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Abstract. In this article, we investigate the presence of weak solutions for obstacle problems
∫
Ω

A(z,u,Du) :

D(υ − u) + ϕ(u) : D(υ − u) dz ≥ 0, for υ belonging to the following convex set Kψ,θ, applying the Young
measure theory and a theorem by Kinderlehrer and Stampacchia, the desired outcome is achieved.

1. Introduction

We are interested in the study of existence and uniqueness of weak solutions for obstacle problems:
∫
Ω

A(z,u,Du) : D(υ − u) + ϕ(u) : D(υ − u) dz ≥ 0

υ ∈ Kψ,θ

(1)

where

Kψ,θ =
{
υ ∈W1,p(Ω;Rm) : υ − θ ∈W1,p

0 (Ω;Rm), υ ≥ ψ a.e. in Ω
}
. (2)

Here, Ω is a bounded open domain in Rn(n ≥ 2) and u : Ω→ Rm is a vector-valued function.
Research into obstacle problems dates back to the 1960s, when G. Stampacchia [38] and G. Fichera [22]
made pioneering discoveries. It was determined that solutions to the obstacle problem cannot be of
class C2, regardless of the regularity of the obstacle, prompting the development of the concept of weak
solutions and the theory of variational inequalities through the work of J.L. Lions and G. Stampacchia [31].
Functional analysis methods are currently used to solve these issues, and the goal is to find conditions
in which weak solutions can become classical ones (see [16]). For further information, please refer to the
monographs [1, 2, 12, 17, 21, 26, 29, 36, 39–41]. Junxia and Yuming [28] studied the boundary regularity
of weak solutions to a nonlinear obstacle problem with a C1,β-obstacle function and found a C1,α

loc boundary
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regularity. Jacques-Louis Lions [32] studied the presence of solutions to parabolic obstacle problems via
variational inequalities. In [37], the author examined obstacle problems with measure data related to p-
Laplace type elliptic equations and checked the relationships between the solutions’ low order regularity
characteristics and the nonlinear potential of the data. H. El Hammar et al. in [24, 25, 27] verified the
existence of a weak solution to the quasilinear elliptic system under regularity, growth and coercivity
conditions for A by utilizing Galerkin’s approximation and the theory of Young measures. Many papers
have been devoted to the study of the existence and uniqueness of weak solutions for the obstacle problem
(1) using classical monotone methods developed by [3, 4, 43]. In [23], the author studied the scalar version
of problem (1) and showed the existence of a weak solution with variable growth. For further works on
related topics, see [15, 20]. The use of Young measures in elliptic systems is discussed in [6, 24, 25].
E. Azroul and F. Balaadich in [10], the following quasilinear elliptic system was considered:−div(σ(x,Du) + ϕ(u)) = f in Ω,

u = 0 on ∂Ω,

where f belongs to the dual space W−1,p′ (Ω;Rm) of W1,p
0 (Ω;Rm), the authors proved the existence of weak

solutions under weak monotonicity assumptions on the stress tensor σ : Ω × Rm
×Mm×n

→Mm×n and by
the theory of Young measures.
By taking into consideration the works of [10], this paper proves the existence and uniqueness of weak
solutions for obstacle problems (1). The result is extended by incorporating a general source term with
constant growth and weak monotonicity, through the concept of Young measure and the Kinderlehrer and
Stampacchia theorem.
We denote byMm×n the set of real m by n matrices equipped with the usual inner product S : G =

∑
i, j Si jGi j.

The obstacle functionψ : Ω→ Rm defined in (2) andθ ∈W1,p (Ω;Rm) is a function which gives the boundary
values. We will study the solution u ∈ Kψ,θ for (1) under the following hypotheses:

( f0) A : Ω × Rm
×Mm×n

→ Mm×n is a Carathéodory function (i.e., measurable with respect to z and
continuous with respect to the last variables).

( f1) There exist N1 ∈ Lp′ (Ω), N2 ∈ L1(Ω) and c1, c2 > 0 such that

|A(z,S,G)| ≤ N1(z) + c1

(
|S|p−1 + |G|p−1

)
, (3)

A(z,S,G) : G ≥ −N2(z) + c2|G|p, (4)

for a.e. z ∈ Ω and all (S,G) ∈ Rm
×Mm×n.

