B(v,v — w), )
with:

Salt) = exp™*,
B(v,w —v) = — fot S.(t = V[0V ((-A)"™(w — v))](7)dr.

In the case where @ = 2, the system (1) corresponds to the usual drift-diffusion system which has
been well treated and developed in [1, 21], the authors showed existence results of mild solution, as well
as time dependent convergence rate estimates of stationary solutions. Specifically, they investigate the
asymptotic behavior of the solutions as time approaches infinity, and establish a convergence result under
certain assumptions on the initial data. The authors also discuss the implications of their results for the
modeling of semiconductor devices and other physical systems. Overall, the article provides insights into
the behavior of solutions to the drift-diffusion Poisson system and its applications in the physical sciences.
In the case of w = 0, the system (1) reduces to the nonlinear system called the Keller-Segel model of
chemotaxis [10], the author to prove that this system admits a global solution if 1 < a < 2. He also
provides insights into the behavior of the solutions, including the formation of singularities, and discusses
the implications of the model for the study of biological processes. Overall, the article contributes to the
understanding of the fractional Keller-Segel model and its applications in mathematical biology. Same
system was studied in [8, 9] where the authors showed the global existence of solution in case a = 2.

In [27], the authors gave a stability and existence for the system (1) in critical Besov spaces.

Our study make a general study of (1) in Besov-Morrey spaces (see e.g. [2-6, 14, 15, 22], and reference
therein).

Generaly, the fractional drift-diffusion system is used to study the behavior of charge carriers in various
semiconductor devices, such as solar cells, photodetectors, and transistors. It can provide insights into the
efficiency and performance of these devices, and help in the design of new and improved semiconductor
materials and devices.

The study of the fractional drift-diffusion system is an active area of research in the fields of applied
mathematics and semiconductor physics, and it has many practical applications in the development of new
technologies.

The plan of this article is organized as follows. In Section 2, we recall the definitions of spaces; Morrey
and Besov-Morrey via semigroup S,(t) and some important lemmas for the proofs of the theorems. Section
3 devoted to our main results, the proof is stated in the same section.

2. Preliminaries

To make the paper self contained, we recall the definitions of the spaces N;

. (]Rﬁr’“) . For this we need
to define a Morrey spaces and a Besov classical spaces.
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Definition 2.1. ([23]) Let 1 < p < 0o and 0 < u < p. The Morrey space Miis defined to be the set of all u-locally
Lebesgue-integrable functions f € IR" with the norm:

11
Ifllyg = sup Byl 4 flugsy) < oo,
By
where the supremum is taken over all balls By in IR".
Remark 2.2. [24]. Obviously we have M}, = L and M = L*.

As a consequence of Holder’s inequality we conclude monotonicity with respect to u, i.e.,
fo<u<w<p<oo, then M, M,

Definition 2.3. ([17].)(Classical Besov spaces via semigroup Su(t))
Lets <0, 1<p,g<oco.neNand0<a < co.
Then v € B, , if and only if:

(f (t:’s”Sa(t)U”LP)th)q < 00 if1<g<oo,
0

supyq £+ [1Sa (D)ol if q=co.

Definition 2.4. (Besov-Morrey spaces via semigroup Sy(t))
Lets <0, 1<u<p,q<+coand0<a <oo.Thenv e N, if and only if we have:

( f <ti||8a<t>v||Mz>th)q <o ifl<g<oo,
0

SUPy.o t%”Sa(t)U”Mﬁ if g = oo.

Definition 2.5. Letn >2, 1<a <2n and max{l, 2} <u <min{n, %”}.
We define the space X, by:

X, = C.([0,00), Njoori " (R™) 0 {v 1€ C((0,00), M{MR™) and sup 5% ol yp ey < oo},
>0

with the follwing norm:

ol -

n
au +

[ollx, = sup 0]l -os o220 + sUP H™
t>0 preott t>0

The following lemma provides a reminder of the M, — M. estimates for the semigroup operator S,(t):

Lemma 2.6. Let a > 1and 1 <u <r < p < co. Then for any f € M;, we have

ISa(O) fllye < Cln, )™ G Dl fllye,

and
1

I=2)ESa(®) fllpg < Clrt, ) 5G] fll .
In the following lemma we recall the classical Hardy-Littlewood-sobolev inequality:

Lemma 2.7. Forany 1 < u < p < n, the nonlocal operator (—A)~2 is bounded from M{(R") to Mzu(nfu)(]R”), ie.,
for f € M(R") we have:
=87 Fllae, e < COL ALy
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Lemma 2.8. Letvg € N, oo ¢ wt2-am (R™). Then S,(t)vg € X, and

prool

Sa(Bvollx, < Clm, ) [[voll st 42-2m -

peou

—a+ 1 +2-2m
N,

Proof. Since vy € N, o (R"), Definition 1.1 and Lemma 2.1 yield that

ISa())00ll - oa-2n = SUP T 1Sa(5)SalBrullpg

oot 5>0

_n oy 1-2m
<C(n,a) sups1 wt e ||Sa(S)Uo||MP C(n, a)lIUoH a2 om
s>0 poou
1- 2m

sup 175 5 1S (Bv0llyg = 100l a2
>0 preott

—a+3 +2 2m

Therefore, S,(t)vy € L® ([O ), Npoori' (IR”)) and t-at

1 2m

S.(Hvy € L2((0, ), M (R")). Moreover,

—a+2+2-2m

by using the similar argument of [7] we see that the map t = S,(t)vo from [0,00) to N, o (R™) is
continuous for f > 0 and weakly continuous for ¢ = 0, so that S,(f)vy € C. ([0, ), N,, f:u e (]R”)) Besides,

it is clear that Sy(f)oy € C((0,00), M, (R")) due to vy € Nyoori " (R, then also #-# % Sy(Hoy €
C((0, ), M, (R™)).
Hence, S,(t)vo € X,,. This completes the proof of Lemma 2.8.
O

Now, the following proposition needed to show the existence and uniqueness result for an abstract
operator equation in a Banach space:

Proposition 2.9. ([7]) Let X be a Banach space and B : X x X — X is a bilinear bounded operator, and ||.||x being
the X-norm. Suppose that for any vy, v, € X, there exists a constant C such that

1B(v1, v2)llx < Cllvillxlloz2llx-

Then for any y € X, such that ||yllx < € < é, the equation v = y + B(v,v) admit a solution v € X. Moreover,

this solution is the only one, such that ||vllx < 2¢ and depends continuously on y in the following sense: if
l7llx <e, @=17+B(@,7), |[0llx <2¢. Then

o - ally < ——Ily - g
OIS T eV Y
Lemma 2.10. Let (v, w) € X,,. Then B(u,v) € X, and

IB(@, w)llx, < C(n, a, w)ll(v, w)Ilx -

Proof. We have:

1B, )l -z = sup s’ w5 |S4(5)B(@, W)l pp
s>0
= sups'w@ T || = Su(s) f Salt = DV.[oV((=A) " w0)|(T)d]lp
s>0
t
< f sups' = 5 [184()Sa(t — TIV.[0V((—A) " w0)|(T)d ]l g
0 s>0
For 0 <s <t -1, we use Lemmas 2.6 and 2.7, we obtain:
sups' =3 5 [184(5)Sa(t — TV.[0V(—A) "w)|()dll g

>0
1-2m

<C(n,a)t - T)l_ﬁJ' [1Sa(t = T)V.[oV((-A)~ w)](T)dTIIMn

< C(m,a)(t — )" 5 (= 1) % |ollpg ol
Fors>t—-1
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1-2 +l —2m

sups 15a(8)Sa(t = )V.[oV((=A) " w)](T)d7l| g
= sug)s TEEEISa(s + £ = DV.[0V((=A) " 0)](D)d]l
S>
<C(n,a) su(l]os (st — )t 2m||v||/\/(r’||V(( A) ")l pe
S> n-u u
< Clnau)(t =05 ollyg el sup(1+ o)
S T

] 2m

< Cln, o, u)(t = D ol yg ol
So we obtain:

b
||B(U w)” —a+B42-2m S C(Tl a, M)H'UHX ||ZU||X“ f (t— ’1’)1 auf[ 2+aud’l’
< Cn, a, w)lvllx, llzoll,
< Cln,a, w0, W),

By using the standart argument of [7], it remains the continuity of B(v, w)(t) for t > 0 and weak continuity
—a+54+2-2m

for t = 0, so we omit it here. Hence, we have proved that B(v, w) € C. ([0 00), Ny coi (IR”)) and

sup IB@, W)l s 220 < Clrt, o, w)ll0llx, ol < Cln, a, w)ll(v, w)l,
>0 p it

By utilizing Lemma 2.6 and Lemma 2.8, we are able to obtain the following result

f
1B, )l = H— [ su=9 - oy arne

P
M,
1-2m

sC(n,a)fO(t—T)é‘u* Clellye [V (D)), dr

nuf(n—1)

l Zm

T—2+2n/(au)d,l_

t
SC(n,a,M)Ilvllxullwllxuf(t—T)
0

1-2m

< C(n, o, )t~ ol Xoleollx,

1—2m

< C(n, a, ' == = |0, w)l,-

This implies that

1 2m

_n
sup tl mt

1B, w)llpe < Cl, a, wlvlix, lwlix, < Cn, a, w)llw, w)ly, -
t>0

Combining the two above estimates to get the result of Lemma 2.10. O

3. Main Results

In this section, we put the most essential results. First result concerning the global existence of mild
soultion of system (1).

Theorem 3.1. Letn >2, 1<a <2nand max{l, 2} <u <min{n, @}.

Assume that (vy, wg) € pf:u +2_2m(]R”) Then there exists € > 0 such that ||(vo, wo)ll B2

< ¢, the system
Ny ey = Y

(1) admit a unique global mild solution (v, w) € X,, such that ||(v, w)||x, < 2¢.