( f2) A satisfies one of the following conditions:

(a) The map G 7→ A(z,u,G) is strictly quasimonotone, i.e., there exists constants c3 > 0 such that∫
Ω

(
A(z,u,G) −A(z,u,K)

)
: (G − K) dz ≥ c3

∫
Ω

|G − K|p dz

for all z ∈ Ω and G,K ∈Mm×n.

(b) There exists a function Z : Ω×Rm
×Mm×n

→ R such thatA(x,u,G) = ∂Z
∂G (z,u,G), and G→A(z,u,G)

is convex and C1.

(c) For all x ∈ Ω, the map G 7→ A(z,u,G) is a C1-function and is monotone, i.e.(
A(z,u,G) −A(z,u,K)

)
: (G − K) ≥ 0

for all x ∈ Ω and G,K ∈Mm×n.
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( f3) ϕ : Rm
→Mm×n is linear and continuous and there exists a constant c1 > α0 > 0 such that

|ϕ(u)| ≤ α0.

We will demonstrate the existence of a solution for the obstacle problem (1)-(2).

Theorem 1.1. SupposeKψ,θ , ∅ andA satisfies the conditions ( f0)-( f2). Then, there exists a weak solution u ∈ Kψ,θ
to the obstacle problem (1)-(2). In other words, there exists a function u ∈ Kψ,θ satisfying∫

Ω

A(z,u,Du) : D(υ − u) + ϕ(u) : D(υ − u) dz ≥ 0

for each υ ∈ Kψ,θ.

We rapidly outline the contents of this work in the following way: Section 2 sets out the basis of Sobolev
spaces, including the Kinderlehrer and Stampacchia theorem and a concise explanation of Young measures.
Section 3 gives the proof of the existence of solutions to obstacle problems, while Section 4 provides the
proof of the uniqueness of solution to obstacle problems.

2. Mathematical Preliminaries

In this section, we review the properties of Lebesgue and Sobolev spaces which will be employed in
what follows. Consider a bounded open domainΩ in RN (with N ≥ 2) having a smooth boundary ∂Ω. We
will start by discussing a theorem by Kinderlehrer and Stampacchia and then present a review of Young
measures along with some of its properties that will be necessary later.

2.1. Spaces of Lebesgue and Sobolev
We define the Lebesgue space Lp(Ω) by

Lp(Ω) =
{

w : Ω→ R : w is measurable and
∫
Ω

|w|pdx < ∞
}
,

endowed with the norm

∥w∥p =
(∫
Ω

|w|pdz
) 1

p

.

We denote by Lp′ (Ω) the dual space of Lp(Ω), where

1
p
+

1
p′
= 1

The classical Sobolev space is defined by

W1,p(Ω) = {w ∈ Lp(Ω) and |∇w| ∈ Lp(Ω)} ,

with the norm
∥w∥1,p = ∥w∥p + ∥∇w∥p ∀w ∈W1,p(Ω).

For 1 < p < ∞,W1,p(Ω) is a reflexive Banach space. The space W1,p
0 (Ω) is well defined as the closure ofD(Ω)

in W1,p(Ω) with respect to the norm ∥w∥1,p. We can identify the dual of W1,p
0 (Ω) to a subspace of the space

of distributionsD′(Ω) by:

W−1,p′ (Ω) =
(
W1,p

0 (Ω)
)′
,

(
p′ =

p
p − 1

)
.

The manipulation of Sobolev spaces often involves the use of specific Sobolev injections, such as the
Rellich-Kondrachov theorem.
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Proposition 2.1. Assume Ω of class C∞ and p < N. Then

W1,p(Ω) ↪→↪→ Lq(Ω),∀q ∈
[
1, p∗

[
with p∗ =

Np
N − p

.

In particular, W1,p(Ω) ↪→↪→ Lp(Ω) for all p ∈ [1,+∞). In the sequel, the Hölder inequality and the following
Poincare inequality (see [33, Lemma 2.2] ), there exists a positive constant β such that

∥w∥p ≤
β

2
∥Dw∥p, ∀w ∈W1,p

0 (Ω;Rm)

are central to establish the required estimates to prove the desired results.

2.2. Essential information on Young measures -Theorem of Kinderlehrer-Stampacchia
Let Y be a reflexive Banach space and Y′ its dual. The duality pairing between Y′ and Y is denoted by

⟨G,H⟩ =

∫
Ω

GH dz, H ∈ Y,G ∈ Y′.

Recalling the following theorem of Kinderlehrer and Stampacchia:

Theorem 2.2. (Kinderlehrer and Stampacchia[29]) LetK be a nonempty closed convex subset of Y and letA : K →
Y′ be monotone, coercive and strong-weakly continuous onK . Then there exists an element u ∈ K such that

⟨L(u), υ − u⟩ ≥ 0 for all υ ∈ K .

One can use a Young measure to gain insight into and manage the issues that come up when weak
convergence does not act in line with expectations concerning nonlinear functions and operators.

Definition 2.3. Assume that the sequence
{
Λ j

}
j≥1

is bounded in L∞ (Ω;Rm). Then there exist a subsequence

{Λk}k≥1 ⊂
{
Λ j

}
j≥1

and a Borel probability measure vz on Rm for a.e. z ∈ Ω, such that for each ψ ∈ C (Rm) we have

ψ (Λk)→∗ ψ̄ weakly ∗ in L∞(Ω),

where ψ̄(z) :=
∫
Rm
ψ(η)dvz(η) for a.e. z ∈ Ω. We call {vz}z∈Ω the family of Young measure associated with {Λk}k≥1.

Lemma 2.4. Let Ω ⊂ Rn be Lebesgue measurable (not necessarily bounded) and ϱ j : Ω → Rm, j = 1, 2, . . . be a
sequence of Lebesgue measurable functions. Then there exist a subsequence wk and a family {Vz} of nonnegative
Radon measures on Rn, such that

(I1) ∥Vz∥M :=
∫
Rm

dVz(η) ≤ 1 for almost every z ∈ Ω.

(I2) ψ
(
ϱk

)
→
∗ ψ̄ weakly ∗ in L∞(Ω) for any ψ ∈ C0 (Rm),

where ψ̄ =
〈
Vz, ψ

〉
and C0 (Rm) =

{
ψ ∈ C (Rm) : lim

|ϱ|→∞
|ψ(ϱ)| = 0

}
.

(I3) If for any R > 0

lim
L→∞

sup
k∈N

∣∣∣∣{z ∈ Ω ∩ BR(0) :
∣∣∣ϱk(z)

∣∣∣ ≥ L
}∣∣∣∣ = 0,

then ∥Vz∥M = 1 for almost every z ∈ Ω, and for any measurable Ω′ ⊂ Ω we have ψ
(
ϱk

)
→ ψ̄ =

〈
Vz, ψ

〉
weakly in L1 (Ω′) for continuous ψ provided the sequence ψ

(
ϱk

)
is weakly precompact in L1 (Ω′).
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The fundamental theorem of Young measure, Lemma 2.4, serves as the basis for the following Fatou-type
lemma, which is useful for our purposes.

Lemma 2.5. ([19]). Let O : Ω × Rm
×Mm×n

→ R be a Carathéodory function and uk : Ω → Rm a sequence of
measurable functions such that Duk generates the Young measure vz. Then

lim inf
k→∞

∫
Ω

O (z,uk(z),Duk(z)) dz ≥
∫
Ω

∫
Mm×n

O(z,u, λ)dVz(λ) dz,

provided that the negative part O− (z,uk(z),Duk(z)) is equiintegrable.

3. Weak Solution of Obstacle Problem

We will utilize the concept of Young measure to demonstrate the existence of weak solutions for the
obstacle problem stated in (1)-(2), by defining a mapping L : Kψ,θ−→W−1,p′ (Ω;Rm) by

⟨L(u), υ⟩ =
∫
Ω

A(z,u,Du) : Dυ + ϕ(u) : Dυ dz

satisfy the hypothesis of Theorem 2.2.

3.1. Proof of Existence The Weak Solution

For this, we can solve the problem (1). We first show the following Assertion:

Assertion 3.1.

i) Kψ,θ is a closed convex set.

ii) For each v ∈ Kψ,θ, Lu ∈W−1,p′ (Ω;Rm).