—a+y +2—2m

Remark 3.2. o C,([0,00), N, o, ./ (IR™)) denotes the set of bounded maps from [0, %) to N, f:u - 2m(IR”), which
are continuous for t > 0 and weakly continuous for t = 0.
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o The solution depends continuously on initial data in the following sense: Let (3, @) be the solution of (1) with initial
data (0y, W) such that
||(vo,w0)||Np-;:lg+z_zm(Rn) <e.

Then there exists a constant C, such that

||(Z) — 0o, W — ZT)())”X“ < C”('U — Ty, w — Zb(])HN—AH-%-#Z—Zm(]Rn).

proou

o If (3, @) belond to S(R") in the space Ny font ™ 2" (R"), then (v,w) € C([0, 00), Nyyeort 2 2" (R")).

p,eosit
o Under the hypotheses of Theorem 3.1, we assume further that vy and wy are homogeneous functions with degree

—a, then the unique global mild solution ensured by Theorem 3.1 is the so-called self-similar solution.
Proof. The proof of Theorem 3.1 is based on Proposition 2.9 and the following lemma:
—a+4+2-2m

Lemma 3.3. Let vy € Np/m,u (R™). Then S,(H)vg € X, and

Sa(B)vollx, < C(m, allvoll, -as2-2n
poo,u

(R™)
Proof. Since vy € Np_, z:rj e (R™), then by using Definition 2.4, and Lemma 2.6, we have:
ISa(Bvoll s sz ., =sUps & [|Sa(s)Sa(B)voll pp
Nooad R 50 '
_n o 1-2m
= sups' w18 4(5)Sa(E) ool y¢
s>0
_n o 1-2m
<C(n,a) sup stmat ”Soc(t)vO”M’l’; =C(n, a)||UO||N—a+L—Vf+2—2m(Rn).
s>0 oo

—a+4+2-2m 1=2m

Since Sa(t)vg € L([0, 00), N}y o, (R™) and =2+ =" S, (v € L2([0, 00), M., (R")). Moreover, by using
the similar argument of Proposition 3.11 of [7] we see that the map t — S,(t)vp is continuous from [0, c0) to
—a+5%+2-2m —a+4+2-2m

N, o, (R") for t > 0 and weakly continuous for t = 0, s0 Sa(t)vg € C.([0, ), N, o i (IR™)). Besides,

it is clear that S,(H)vy € C((0,00), M{(R")) and =3+ %" S,(t)vy € C((0, 00), ME(R™)). This completes the
proof of Lemma 3.3.

Now, using Lemma 2.10, we have:

o, w)llx, < (Sa(t)vo, Sa(B)wo)ll Vo

2
oy + COt w0, W)
Finally, Proposition 2.9 with Lemma 3.3 leads to Theorem 3.1. [J
0

Theorem 3.4. Under the hypotheses of Theorem 3.1. Suppose further that (v, w) and (3, @) are two mild solutions of
system (1) corresponding to initial data conditions (vo, wo) and (0o, Wo), respectly. Then the two following conditions
are equivalent:

e lim ”Sa(t)(v() — T, wo — ZZ)O)H —a+ L42-om = 0
t—s00 N,

proou

. ~ ~ p—_ 1-2; ~ ~
* im (”(UO — B0, W0 — W)l s 22 + £ 730 |00 — B, wo — wO)HM”) =0
t—s00 N, u

p,oo,u

Proof. Let (v, w) and (7, @), respectively be two mild solutions of system (1) constructed in Theorem 3.1 with
initial conditions (v, w) and (9, @), respectively. From Theorem 3.1, we have:

l(v, w)llx, < 2¢ (3.1)

and
(3, D)llx, < 2e.
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—a+4+2-2m

Lemma 3.5. Suppose that (v, w), (0, @) € N, oo . If the condition

lim [ISa(£)(v0 = To, wo = W)l -+ 2-2m = O
t—o0 b,

,00,1

holds, then

1-2m ~ ~.
« IS« (t)(vo = Do, wo — Wo)ll 5 -

lim 1=+
t— 00

Proof. By Definition 2.1, we have:
1-2m

= |Sa(t)(©o — Do, wo — @Wo)ll o

a;

tl—lu+

1-2m

« |ISa(t)(wo — o, wo — @Wo)||r

= suplﬁl%l'_%tl_wiﬁ
B

1-2m t _n 4 1-2m t t ~ ~
“ 51119(5)1 an t ||Sa(§)5a(§)(vo — T, wo — Wo)ll
t>0

< supI,Blef%' x 21wt
B

12 t . =
< 21 ”Z¢+ “"" ”Sa(z)(’z)o — 0p, Wy — wo)“N—LH%ﬂme

pooou

This proves Lemma 3.5. O

If we subtract the integral system for (&, @), we have
v—7=8,t)(vo — D) +B(v—-7,w—v)+B(@,(w—) — (v-17)),
w—W = S,y(t)(wy — @Wy) + B(w — D, v —w) + B(W, (v-—70) — (w—0)).
First we calculate the norm: ||v — 7| p