Proof.

i) Is immediate thatKψ,θ is a closed convex set.

ii) Since, Hölder, growth condition in ( f1), we have

| ⟨Lu, υ⟩ | =
∣∣∣∣∣∫
Ω

A(z,u,Du) : Dυ + ϕ(u) : Dυ dx
∣∣∣∣∣

≤

∣∣∣∣∣∫
Ω

A(z,u,Du) : Dυ dz
∣∣∣∣∣ + ∣∣∣∣∣∫

Ω

ϕ(u) : Dυ dz
∣∣∣∣∣

≤

(
∥N1∥p′ + C1∥u∥

p−1
p + C1∥Du∥p−1

p

)
∥Dv∥p + α0∥υ∥p

≤

(
∥N1∥p′ + C1∥u∥

p−1
p + C1∥Du∥p−1

p

)
∥υ∥1,p +α0∥υ∥1,p

≤

(
∥N1∥p′ + C1∥u∥

p−1
p + C1∥Du∥p−1

p + α0

)
∥υ∥1,p

≤ C∥υ∥1,p .

So, we get Lu ∈W−1,p′ (Ω;Rm).

Assertion 3.2. L is monotone and coercive onKψ,θ.
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Proof. For fixed v ∈ Kψ,θ, by the monotonicity ofA, we have

⟨Lu − Lυ,u − υ⟩ =
∫
Ω

(
A(x,u,Du) −A(x, υ,Dυ

)
: (Du −Dυ)dx +

∫
Ω

(
ϕ(u) − ϕ(υ)

)
: (Du −Dυ) dx

≥

∫
Ω

(
A(x,u,Du) −A(x, υ,Dυ

)
: (Du −Dυ)dx (in view of f2(c))

≥ 0.

Then, L is monotone onKψ,θ .
Next, we show that L is coercive. Indeed, for fixed element v ∈ Kψ,θ, in view of the condition ( f2)(a), we
have

⟨Lu − Lυ,u − υ⟩ =
∫
Ω

(
A(x,u,Du) −A(x, υ,Dυ)

)
: (Du −Dv) dx +

∫
Ω

(
ϕ(u) − ϕ(υ)

)
: (Du −Dυ) dx

≥

∫
Ω

c3|Du −Dυ| dx

which implies that
⟨L(u) − L(υ),u − υ⟩

∥u − v∥1,p
≥ c∥u − υ∥p−1

1,p →∞

as ∥u − υ∥1,p →∞ and therefore L is coercive.

Assertion 3.3. L is strongly-weakly continuous.

Proof. We choose a sequence uk ∈ Kψ,θ such that uk → u ∈ Kψ,θ in W1,p (Ω;Rm). Then ∥uk∥1,p ≤ C for
some constant C. In virtue of Lemma 2.4, there exists a Young measure Vz generated by {Duk} such that
∥Vz∥M(Mm×n) = 1 and

Duk → ⟨Vz, id⟩ =
∫
Mm×n

λdVz(λ) in L1(Ω). (5)

Since Lp (Ω;Mm×n) is reflexive, then Duk → Du in Lp (Ω;Mm×n) ⊂ L1 (Ω;Mm×n) and thus Du(z) = ⟨Vz , id ⟩
for a.e. z ∈ Ω (by uniqueness of limit, see also [7, Lemma 4.1]).

The following lemmas allow us to prove the Assertion 3.3.

Lemma 3.4. (div-curl inequality). SupposeA satisfies ( f0)-( f2) and {Duk} generates the Young measureVz, then∫
Ω

∫
Mm×n

(
A(z,u, λ) −A(z,u,Du)

)
: (λ −Du) dVz(λ) dz ≤ 0.

Proof. Let consider the sequence

Ik :=
(
A (z,uk,Duk) −A(z,u,Du)

)
: (Duk −Du)

= A (z,uk,Duk) : (Duk −Du) −A(z,u,Du) : (Duk −Du)
=: Ik,1 + Ik,2.

Since Du ∈ Lp (Ω;Mm×n), it follows by the growth condition in ( f1) thatA ∈ Lp′ (Ω;Mm×n). Using the weak
convergence of {Duk} defined in Lemma 3.1, we obtain

Ik,2 → 0 as k→∞.
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Hence,

I = lim inf
k→∞

∫
Ω

Ikdz = lim inf
k→∞

∫
Ω

Ik,1 dz.

To get the equiintegrability of Ik,1, we take a measurable subset Ω′ ⊂ Ω and by the Hölder inequality, one
gets ∫

Ω′
|A (z,uk,Duk) : Du| dz ≤

∫
Ω′
|A (z,uk,Duk)| · |Du| dz

≤ ∥A(z,uk,Duk)∥p′,Ω′ ∥Du∥p′,Ω′ .

Since {uk} is bounded in W1,p
0 (Ω;Rm), the growth condition stated in ( f1) leads to the inequality:∫
Ω

|A (z,uk,Duk)|p
′

dz ≤ c
∫
Ω

|d1(z)|p
′

+ |uk|
p + |Duk|

p dz ≤ c.

It’s worth noting that the term
∫
Ω′
|Du|p dz can be made arbitrarily small by choosing a sufficiently small

measure for Ω′. Furthermore, it’s important to observe that:

A (z,uk,Duk) : Duk ≥ −N2(z) + α |Duk|
p
≥ −N2(z)

and ∫
Ω′

(A (z,uk,Duk) : Duk)− dz ≤
∫
Ω′
|N2(z)| dz

Consequently, I−k,1is equiintegrable. We infer from Lemma (2.5) that

I = lim inf
k→∞

∫
Ω

A (z,uk,Duk) : (Duk −Du) dz

≥

∫
Ω

∫
Mm+n

A(z,u, λ) : (λ −Du)dVz(λ) dz.

New, we prove that I ≤ 0. Indeed, to Mazur’s theorem (see, e.g., [43, Theorem 2, page 120]) there
exists (ϑk) ∈ W1,p (Ω;Rm) where each ϑk is a convex linear combination of {ℏ1, . . . , ℏk} such that vk → ℏ in
W1,p (Ω;Rm). This implies that ϑk belongs to the same space as ℏk. Hence,

I = lim inf
k→∞

∫
Ω

A (z,uk,Duk) : (Duk −Du) dz

= lim inf
k→∞

[∫
Ω

A (z,uk,Duk) : D (uk − u − υk) dz +
∫
Ω

A (z,uk,Duk) : Dυkdz
]

= lim inf
k→∞

[∫
Ω

A (z,uk,Duk) : D (uk − u − υk) dz −
∫
Ω

ϕ(uk) : (Duk −Du) dz
]

≤ lim inf
k→∞

[
∥|A (z,uk,Duk)|∥p′ ∥D (uk − u − υk)∥p + c1 ∥D (uk − υk)∥p

]
.

On one hand, we have that ∥A (z,uk,Duk)∥p′ is bounded by the growth condition ( f1). On the other hand,
by choosing υk ∈ Vk such that ∥uk − u − υk∥1,p < ϵ for any k > k0, the term ∥D (uk − u − υk)∥p is bounded by ϵ.
Notice that since ϕ is linear and continuous and (uk) is bounded then ϕ (uk) is bounded. By Hölder’s
inequality, we have ∣∣∣∣ ∫

Ω

ϕ (uk) : (Duk −Dυk) dz
∣∣∣∣ ≤ c1 ∥Duk −Dυk∥p −→ 0

by definition of υk, 1 < p and

∥Duk −Dυk∥p ≤ ∥Duk −Du∥p + ∥Dυk −Du∥p −→ 0 as k→∞.
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and ∥υk∥p ≤ ∥υk − (uk − u)∥p + ∥uk − u∥p ≤ ϵ + o(k). Hence

I = lim inf
k→∞

∫
Ω

Ik dz ≤ 0,

as desired.

Remark 3.5. An intermidiary result is the following inequality:

lim inf
k→∞

∫
Ω

(A (z,uk,Duk) −A(z,u,Du)) : (Duk −Du) dz ≤ 0.

To see this, it is sufficient to repeat the proof of Lemma 3.4.

Lemma 3.6. For almost every z ∈ Ω, we have

(A(z,u, λ) −A(z,u,Du)) : (λ −Du) = 0 on suppVz.