—a+ 1k +2-2m

||ZJ - ’5”N—a+%+272m < ”S(x(t)(vo - 50)||N};$u§+272m + ||B(U -0, W — U)”Np,m,u

p,oo,u

+IB(@, (W = @) = (© = D))l -os 220
P
< 18a()(@0 = Bo)ll o g42-2n + Lo + Lo
proo,u

For estimate L;(i = 1,2), we split the time integral fot into foét + fbi where 6; € (0, 1).
For L, we use the Definition 2.3, we have

Ll = ||B(U - ﬁ,w - v)||N—a+%+2—2m

pioou

t
oll fo Sa(t = V.[(v = D)V((=A) " (w - v))(T)d7]] Ny

= sups® i 4TS, (s) fo Salt = DV.[(@ = DV((=A) " (@ ~ ))|(D)dllpg

>0

O} 0 2, m t 3 o ~
s[ I+ ]SUPS B8, [ Su0-0VIE- V() " - D@y

>0
=1 +1D.
For I;, using Lemma 2.6 and Lemma 2.7, we have

6225



H. Srhiri et al. / Filomat 38:17 (2024), 6219-6235 6226

Ot
I = f sup SR | Sal9)Salt = TV - [(0 = D)V (-A) " (w - v))] (7)|| e 4T

f (t =)' 22 B (S o — 6l ) (T o — ol ) dT

< Cgf (t _ ’L’)l 2n/(aP)T—2+§Z Zf;lm ( 1+H_1 e ||U UHM”)
0

2+ 2n _ 2-4m

0
< Csf (1- S)l—Zn/(ap)s_ 2n_ 2=t ((ts)_l*'u:*lu_lf"

(ts) = B(t)ll 5y ) .

0
Here we made the change of variables 7 = ts and used the boundedness of (v, w), we have:

= [ sups E 8,08, 0V - [0 =V (-0 "0 = )] 0]

5t s>0

t
_ _ 2n _ 2-4m 4m _ n _ 1= 2m
<Ce | (t=)-2nlan -2+~ (T a5 o - U”M’“)
ot

<Ce [ sup 7w = lo(r) - U(T)IIMp]
Ot<T<t
Hence, combining the two last inequalities, yield that

0
Ly <Ce f (1= )" 2P 55 ()85 o) — (19| ) ds
0

1+ _ 1= Zm

sup 7 « |lo(t) — U(T)HMW}

+ Ce

Ot<t<t

Similarly,

0
L, <Ce f (1 =)' 2 @2 G52 ((25) (0 - B) (), (w0 — @) (E))ll gy ) s
0

+ Ce[sup T E (0 - 9)(n), (w - w)(T))”MP]

Ot<t<t

Next, we calculate the norm [[v — 3| ,p :

lo = llyp <IKSa(t) (@0 = B0)llyg + 1B = 8,w — o)l

+IB(@, (w = @) = (0= 0)llpp = Jo+J1 + ]2

By Lemma 3.3, it is clear that

+ 1= Zm 1-2m

@ ||Sa(t) (UO - UO/ wWo — wO)”wa%ﬂ—Zm .
poou

tl o+ ] <2—1+——

Using a similar line of reasoning to the previous argument, we are able to obtain an estimate for the term
J1 as follows:
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t
Ji= H— f Su(t =)V - [(v = D)V ((-A) " (w — v))] (1)dt

M,

Ot
1-2
<c[f fé] (t— 1) a5 o = Ol ppllw — ol ypdT
t
ot 1-2; 2 2-4 12,
< Ce [f +f] )T RS (e o — gl ) d
0 ot

<Cet 57_]%(1—5)1+£—1m34+$ ()7 o(ts) — 0ts)lpg ) ds
0

+ Cet 1+ a"[sup T 1”nvu>—zmeAw]
ot<t<t
This means that

frat S, <Cgf (1—s) a2 i ((ts)—lhii S o(ts) — UUS)HM”)

+Ce [ sup T i~ = lo(t) - U(T)”MV]

ot<T<t

In the same way, we have

1-2m I 1- Zm 2n _ 2-4m 1-2m
ﬂ“‘%ﬁ&fﬂ TSR (1) T (v - B)(ts), (w — D)(ES))llpg ) s

+Ce [ sup T 5T |(0 - 9)(7), (w — w)(T))”M”]

ot<T<t

Therefore, by combining the two above inequality, we obtain

1-2m

o= Bll e + £ 5 0 = Bl < CIS(8) (00 = B0l v

.+cgj“a ) 2@ 2T (k) TR (0 — D)(8s), (w — @) (1)) g ) ds

n _1-2m 24 2n _ 2-4m _ 1= Zm

+Ce | 1—-s)ym @ g m 2 ((ts)‘1+

HI(@ - 9)(ts), (@ = D)(E))ll ) ds

T (T))IIME} : (3.2)
St<T<t

To estimate w — @ we use the same thing as the estimation of v — &, we omit it here.
Now, To simplify the proof of Theorem 3.4, we introduce the two auxiliary functions