Proof. By Lemma 3.4, we have∫
Ω

∫
Mm×n

(A(z,u, λ) −A(z,u,Du)) : (λ −Du) dVz(λ) dz ≤ 0.

By the monotonicity ofA, the above integrand is nonnegative, thus must vanish with respect to the product
measure dVz(λ) ⊗ dz. Therefore,

(A(z,u, λ) −A(z,u,Du)) : (λ −Du) = 0 on suppVz.

Now, we prove the Assertion 3.3 for each case listed in ( f2).
Step 1. Suppose thatA satisfy the condition ( f2)(a). We have∫

Ω

|Duk −Du|p dz ≤ c
∫
Ω

(A (z,u,Duk) −A(z,u,Du)) : (Duk −Du) dz.

We remark that the limit inferior of the right hand side of the above inequality is less than or equal to zero
by Remark 3.5. Accordingly,

lim inf
k→∞

∫
Ω

|Duk −Du|p dz = 0.

Let Ek,ϵ =
{
x : |Duk −Du| ≥ ϵ

}
. We have∫
Ω

|Duk −Du|p dz ≥
∫

Ek,e

|Duk −Du|p dz ≥ ϵp
∣∣∣Ek,ϵ

∣∣∣
which gives ∣∣∣Ek,ϵ

∣∣∣ ≤ 1
ϵp

∫
Ω

|Duk −Du|p dz→ 0 as k→∞.

As by Fatou Lemma ∫
Ω

(
|Duk −Du|

ϵ

)p

dz ⩽ lim
k′→∞

sup
∫
Ω

|Duk′ −Duk|

ϵ

)p

dz,

we have
∥Duk −Du∥Lp(Ω,Rm) ⩽ sup

k′

{
∥Duk′ −Duk∥Lp(Ω,Rm)

}
< ε′,



M. Allalou et al. / Filomat 38:17 (2024), 6245–6257 6253

that is to say, Duk → Du in Lp(Ω,Rm). So that,

Duk → Du in measure on Ω (for a subsequence).

After extracting a suitable subsequence if necessary, we can infer that Duk → Du for almost every z ∈ Ω.
Then A (z,uk,Duk) → A(z,u,Du) for almost every z ∈ Ω, and in the measure. By the equiintegrability of
A (z,uk,Duk) : Dv, the Vitali theorem implies∫

Ω

A (z,uk,Duk) : Dv dz→
∫
Ω

A(z,u,Du) : Dv dz as k→∞.

Step 2. For the case ( f2)(b), we argue as follows: We start by proving that for almost every z ∈ Ω,

suppVz ⊂ Ez =
{
λ ∈Mm×n : Z(z,u, λ) = Z(z,u,Du) +A(z,u,Du) : (λ −Du)

}
.

Let λ ∈ suppVz, then by Lemma 3.6, we get

(1 − τ)(A(z,u, λ) −A(z,u,Du)) : (λ −Du) = 0, ∀τ ∈ [0, 1]. (6)

On the other hand, by monotonicity, for τ ∈ [0, 1] we have

(1 − τ)(A(z,u,Du + τ(λ −Du)) −A(z,u, λ)) : (Du − λ) ≥ 0. (7)

Subtracting (6) from (7), we get

(1 − τ)(A(z,u,Du + τ(λ −Du)) −A(z,u,Du)) : (Du − λ) ≥ 0 (8)

for τ ∈ [0, 1]. By monotonicity,

(A(z,u,Du + τ(λ −Du)) −A(z,u,Du)) : τ(λ −Du) ≥ 0,

and since τ ∈ [0, 1], we have

(A(z,u,Du + τ(λ −Du)) −A(z,u,Du)) : (1 − τ)(λ −Du) ≥ 0.

The above inequality together with (8) implies

(A(z,u,Du + τ(λ −Du)) −A(z,u,Du)) : (λ −Du) = 0 ∀τ ∈ [0, 1].

Integrating this equality over [0, 1] and using the fact that

A(z,u,Du + τ(λ −Du)) : (λ −Du) =
∂Z
∂τ

(z,u,Du + τ(λ −Du)) : (λ −Du),

we conclude that

Z(z,u, λ) = Z(z,u,Du) +
∫ 1

0
A(z,u,Du + τ(λ −Du)) : (λ −Du)dτ

= Z(z,u,Du) +A(z,u,Du) : (λ −Du).