+Ce [ sup Tt

h(t) = ISa(t) (vo — o, wo — Wl et 52-2m

Dcll
1-2m ~ ~
g(t) = li(w — 3,0 — wmfwﬂm+téﬁaWw—aw—wmw-
poou

We first assume that the first term of equivalent in Theorem 3.4 holds. Then from Lemma 2.7 and (3.1) we

can easily see that
h(t) € L= ([0, o)) and tlim h(t)=0. (3.3)

To prove the second term of equivalent in Theorem 3.4, we set

M =limsupg(t) = lim supg(t)

00 keN k— o0 >k
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It is obviously sufficient to prove that M = 0. Note that M is nonnegative and finite according to (3.1).
By combining the estimate (3.2) with a similar estimate for w — @, we can obtain the following result.
Through the use of appropriate mathematical techniques and the application of the Lebesgue dominated
convergence theorem, we can establish a relationship between the estimates and gain insights into the
long-term behavior of the system. Additionally, the fact that M = 0 as given in (3.3) plays a key role in the
deduction of this result

M < C(n,a,u)e(F(0) + 1)M,  (3.4)

where F(0) is defined by

O 0
F(6) = f (1 —s)l a2 S s + f (1 —s) w2 T s,
0 0

Note that, under the hypotheses of Theorem 3.4, all integrals in F(5) are convergent, and lims—,0F(6) = 0.
Hence, if ¢ is sufficiently small such that C(n,a,u)e < 1, then we can choose 6 small enough, such that
C(n, a, u)e(F(0) + 1) < 1. This means that M = 0 by (3.4). The proof of second term of equivalent in Theorem
3.4 is complete. Conversely, we assume that the second term of equivalent in Theorem 3.4 holds. Observe
that from (3.1),

gty € M0, 0]) and  lim g(t)=0.  (3.5)

We need to prove the first term of equivalent in Theorem 3.4. It suffices to repeat the above calculations to
obtain that
h(t) < g(t) + C(n, o, u)eF((0) + 1)g(t).  (3.6)

Since C(n, o, u)e(F(6) + 1) is bounded and independent of t, the first term of equivalent in Theorem 3.4
follows immediately from (3.5) and (3.6).
That complete the proof of Theorem 3.4. [

Remark 3.6. e Interpretation of Theorem 3.4 reveals that it can be viewed as an asymptotic stability result under
certain conditions. Specifically, if the initial data (30, W0) is restricted to a neighborhood of (3, W) and satisfies the
first term of equivalence as given in Theorem 3.4, then the system can be considered asymptotically stable.

o The condition the first term of equivalent in Theorem 3.4 holds true if the difference of the initial data (vo— ¥y, wo— o)
is not too singular. In fact, it is easy to verify that the condition of the first term of equivalent in Theorem 3.4 is

satisfied if (vo — Do, wo — Wo) belongs to the closure of S(R") in the space N,; f(j +2_2m(]R”).

Theorem 3.7. Let n > 2, 1 < a < 2n and max{1, 1} < p < min{n, 2}. Assume that (vo, wo) € N;f:uﬁﬂ_zm(]l{”)
and (v, w) be a mild solution of the system (1) with the initial data (vy, wo). Assume the further there exist two positive
constants Ky and Ky such that

sup [[(v(t), W) -wrt2om - < Ky,
0<t<T Npeou ®R")

and

1-2m

@), Wbl < Ko

_n
sup '~
0<t<T

Then tere exists two positive constants N1 and N, depending of K1, Ky, n,  and u such that

n

@Eo(t), Fw®)llyp < Ny(N|p) e+
forallu<p<g<oo, te(0,T)andp € N".

Proof. Firstly we prove an equivalent one:

“IBl _ 14n

1050(t), Fw(t)ll e < Ki(KalBl)?P0t —,

with 0 € (1,2] and Kj, K; are constants sufficiently large.
Firstly let us prepare the refined M), — M/ estimates for the semigroup operator S,(t).
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Lemma3.8. Let 1 <r<u<p<q=<co Thenforany f € N, o, we have the following inequality

1Bl

1Bl
naﬂﬁxﬂfuMgSC¥ﬁm%talawvu wpam V>0, fEN,
and Cy a constant depending in n and a.

Proof. Since S,(t) is the convolution operator with kernel K;(x) = F ! (e’”aa ), by scaling we see that

Ki(x) = 2m) ™2 f evee g = ”/“K(tl/a)

where K(x) = 2r)™"/? f ereT e deg,

We need only to establish that VK(x), VK(x) € L' (R") forany 0 < t < coand 1 < p < co.
It is evident to see that e ™ € LL(IR"), so K(x) € L®(R") N C(R"),

and limyy—, K(x) = 0 ( using the Riemann-Lesbesgue theorem).

In the same way, we have &' € (L'(R™))", then

VK(x) € L*(R") N Co(RR"),
with Co(R") = {f € C(R")/ limy— f(x) = 0}.
Similary we can obtain that VK;(x) € LY(R"), (see [17], Lemma 2.7).
Thus the Young’s inequality implies that
10:Se®f o < 1K@ fllag < COr )t 2N fllyg. B7)

By using the commutativity between semigroup S,(t) and differential, we get

ESut)f = H(ax,sa(2| m))ﬁis (t) £ (38)

Using (3.7) and (3.8), and using Definition 2.3, we have

Bi ¢
ax,s (_) ‘
(Zlﬁ I) LMM) 2)! M
YA ey g
=|cm “>(z|ﬁ|) (3) s: ()] M
-IAl —242m P\ 1= t
< C(n, o) P|p[/a e ~1e o =22 Sup(—) S, (_)f
>0 4 4 M,

Bl —2+2m

<C(n a)|,3||ﬁ||ﬁ|/atf—1+m+ - ||f|| 2o

where ||T|| LML) denotes the operator norm of lmear operator T from M (R") to M (R™). This proves
Lemma 3.8. Next we recall the following result due to Kahane [25]:

Lemma 3.9. Let & > 3. Then there exists a positive constant C depending only on 6, such that

Z( i )lal'“""lﬁ — aff~=0 < C@E)IIF? forall pe NI (3.9)

asp
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Note that the notation @ < f means that ; < §; foralli=1,2,---,n,and ( ﬁ ) =TI% and that the

Bi!
1 poay

dependence of C(6) on & is simply of the form Y2, j°71/2.

At last, we recall the following lemma, whose proof can be found in [12]:

Lemma 3.10. [12]. Let @o be a measurable and locally bounded function in (0,c0). Let {(pj}]: be a sequence of
measurable functions in (0,00). Assume that « € R and p,v > 0 satisfying u+v = 1. Let B, > 0 be a number
depending on 1 € (0,1), and assume that B, is nonincreasing with respect to 1. Assume that there is a positive

constant o, such that
t

0 < @o(t) <Bt™ + af (t— 1) "1 po()dT
1-nt

and ,

0<@j(t) <Bt™ + of (t—=1)Ht(1)dT
(1=mt
forall j 2 0,t > 0and n € (0,1). Let no be a unique positive number such that 1(ny) = min{i I(1)} with

207

I(n) = fll_q(l — 1) *17*7%dt. Then for any 0 < 1 < 19, we have
@j(t) < 2Byt~ forall j > 0 and t > 0.

Now we prove the Theorem 3.7.
Follows the idea of [12], we first prove a variant of Theorem 3.7 under extra regularity hypothes.

Proposition 3.11. Under the same hypotheses of Theorem 3.7. Suppose further that
(o, dwn) e C(O, 1), M R))  (3.10)

forallp < q < ooand B € INy. Then for any 6 € (1,2], there exist two positive constants Ky and K, depending only
on Ky, Ky, n,a,p, € and O, such that

I8l —2+2m

o S Kl = (3.11)

|Gk, o)

forallp <q<oo,t€(0,T)and p € INj.

Proof. We divide the proof into two steps by induction |beta| = m.

Step 1: In this step, we aim to demonstrate the validity of (3.11) for m = 0. It is worth noting that, given
the conditions stipulated in Theorem 3.7, the assertion of (3.11) is evident if ¢ = p. Consequently, our focus
is primarily on the case where g falls within the range (p, co]. Let 1 € (0,1) be a constant to be determined
later, we take M/-norm of both sides of the first equation of (1.3) and split the time integral into two parts
as follows:

t(1-1) ¢
lo@®)lye < ISa®ollyg + ( fo + ft( 1_@) N Satt = DV - [0V (=2) ™" (w - U))]”M*: (1)dt
=81 + 82 + 83. (3.12)

We will estimate the terms one by one. For &;, by Lemma 3.8 and the conditions of Theorem 3.7,we can
easily see that
o 1-2m

1-2 _
ool < Ca (0, Ko #4575 (3.13)
p.oo,u

&1 < Ci(n, )t
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For &,, by Lemma 2.6, Lemma 2.7 and the condition of Theorem 3.7, we have

tH(1-1)
& = fo Satt = D)V - [0V ((=8) " (@ = 0))]| ,p (D)

t(1-1)
< G(n,a,p) f (t — 1) "I o) | 1 (0(T), (D)) g dT
0

n_1=2m

< Co(n,a,p, Ko)n 2t o=, (3.14)
By using Lemma 2.6, Lemma 2.7 and the condition of Theorem 3.7 again, we estimate &3 as:

t
& = ft 1Sat = D)V - [0V (=) = )], ()T

(1-n)
t 1-2
< Gs(n,a,p) (t =)= lo()l| pelI(o(), w(D))| pp dT
t(1-n)
t 1-2 1-2
< Cs(n,a,p,Ky) (t=1) @ S (o)l ypd. (3.15)

Using (3.13)-(3.15), and setting B,] = C1 (n,a, K1) + C2 (n, @, p, K2) 72, the inequality (3.12) yields:

1 _1-2m

ol yp < Byt 55" + Cs (1, a,p, K2) (t— o) e T o)l e d (3.16)
)

Analogously as (3.16) we can estimate w(t) . Hence, we have

t
I(t), ()|l pp SByt™ a5 +Cy t— ) e
M, n
t(1-1n)

X [|(@(7), w(D))l ppdr, (3.17)

where B, = 2B, and C4 = 2C3 (1, a,p, Ky). By applying Lemma 3.10, we get the desired estimate (3.11) for
|Bl = m = 0 with K; = 2B, for some 19 = 19 (1, a, p, K1, K3) € (0, 1).
Step 2: Next we will prove (3.11) for |f| = m > 1. Due to the appearance of nonlocal function ¢, we shall use
a different argument to prove (3.11) for p < g < nand n < g < oo, thus we devide the step into the following
two cases.