Hence, λ ∈ Ez, i.e. suppVz ⊂ Ez. In view of the convexity of Z, we have

Z(z,u, λ) ≥ Z(z,u,Du) +A(z,u,Du) : (λ −Du).

For all λ ∈ Ez, put A(λ) = Z(z,u, λ) and B(λ) = Z(z,u,Du) + A(z,u,Du) : (λ − Du). Since λ 7→ A(λ) is
continuous and differentiable, we obtain for all S ∈Mm×n and τ ∈ R

A(λ + τS) − A(λ)
τ

≥
B(λ + τF) − B(λ)

τ
if τ > 0,

A(λ + τS) − A(λ)
τ

≤
B(λ + τS) − B(λ)

τ
if τ < 0.
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Thus, DA = DB and therefore

A(z,u, λ) = A(z,u,Du) ∀λ ∈ Ez ⊃ suppVz. (9)

The equiintegrability ofA (z,u,Duk) implies that its weak L1-limit is given by

Ā(z) :=
∫
Mm×n

A(z,u, λ) dvz(λ) =
∫

suppVz

A(z,u, λ) dvz(λ)

=

∫
suppVz

A(z,u,Du) dVz(λ) = A(z,u,Du)
(10)

where we have used (9) and ∥Vz∥M = 1. Now, consider the Carathéodory function

ω(z,u, λ) = |A(z,u, λ) − Ā(z)|, λ ∈Mm×n.

The sequence ωk(z) := ω (z,uk,Duk(z)) is equiintegrable by that ofA (z,uk,Duk(z)), hence its weak L1-limit is
given by

ωk → ω̄ in L1(Ω),

where

ω̄(z) =
∫
Mm×n

|A(z,u, λ) − Ā(z)| dVz(λ)

=

∫
supp vz

|A(z,u, λ) − Ā(z)| dVz(λ) = 0 (by (10) and (9)).

Since ωk ≥ 0, we deduce that ωk → 0 in L1(Ω) as k→∞.
Hence, ∫

Ω

A (z,uk,Duk) : Dυ dz→
∫
Ω

A(z,u,Du) : Dυ dx as k→∞.

Step 3. The last case ( f2)(c), we claim that for a.e. z ∈ Ω and every S ∈Mm×n

A(z,u, λ) : S = A(z,u,Du) : S + (∇A(z,u,Du)) : (Du − S)

holds on suppVx, where ∇ is the derivative with respect to the second variable ofA. The monotonicity of
A implies that for τ ∈ R

(A(z,u, λ) −A(z,u,Du + τS)) : (λ −Du − τS) ≥ 0

which implies

−A(z,u, λ) : τS ≥ −A(z,u, λ) : (λ −Du) +A(z,u,Du + τS) : (λ −Du − τS).

By virtue of Lemma 3.6, we get

−A(z,u, λ) : τS ≥ −A(z,u,Du) : (λ −Du) +A(z,u,Du + τS) : (λ −Du − τS).

Note thatA(z,u,Du + τS) = A(z,u,Du) + ∇A(z,u,Du)τS + o(τ), then

A(z,u,Du + τS) : (λ −Du − τS)
=A(z,u,Du + τS) : (λ −Du) −A(z,u,Du + τS) : τS
=A(z,u,Du) : (λ −Du) + ∇A(z,u,Du)τS : (λ −Du) −A(z,u,Du) : τS

− ∇A(z,u,Du)τS : τS + o(τ)
=A(z,u,Du) : (λ −Du) + τ[∇A(z,u,Du)S : (λ −Du) −A(z,u,Du)] + o(τ).

Therefore,
−A(z,u, λ) : τS ≥ τ[(∇A(z,u,Du)S) : (λ −Du) −A(z,u,Du) : S] + o(τ).
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Since τ is arbitrary in R, then our claim follows. By the equiintegrability of A (z,u,Duk), its weak L1-limit
is then given by

Ā(z) =
∫

supp vz

A(z,u, λ) dVz(λ)

= A(z,u,Du)

where we have used our claim and Du(z) = ⟨Vz, id⟩. On the other hand, since Lp′ (Ω;Mm×n) is reflexive, the
sequence {A (z,u,Duk)} converges weakly in Lp′ (Ω;Mm×n) and its weak Lp′ -limit is also A(z,u,Du). Then,
we conclude that ∫

Ω

A (z,uk,Duk) : Dυ dz→
∫
Ω

A(z,u,Du) : Dυ dz as k→∞.