Case 1 (p < q < n) We differentiate the first equation of (1.3) to obtain the equality

t
do(t) = 35S, (tyvo - f ESu(t — 1)V - [0V ((~A) " (w — )] (D).
0

Now we take the M/-norm of 920, for some n € (0,1) to be chosen later, we split the time integral into the
following two parts:

afv(t)|w < 8fSa(t)vo| v
t(1-1) t
B _ . —A)Y""™(w —
[ / 1_0)) St =V - [0V (-8) "= o)), (Die
:7'-1 + /Cz + 7'-3 (318)

We will estimate F;(i = 1,2, 3) as follows: For ¥, Lemma 3.8 implies that

—m_

om_q4n oy 2-2m —m n oy 2-2m
Fi < Com™ T ogl] gz < Ko™/ TGRS (3.19)
poo,u
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Go to #, using Lemma 3.8, Lemma 2.7 and the conditions of Theorem 3.7, we have

tH(1-1)
75 = f ] ESu(t =V - [0V ((=A) " (w — U))]|
0

t(1-1) Fo
<csman [ |8:(55)]
0 LM M)

X I(z), (@), g dv

v (t)dt
8 t— T)
%xSa ( 2

t(1-1) f—1 m/a—nQ2/u=1/r)/a+2/a
<Cs(n, a, p)Clm™/a f (T)
0

LM,

nuf2n—u

M)

(), w(D)IE gz

A=)y _ o \m/a=n@/u=1/r]a+2/a
<Cs(n,a,p,Ks) Commm/af ( 2 )
0

SC5 (1’1, a,p, Kz) Can(zm)m/an—rn/a—ztm/a—l+n/(ar)+2/a. (3.20)

2n _ 2-4m
T2 dr

Using Leibniz’s rule, we split 3 into the following three parts:

f
7= [
t(1-n)
t
<)
t(1-n)
t t—1

—1/a
< Co(n, ) (—)
t(1-m)

HiSult = IV - [0V ((~A) (e — v))]|

W (t)dt

5579
2 LM M)

S:(F)A v e - @

2

t -1/
t—
cama [ (59)
t(1-n) 2

Su(S55) oV () " - ”’”Hw (e

t—1

S, (T) [(250) v ((~4)"(w - U))]HMP (1)d7 + Co(n, )

X ft;_n) (t_TT)_l/a Sa (t_TT) L;ﬁ( 7‘8/ ) (8%0) (8f7VV (=N (w — U))) y dt
+ Co(n, ) ft( Z_m ( t—TT )—1/a s, (“TT) [0d% (V ((-8) " (w - v)))]HMf (1)t
=Fa1 + Fa + Fas. (3.21)

Here, the notation y < fmeans thaty < fand |y| < |f|]. Now we shall establish the estimate for #3;(j = 1,2, 3).
For #31, Lemma 3.9 implies that

t no_1=2m

t—1T\ @ o
Fa1 < Cr(n, a,p) (T)
t(1-n)

aﬁv(f)|

v ll(o(7), w(D)ll g dT

n _1-2m 1-2m

t
< C7 (nr a,p, KZ) ( )(t - T)_E_TT_LF%_ ¢
t(1-n

850(1)”/W dr. (3.22)



H. Srhiri et al. / Filomat 38:17 (2024), 6219-6235 6233

Go to F3,, by our induction assumption and Lemma 3.9, we get

¢ N e
Fa2 < Cs(n,a,p) (t 21) Z ( ﬁ )HBZU(T)”Mf

t1-n) 0<y<p

(957 o(0), aﬁj‘?’w(f))HMﬁ dr

N B 2
- y1=0 —y/a=1+n/(aq)
<Gap [ (5) Y ( : )K1 (Kaly )™ <

- 0<y<p
XK (KalB — yl)*F 770 T_lﬁ_7/|/a—1+n/(ap)) it

2
< Gg(n,a, p)Kng’"—%[ Z ( ﬁ )|y||y|—6/z|ﬁ _ 7,pﬁ—y—ﬁ/z]

0<y<p

t
X f (i’ _ 7‘.)—ﬁ—%T—m/oz—2+;'1(1/;7+1/r)/ozd,l.
t(1-n)