Hence,
∫
Ω

A (z,uk,Duk) : Dυ dz→
∫
Ω

A(z,u,Du) : Dυ dz as k→∞ in the cases (a), (b) and (c).

• It is clear that ∫
Ω

ϕ (uk) : Dυ dx→
∫
Ω

ϕ (u) : Dυ dx as k→∞.

Next, we pass to the limit , we assert that

(Luk, v) =
∫
Ω

A(z,uk,Duk) : Dυ + ϕ (uk) : Dυ dx

→

∫
Ω

A(z,u,Du) : Dv + ϕ (u) : Dυ dx

=(Lu, υ).

This is the strong-weakly continuous of L onKψ,θ. This ends the proof of Assertion 3.3.

Now we can apply Theorem 2.2 and the above lemmas to obtain the existence. For this we conclude the
existence of an element u ∈ Kψ,θ such that ⟨L(u), υ − u⟩ ≥ 0, i.e.∫

Ω

A(z,u,Du) : (Dυ −Du) + ϕ (u) : (Dυ −Du) dz ≥ 0 for all υ ∈ Kψ,θ.

4. Uniqueness of Weak Solutions to Problem

Uniqueness is obtained proving the following theorem:

Theorem 4.1. Suppose Kψ,θ , ϕ. Under conditions ( f1) − ( f2)(c), there exists a unique solution u ∈ Kψ,θ to the
obstacle problem (1).
That is to say, there exists a unique u ∈ Kψ,θ such that∫

Ω

A(z,u,Du) : (Dυ −Du) + ϕ (u) : (Dυ −Du) dz ≥ 0 for all υ ∈ Kψ,θ.

Proof. The lemmas above lead to the immediate existence of two weak solutions u1,u2 ∈ Kψ,θ to the obstacle
problem (1), then∫

Ω

A(z,u1,Du1) : (Du2 −Du1) dz + ϕ (u1) : (Du2 −Du1) dz ≥ 0
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and

−

∫
Ω

A(z,u1,Du1) : (Du2 −Du1) dz + ϕ (u1) : (Du2 −Du1) dz

=

∫
Ω

A(z,u2,Du2) : (Du1 −Du2) dz + ϕ (u2) : (Du1 −Du2) dz ≥ 0.

Moreover,∫
Ω

A(z,u1,Du1) −A(z,u2,Du2) : (Du1 −Du2) + ϕ (u1) − ϕ (u2) : (Du1 −Du2) dz ≤ 0.

By looking at ( f2)(c), it can be concluded that∫
Ω

A(z,u1,Du1) −A(z,u2,Du2) : (Du1 −Du2) dx = 0 on Ω

and ∫
Ω

ϕ (u1) − ϕ (u2) : (Du1 −Du2) dx = 0.

We have now established that u1 = u2 almost everywhere on Ω, thus finishing the proof.
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(2), 327-374(2012).
[38] G. Stampacchia, Formes bilineaires coercivitives sur les ensembles convexes, C.R. Ac. Sci. Paris, 258 (1964), 4413-4416.
[39] Temghart, S. A., El Hammar, H., Allalou, C., and Hilal, K., . Existence results for some elliptic systems with perturbed gradient.

Filomat, 37(20), 6905-6915(2023).
[40] Tan J., A new approach for Hardy spaces with variable exponents on spaces of homogeneous type, Filomat, 37 (23),7719-7739,

(2023).
[41] H.T. Xie, Z.Z. Zhang, Z.W. Jiang, J.W. Zhou, Method of particular solutions for second-order differential equation with variable

coefficients via orthogonal polynomials, Journal of Function Spaces, vol.2023, art.n. 9748605, (2023).
[42] F. Yongqiang, Weak solution for obstacle problem with variable growth, Nonlinear Analysis: Theory, Methods and Applications,

59 (3), 371-383(2004).
[43] K. Yosida, Functional analysis. Springer, Berlin, (1980).