< Cg(i’l, a,p, 6)K%K§m—25mZm—él(n)tm/a—l+n/(ar)+2/0¢/ (323)

n_1=2m

1
where (1) = fl_n(l — ) ww gomlas2en/pHlnladr For F3,, using Lemma 3.8, the result of Step 1 and our
induction assumption, we obtain

t

t— 7\ t—
Fas = Co(n, ) (TT) S, (TT) [0d (V ((=8) " (w - v)))]” (7)dt
t(1-n) M,
Cotm Ty p-1 -1
< Con, a,p) ft( . (T) [TV (CaRTOR: w(T))”w dr
< Cg(l’l, a,p, 6)K%K§m—26m2m—bl(rl)tm/a—1+n/(ar)+2/a. (324)

Using the above estimates (3.19)-(3.24) and setting B,, by
By = KiCgrm™® + C5Cy (2m)™ ™42 4 C1oKi K" 2 m?"°1(n),

where Cyp = Cs(n, a, p, 6) + Co(n, a0, p, 5), we have

&iv(t)”/w SBqlfm/""“”/(f’ﬂ)ﬂ/a

1-2m _1+l_l—2m

t
+ Gy f (t = gy m -1 afv(T)H dr. (3.25)
H1-1) M,

In the same way, we can proof with 8§w(t). We conclude that

”(850&), a‘[iw(t))”M‘n SBntm/1)4—1+n/(1)a’)+2/a

t
S N AR CUCESY0) ECED
t(1-n) M

Here B, = ZB,, and C1; = 2C; (n,a,p,Ky). Let 1, = % It is clear that I (1),,) is strictly monotone decreasing

inm and I(7,) — 0 as m — co. Choosing my sufficiently large, such that I (%) < ﬁ for all m > my and
applying Lemma 3.10 , we get

”(&fv(t), in(t))HM}? < 2Byt @nR2a forallt > 0and || = m.  (3.27)
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Let us notice that from (3.27), we can choose K; and K; sufficiently large such that (3.11) holds for all 8
satisfying I,B‘I < my. Hence, it suffices to prove that it is possible to choose K; and K; such that 2By, <
Ky (Kym)™® for all m > my. Since

1
I(l) _ f (1 = g) &2 gmla=2en(1/p+1jnja g
m _

—-mj/a=2 1 -2
) S(l_E) e <16 forallm > 1,

we can calculate 2By, as follows:
2By < 4[KoClm™'™ + CsClt(2m)™/“m™/**2 + 16C1o KEKS" 2 m? 2 |
< 4[Ky QY + Cs(2Co)" m®*? + 16C10K3KE" 22 | m?" .
Obviously, there exists a constant C1 > Co such that CJf + (2Co)" m®*? < C22'~°. Hence,
2By < 4[(Ky + Cs) C3™0 + 16C10K3 K32 2 =2,

Now if we choose
K7 :=8(K;7 + Cs) and K; := max {C1p, 32C19K1}

then we obtain (3.11). This completes the proof of Proposition 3.11 for u <r < n.

Case 2 (n <u <r < o0) Now we are in a position to establish the estimate of

8§v(t)||Mp forn < g < oo.

For any given max {1, g} < p < min {n, %7"}, using the same idea of Gagliardo-Nirenberg inequality [18], we
see that

&ﬁv(t)| < C(n,p) aﬁv(t)| ’ azaﬂv(t)ﬂl_e (3.28)
Mg T AT A I v '
with - .

6:1—54'5. (329)

Now from (3.28), (3.29) and the result of Case 1 we see that

aﬁv(t)'

—O 4—Ipl/a— au 0
e <C01P) (K (Kol ripyaten/(an)

. 1-6
x (Ku (Ka|Bl +2)2+40 p-(r2)ateniion)

ﬂ_1+i+ =24+2m

<C(n, p)Ky (Ka(IB| + 2)) P2 g e =5, (3.30)

It is clear that there exists a constant Ci3 > 2 such that |B[* < Cilfl_é, thus we have (Kx(|8| + 2))2|ﬁ‘+4_‘S =

K3t (1 + ﬁ)zlﬁlﬂ (Kzlﬁl)zl’g =0 < 81¢*K; (C13K2|ﬁ|)2|ﬁ " Hence, we can choose K; and K, sufficiently large
such that (3.11) holds for all p < g < co. This completes the proof of Proposition 3.11. [

Finally, let us proof that under the hypotheses of Theorem 3.7, the mild solution (v(t), w(t)) of (1) always
satisfies the regularity condition (3.10).

Proposition 3.12. ([12, 16, 20].) Under the hypotheses of Theorem 3.7, the mild solution (v(t), w(t)) satisfies
)2II3I*6

—IBl n o, =2+2m
o et

) (3.31)

(#ote), dov)]|, < Ka (Ralpl

orallp < g < oco,t € (0,T) and B € N, where Ky and K, are constants depending only on K1, Ky, n,a,p, € and 6.
p=q P g oniy p

Now Theorem 3.7 follows immediately from Proposition 3.11 and Proposition 3.12. We complete the
proof of Theorem 3.7. O
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